1
|
Li XY, Zhou MH, Zeng DW, Zhu YF, Zhang FL, Liao S, Fan YC, Zhao XQ, Zhang L, Bai FW. Membrane transport engineering for efficient yeast biomanufacturing. BIORESOURCE TECHNOLOGY 2024; 418:131890. [PMID: 39644936 DOI: 10.1016/j.biortech.2024.131890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Yeast strains have been widely recognized as useful cell factories for biomanufacturing. To improve production efficiency, their biosynthetic pathways and regulatory strategies have been continuously optimized. However, commercial production using yeasts is still limited by low product yield and high production cost. Accumulating evidences have demonstrated the importance of metabolite transport processes in addressing these challenges. Engineering yeast membrane transporters for transporting precursors, substrates, intermediates, products and toxic inhibitors has been successful. In addition, membrane properties are also important for metabolite production. Here we propose membrane transport engineering (MTE) to integrate manipulation of both membrane transporters and membrane properties. We emphasize that systematic optimization of both transporters and membrane lipid bilayers benefits production efficiency. We also envision the potential of artificial intelligence and automation process in MTE for economic and sustainable bioproduction using yeast cell factories.
Collapse
Affiliation(s)
- Xin-Yue Li
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming-Hai Zhou
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Du-Wen Zeng
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi-Fan Zhu
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng-Li Zhang
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sha Liao
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Ya-Chao Fan
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Xin-Qing Zhao
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lin Zhang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China.
| | - Feng-Wu Bai
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Dai MJ, Zhang LD, Li J, Zhu CQ, Song LY, Huang HZ, Xu CQ, Li QH, Chen L, Jiang CK, Lu HL, Ling QT, Jiang QH, Wei J, Shen GX, Zhu XY, Zheng HL, Hu WJ. Calcium regulates the physiological and molecular responses of Morus alba roots to cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136210. [PMID: 39437474 DOI: 10.1016/j.jhazmat.2024.136210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/10/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Heavy metal cadmium (Cd) is toxic to organisms. Mulberry (Morus alba L.) is a fast-growing perennial that is also an economical Cd phytoremediation material with large biomass. However, the molecular mechanisms underlying its Cd tolerance remain unclear. Here, we reveal the physiological and molecular mechanisms underlying Cd toxicity under varying calcium (Ca) treatments. First, under low-Ca treatment (0.1 mM Ca), mulberry growth was severely inhibited and the root surface structure was damaged by Cd stress. Second, electrophysiological data demonstrated that 0.1 mM Ca induced an increased Cd2+ influx, leading to its accumulation in the entire root and root cell walls. Third, high-Ca treatment (10 mM Ca) largely alleviated growth inhibition, activated antioxidant enzymes, increased Ca content, decreased Cd2+ flux, and inhibited Cd uptake by roots. Finally, 0.1 mM Ca resulted in the activation of metal transporters and the disruption of Ca signaling-related gene expression, which facilitated Cd accumulation in the roots, aggravating oxidative stress. These adverse effects were reversed by treatment with 10 mM Ca. This study preliminarily revealed the mechanism by which varying Ca levels regulate Cd uptake and accumulation in mulberry roots, provided an insight into the interrelationships between Ca and Cd in the ecological and economic tree mulberry and offered a theoretical basis for Ca application in managing Cd pollution.
Collapse
Affiliation(s)
- Ming-Jin Dai
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China; Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China; Houji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030000, PR China
| | - Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Chun-Quan Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, PR China
| | - Ling-Yu Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - He-Zi Huang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Chao-Qun Xu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Qing-Hua Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Lin Chen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Chen-Kai Jiang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Hong-Ling Lu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Qiu-Tong Ling
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Qi-Hong Jiang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Jia Wei
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Guo-Xin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Xue-Yi Zhu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China.
| | - Wen-Jun Hu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China.
| |
Collapse
|
3
|
Lakhneko O, Fialová I, Fiala R, Kopáčová M, Kováč A, Danchenko M. Silicon might mitigate nickel toxicity in maize roots via chelation, detoxification, and membrane transport. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117334. [PMID: 39549574 DOI: 10.1016/j.ecoenv.2024.117334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/23/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Nickel is an essential micronutrient for plant growth and development. However, in excessive amounts caused by accidental pollution of soils, this heavy metal is toxic to plants. Although silicon is a non-essential nutrient, it accumulates in most monocots, particularly the vital crop maize (corn, Zea mays). In fact, this metalloid mineral can alleviate the toxicity of heavy metals, though the mechanism is not entirely clear yet. Herein, we measured proteome, gene expression, enzyme activities, and selected sugars to investigate such effect thoroughly. Deep proteomic analysis revealed a minor impact of 100 µM Ni, 2.5 mM Si, or their combination on roots in 12-day-old hydroponically grown maize seedlings upon 9 days of exposure. Nonetheless, we suggested plausible mechanisms of Si mitigation of excessive Ni: Chelation by metallothioneins and phytochelatins, detoxification by glycine betaine pathway, and restructuring of plasma membrane transporters. Higher activity of glutathione S-transferase confirmed its plausible involvement in reducing Ni toxicity in combined treatment. Accumulation of sucrose synthase and corresponding soluble sugars in Ni and combined treatment implied high energy requirements both during heavy metal stress and its mitigation. Expression analysis of genes coding a few differentially accumulated proteins failed to reveal concordant changes, indicating posttranscriptional regulation. Proposed mitigation mechanisms should be functionally validated in follow-up studies.
Collapse
Affiliation(s)
- Olha Lakhneko
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava 84523, Slovakia
| | - Ivana Fialová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava 84523, Slovakia
| | - Roderik Fiala
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava 84523, Slovakia
| | - Mária Kopáčová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava 84538, Slovakia
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava 84510, Slovakia
| | - Maksym Danchenko
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava 84523, Slovakia.
| |
Collapse
|
4
|
Wang X, Li Y, Zhang X, Chen X, Wang X, Yu D, Ge B. The extracellular polymeric substances (EPS) accumulation of Spirulina platensis responding to Cadmium (Cd 2+) exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134244. [PMID: 38598879 DOI: 10.1016/j.jhazmat.2024.134244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Spirulina platensis can secrete extracellular polymeric substances (EPS) helping to protect damage from stress environment, such as cadmium (Cd2+) exposure. However, the responding mechanism of S. platensis and the secreted EPS to exposure of Cd2+ is still unclear. This research focuses on the effects of Cd2+ on the composition and structure of the EPS and the response mechanism of EPS secretion from S. platensis for Cd2+ exposure. S. platensis can produce 261.37 mg·g-1 EPS when exposing to 20 mg·L-1 CdCl2, which was 2.5 times higher than the control group. The S. platensis EPS with and without Cd2+ treatment presented similar and stable irregularly fibrous structure. The monosaccharides composition of EPS in Cd2+ treated group are similar with control group but with different monosaccharides molar ratios, especially for Rha, Gal, Glc and Glc-UA. And the Cd2+ treatment resulted in a remarkable decline of humic acid and fulvic acid content. The antioxidant ability of S. platensis EPS increased significantly when exposed to 20 mg·L-1 CdCl2, which could be helpful for S. platensis protecting damage from high concentration of Cd2+. The transcriptome analysis showed that sulfur related metabolic pathways were up-regulated significantly, which promoted the synthesis of sulfur-containing amino acids and the secretion of large amounts of EPS.
Collapse
Affiliation(s)
- Xiufeng Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yuhui Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xiaojing Zhang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xin Chen
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xin Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
5
|
Wang H, Hu S, Gu L, Du X, Zhu B, Wang H. Ectopic expression of SaCTP3 from the hyperaccumulator Sedum alfredii in sorghum increases Cd accumulation for phytoextraction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123289. [PMID: 38176638 DOI: 10.1016/j.envpol.2024.123289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
The Cd tolerance protein SaCTP3, which responds to Cd stress, was identified in Sedum alfredii; however, how to improve the efficiency of phytoremediation of Cd-contaminated soil using the CTP gene remains unknown. In this study, the phytoremediation potential of SaCTP3 of Sedum alfredii was identified. In the yeast Cd-sensitive strain Δycf1 overexpressing SaCTP3, the accumulation of Cd was higher than that in the Δycf1 strain overexpressing an empty vector. Transgenic sorghum plants overexpression SaCTP3 were further constructed to verify the function of SaCTP3. Compared to wild-type plants, the SaCTP3-overexpressing lines exhibited higher Cd accumulation under 500 μM Cd conditions. The average Cd content inSaCTP3-overexpressing plants is more than four times higher than that of WT plants. This was accompanied by an enhanced ability to scavenge ROS, as evidenced by the significantly increased activities of peroxidase, catalase, and superoxide dismutase in response to Cd stress. Pot experiments further demonstrated that SaCTP3 overexpression resulted in improved soil Cd scavenging and photosynthetic abilities. After 20 days of growth, the average Cd content in the soil planted with SaCTP3-overexpressing sorghum decreased by 19.4%, while the residual Cd content in the soil planted with wild-type plants was only reduced by 5.4%. This study elucidated the role of SaCTP3 from S.alfredii, highlighting its potential utility in genetically modifying sorghum for the effective phytoremediation of Cd.
Collapse
Affiliation(s)
- Huinan Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Sha Hu
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China.
| |
Collapse
|
6
|
Kou X, Zhao Z, Xu X, Li C, Wu J, Zhang S. Identification and expression analysis of ATP-binding cassette (ABC) transporters revealed its role in regulating stress response in pear (Pyrus bretchneideri). BMC Genomics 2024; 25:169. [PMID: 38347517 PMCID: PMC10863237 DOI: 10.1186/s12864-024-10063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND ATP-binding cassette (ABC) transporter proteins constitute a plant gene superfamily crucial for growth, development, and responses to environmental stresses. Despite their identification in various plants like maize, rice, and Arabidopsis, little is known about the information on ABC transporters in pear. To investigate the functions of ABC transporters in pear development and abiotic stress response, we conducted an extensive analysis of ABC gene family in the pear genome. RESULTS In this study, 177 ABC transporter genes were successfully identified in the pear genome, classified into seven subfamilies: 8 ABCAs, 40 ABCBs, 24 ABCCs, 8 ABCDs, 9 ABCEs, 8 ABCFs, and 80 ABCGs. Ten motifs were common among all ABC transporter proteins, while distinct motif structures were observed for each subfamily. Distribution analysis revealed 85 PbrABC transporter genes across 17 chromosomes, driven primarily by WGD and dispersed duplication. Cis-regulatory element analysis of PbrABC promoters indicated associations with phytohormones and stress responses. Tissue-specific expression profiles demonstrated varied expression levels across tissues, suggesting diverse functions in development. Furthermore, several PbrABC genes responded to abiotic stresses, with 82 genes sensitive to salt stress, including 40 upregulated and 23 downregulated genes. Additionally, 91 genes were responsive to drought stress, with 22 upregulated and 36 downregulated genes. These findings highlight the pivotal role of PbrABC genes in abiotic stress responses. CONCLUSION This study provides evolutionary insights into PbrABC transporter genes, establishing a foundation for future research on their functions in pear. The identified motifs, distribution patterns, and stress-responsive expressions contribute to understanding the regulatory mechanisms of ABC transporters in pear. The observed tissue-specific expression profiles suggest diverse roles in developmental processes. Notably, the significant responses to salt and drought stress emphasize the importance of PbrABC genes in mediating adaptive responses. Overall, our study advances the understanding of PbrABC transporter genes in pear, opening avenues for further investigations in plant molecular biology and stress physiology.
Collapse
Affiliation(s)
- Xiaobing Kou
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China.
| | - Zhen Zhao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinqi Xu
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Chang Li
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Juyou Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Hu G, Cao H, Ye C, Wang F. Effect of cadmium stress on the bacterial community in the rhizosphere of mulberry (Morus alba L.). Braz J Microbiol 2023; 54:2297-2305. [PMID: 37594657 PMCID: PMC10484825 DOI: 10.1007/s42770-023-01090-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Mulberry has a good tolerance to cadmium (Cd) and is considered a candidate plant for phytoremediation. The rhizosphere microbial community plays an important role in phytoremediation. Nevertheless, little information on the rhizosphere microbial community mechanisms in mulberry during the phytoremediation of Cd-contaminated soil is available. In this study, the remediation efficiency of mulberry in pots subjected to three simulated Cd pollution levels and their rhizosphere bacterial communities during the remediation process were analyzed. "Yuesang 11" was used as the test mulberry variety, and three simulated Cd pollution levels were set by adding three concentrations of Cd (Cd5, 5 mg kg-1; Cd3, 3 mg kg-1; Cd2, 2 mg kg-1). The results showed that the elimination rates of Cd in the rhizosphere soil were 81.7%, 85.3%, and 57.9% under the stress of the Cd2, Cd3, and Cd5 conditions, respectively. Meanwhile, 3,082,583 high-quality sequence reads and 976 operational taxonomic units were successfully obtained from the mulberry rhizosphere soil by high-throughput absolute quantification sequencing and further assigned to 11 bacterial phyla and 26 families. Of these, decreased abundances of 19 bacteria at the family level and increased abundances of seven bacteria under Cd stress were revealed by comparative analysis. Based on the alpha diversity indices (Chaol, Shannon and Simpson) and principal component analysis, the rhizosphere bacterial diversity of the Cd5 condition was significantly decreased, but that of the Cd2 and Cd3 conditions was not different from that of soil without Cd (CK). Likewise, redundancy analysis showed that the abundances of Acidobacteria Gp2, Acidobacteria Gp13, and Sphingobacteria were significantly positively associated with the elimination rates of Cd. This study suggested that the mulberry rhizosphere contains a relatively stable bacterial community consisting of diverse Cd-resistant bacteria, providing a scientific basis for remediating heavy-metal polluted soils using mulberry.
Collapse
Affiliation(s)
- Guiping Hu
- Economic Crops Research Institute of Jiangxi Province, Nanchang, 330202, Jiangxi, China.
- Jiangxi Provincial Research Center for Sericultural Engineering and Technology, Nanchang, 330202, China.
| | - Hongmei Cao
- Economic Crops Research Institute of Jiangxi Province, Nanchang, 330202, Jiangxi, China
- Jiangxi Provincial Research Center for Sericultural Engineering and Technology, Nanchang, 330202, China
| | - Chuan Ye
- Economic Crops Research Institute of Jiangxi Province, Nanchang, 330202, Jiangxi, China
- Jiangxi Provincial Research Center for Sericultural Engineering and Technology, Nanchang, 330202, China
| | - Feng Wang
- Economic Crops Research Institute of Jiangxi Province, Nanchang, 330202, Jiangxi, China
- Jiangxi Provincial Research Center for Sericultural Engineering and Technology, Nanchang, 330202, China
| |
Collapse
|
8
|
Naaz S, Ahmad N, Jameel MR, Al-Huqail AA, Khan F, Qureshi MI. Impact of Some Toxic Metals on Important ABC Transporters in Soybean ( Glycine max L.). ACS OMEGA 2023; 8:27597-27611. [PMID: 37546587 PMCID: PMC10399161 DOI: 10.1021/acsomega.3c03325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
In plants, ATP-binding cassette (ABC) transporters facilitate the movement of substrates across membranes using ATP for growth, development, and defense. Soils contaminated with toxic metals such as cadmium (Cd) and mercury (Hg) might adversely affect the metabolism of plants and humans. In this study, a phylogenetic relationship among soybeans' (Glycine max) ATP binding cassette (GmABCs) and other plant ABCs was analyzed using sequence information, gene structure, chromosomal distribution, and conserved motif-domain. The ontology of GmABCs indicated their active involvement in trans-membrane transport and ATPase activity. Thirty-day-old soybean plants were exposed to 100 μM CdCl2 and 100 μM HgCl2 for 10 days. Physiological and biochemical traits were altered under stress conditions. Compared to Control, GmABC transporter genes were differentially expressed in response to Cd and Hg. The qRT-PCR data showed upregulation of seven ABC transporter genes in response to Cd stress and three were downregulated. On the other hand, Hg stress upregulated four GmABC genes and downregulated six. It could be concluded that most of the ABCB and ABCG subfamily members were actively involved in heavy metal responses. Real-time expression studies suggest the function of specific ABC transporters in Cd and Hg stress response and are helpful in future research to develop stress-tolerant varieties of soybean.
Collapse
Affiliation(s)
- Sheeba Naaz
- Department
of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
- Department
of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Nadeem Ahmad
- Department
of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - M. Rizwan Jameel
- Centre
for Interdisciplinary Research in Basic Sciences, Faculty of Natural
Sciences, Jamia Millia Islamia (A Central
University), New Delhi 110025, India
| | - Asma A. Al-Huqail
- Chair
of Climate Change, Environmental Development and Vegetation Cover,
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faheema Khan
- Chair
of Climate Change, Environmental Development and Vegetation Cover,
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - M. Irfan Qureshi
- Department
of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
9
|
Li S, Zhuo R, Yu M, Lin X, Xu J, Qiu W, Li H, Han X. A novel gene SpCTP3 from the hyperaccumulator Sedum plumbizincicola redistributes cadmium and increases its accumulation in transgenic Populus × canescens. FRONTIERS IN PLANT SCIENCE 2023; 14:1111789. [PMID: 36844053 PMCID: PMC9945123 DOI: 10.3389/fpls.2023.1111789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
A cadmium (Cd) tolerance protein (SpCTP3) involved in the Sedum plumbizincicola response to Cd stress was identified. However, the mechanism underlying the Cd detoxification and accumulation mediated by SpCTP3 in plants remains unclear. We compared wild-type (WT) and SpCTP3-overexpressing transgenic poplars in terms of Cd accumulation, physiological indices, and the expression profiles of transporter genes following with 100 μmol/L CdCl2. Compared with the WT, significantly more Cd accumulated in the above-ground and below-ground parts of the SpCTP3-overexpressing lines after 100 μmol/L CdCl2 treatment. The Cd flow rate was significantly higher in the transgenic roots than in the WT roots. The overexpression of SpCTP3 resulted in the subcellular redistribution of Cd, with decreased and increased Cd proportions in the cell wall and the soluble fraction, respectively, in the roots and leaves. Additionally, the accumulation of Cd increased the reactive oxygen species (ROS) content. The activities of three antioxidant enzymes (peroxidase, catalase, and superoxide dismutase) increased significantly in response to Cd stress. The observed increase in the titratable acid content in the cytoplasm might lead to the enhanced chelation of Cd. The genes encoding several transporters related to Cd2+ transport and detoxification were expressed at higher levels in the transgenic poplars than in the WT plants. Our results suggest that overexpressing SpCTP3 in transgenic poplar plants promotes Cd accumulation, modulates Cd distribution and ROS homeostasis, and decreases Cd toxicity via organic acids. In conclusion, genetically modifying plants to overexpress SpCTP3 may be a viable strategy for improving the phytoremediation of Cd-polluted soil.
Collapse
Affiliation(s)
- Shaocui Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
- Forestry Faculty, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Miao Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Xiaoyu Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Haiying Li
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Li L, Xiong Y, Wang Y, Wu S, Xiao C, Wang S, Cheng S, Cheng H. Effect of Nano-Selenium on Nutritional Quality of Cowpea and Response of ABCC Transporter Family. Molecules 2023; 28:molecules28031398. [PMID: 36771062 PMCID: PMC9921613 DOI: 10.3390/molecules28031398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
It is an important way for healthy Selenium (Se) supplement to transform exogenous Se into organic Se through crops. In the present study, Vigna unguiculata was selected as a test material and sprayed with biological nano selenium (SeNPs) and Na2SeO3, and its nutrient composition, antioxidant capacity, total Se and organic Se content were determined, respectively. Further, the response of ABC transporter family members in cowpea to different exogenous Se treatments was analyzed by transcriptome sequencing combined with different Se forms. The results show that the soluble protein content of cowpea increased after twice Se treatment. SeNPs treatment increased the content of cellulose in cowpea pods. Na2SeO3 treatment increased the content of vitamin C (Vc) in cowpea pods. Se treatments could significantly increase the activities of Peroxidase (POD), polyphenol oxidase (PPO) and catalase (CAT) in cowpea pods and effectively maintain the activity of Superoxide dismutase (SOD). SeNPs can reduce the content of malondialdehyde (MDA) in pods. After Se treatment, cowpea pods showed a dose-effect relationship on the absorption and accumulation of total Se, and Na2SeO3 treatment had a better effect on the increase of total Se content in cowpea pods. After treatment with SeNPs and Na2SeO3, the Se species detected in cowpea pods was mainly SeMet, followed by MeSeCys. Inorganic Se can only be detected in the high concentration treatment group. Analysis of transcriptome data of cowpea treated with Se showed that ABC transporters could play an active role in response to Se stress and Se absorption, among which ABCB, ABCC and ABCG subfamilies played a major role in Se absorption and transportation in cowpea. Further analysis by weighted gene co-expression network analysis (WGCNA) showed that the content of organic Se in cowpea treated with high concentration of SeNPs was significantly and positively correlated with the expression level of three transporters ABCC11, ABCC13 and ABCC10, which means that the ABCC subfamily may be more involved in the transmembrane transport of organic Se in cells.
Collapse
Affiliation(s)
- Li Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence: (L.L.); (H.C.)
| | - Yuzhou Xiong
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuan Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuai Wu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chunmei Xiao
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shiyan Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence: (L.L.); (H.C.)
| |
Collapse
|
11
|
Zia-Ur-Rehman M, Mubsher A, Rizwan M, Usman M, Jafir M, Umair M, Alharby HF, Bamagoos AA, Alshamrani R, Ali S. Effect of farmyard manure, elemental sulphur and EDTA on growth and phytoextraction of cadmium by spider plants (Chlorophytum comosum L.) under Cd stress. CHEMOSPHERE 2023; 313:137385. [PMID: 36436583 DOI: 10.1016/j.chemosphere.2022.137385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) contamination is considered as a widespread concern at global scale which is serious threats to human health. Phytoremediation is an eco-friendly approach which can remove or immobilize Cd from the soil. Different organic and inorganic amendments can potentially enhance Cd phytoremediation efficiency but the comparison of farmyard manure (FM), elemental sulphur (S) and ethylenediaminetetraacetic acid (EDTA) for Cd phytoremediation through spider plants (Chlorophytum comosum L.) remained unanswered. The present study evaluated the efficiency of S (0.1 and 0.2%), EDTA (0.1 and 0.2%, represented as EDTA-0.1 and EDTA-0.2) and FM (0.5 and 1%, represented as FM-0.5 and FM-1) for remediation of Cd contaminated soils (50 and 100 mg kg-1, represented as Cd-50 and Cd-100) through spider plants. Results depicted that the highest shoots and roots dry biomass was found in FM treated plants followed by S, EDTA and control except in EDTA-0.2 treatment in which the lowest values of these parameters were observed. Application of FM-1 significantly increased the shoot dry weight (120%), root dry weight (99%), as well as photosynthetic attributes in Cd-50 as compared to control. Application of EDTA-0.2 increased the bioavailable fraction of Cd than control and the maximum increase was observed in Cd-100. The highest Cd concentrations in shoot and roots were found in EDTA treated plants followed by S, control and FM irrespective of Cd and amendment levels. Maximum Cd in roots (109%) and shoots (156%) was recorded in plants grown in Cd-100 with EDTA-0.2 than control. The maximum bioaccumulation factor, translocation index, harvest index and root to shoot translocation were observed with EDTA than control and other treatments. EDTA along with spider plants may enhance the uptake of Cd but lower biomass production in the highest dose of EDTA may questioned the efficiency of EDTA.
Collapse
Affiliation(s)
- Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan.
| | - Arisha Mubsher
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Punjab, Pakistan.
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Jafir
- Department of Entomology, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Umair
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Atif A Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rahma Alshamrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Punjab, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
12
|
Ren Q, Xu Z, Xue Y, Yang R, Ma X, Sun J, Wang J, Lin S, Wang W, Yang L, Sun Z. Mechanism of calcium signal response to cadmium stress in duckweed. PLANT SIGNALING & BEHAVIOR 2022; 17:2119340. [PMID: 36102362 PMCID: PMC9481097 DOI: 10.1080/15592324.2022.2119340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) causes serious damage to plants. Although calcium (Ca) signal has been found to respond to certain stress, the localization of Ca and molecular mechanisms underlying Ca signal in plants during Cd stress are largely unknown. In this study, Ca2+-sensing fluorescent reporter (GCaMP3) transgenic duckweed showed the Ca2+ signal response in Lemna turionifera 5511 (duckweed) during Cd stress. Subsequently, the subcellular localization of Ca2+ has been studied during Cd stress by transmission electron microscopy, showing the accumulation of Ca2+ in vacuoles. Also, Ca2+ flow during Cd stress has been measured. At the same time, the effects of exogenous glutamic acid (Glu) and γ-aminobutyric (GABA) on duckweed can better clarify the signal operation mechanism of plants to Cd stress. The molecular mechanism of Ca2+ signal responsed during Cd stress showed that Cd treatment promotes the positive response of Ca signaling channels in plant cells, and thus affects the intracellular Ca content. These novel signal studies provided an important Ca2+ signal molecular mechanism during Cd stress.
Collapse
Affiliation(s)
- Qiuting Ren
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Ziyi Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Ying Xue
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Rui Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Xu Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jinge Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jing Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Shuang Lin
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Wenqiao Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Zhanpeng Sun
- Faculty of Education, Tianjin Normal University, Tianjin, China
| |
Collapse
|
13
|
Liaquat F, Munis MFH, Arif S, Manzoor MA, Haroon U, Shah IH, Ashraf M, Kim HS, Che S, Qunlu L. Reprisal of Schima superba to Mn stress and exploration of its defense mechanism through transcriptomic analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:1022686. [PMID: 36311055 PMCID: PMC9615920 DOI: 10.3389/fpls.2022.1022686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
One of the most diverse protein families, ATP-binding cassette (ABC) transporters, play a role in disease resistance, heavy metal tolerance, and food absorption.Differentially expressed genes contribute in the investigation of plant defense mechanisms under varying stress conditions. To elucidate the molecular mechanisms involved in Mn metal stress, we performed a transcriptomic analysis to explore the differential gene expression in Schima superba with the comparison of control. A total of 79.84 G clean data was generated and 6558 DEGs were identified in response to Mn metal stress. Differentially expressed genes were found to be involved in defense, signaling pathways, oxidative burst, transcription factors and stress responses. Genes important in metal transport were more expressive in Mn stress than control plants. The investigation of cis-acting regions in the ABC family indicated that these genes might be targeted by a large variety of trans-acting elements to control a variety of stress circumstances. Moreover, genes involved in defense responses, the mitogen-activated protein kinase (MAPK) signaling and signal transduction in S. superba were highly induced in Mn stress. Twenty ABC transporters were variably expressed on 1st, 5th, and 10th day of Mn treatment, according to the qRT PCR data. Inclusively, our findings provide an indispensable foundation for an advanced understanding of the metal resistance mechanisms. Our study will enrich the sequence information of S. superba in a public database and would provide a new understanding of the molecular mechanisms of heavy metal tolerance and detoxification.
Collapse
Affiliation(s)
- Fiza Liaquat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Samiah Arif
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Urooj Haroon
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Muhammad Ashraf
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hyun Seok Kim
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, South Korea
- National Center for AgroMeteorology, Seoul, South Korea
| | - Shengquan Che
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Liu Qunlu
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Dou X, Dai H, Skuza L, Wei S. Cadmium removal potential of hyperaccumulator Solanum nigrum L. under two planting modes in three years continuous phytoremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119493. [PMID: 35597484 DOI: 10.1016/j.envpol.2022.119493] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/02/2022] [Accepted: 05/14/2022] [Indexed: 05/22/2023]
Abstract
Solanum nigrum L. is a Cd hyperaccumulator, but the potential for continuous remediation, or different planting methods have not been fully characterized. The potential for continuous phytoremediation of Cd-contaminated farmland soil (2.08 mg kg-1 Cd) by 2 planting methods (flowering harvest twice a year and maturity harvest once a year) was studied in a 3-year pot experiment. The total Cd accumulation (ug plant-1) of the 3-year flowering stage treatments was 26.3% higher than that of the maturity stage treatments, which was mainly due to that flowering harvest twice a year caused 65.5% increase of shoot biomass. Similarly, the Cd decreased concentration in soil and Cd removal rate in the flowering stage treatments were 29.2% and 27.9% higher than that in the maturity stage treatments, respectively. After 3 years of phytoremediation, the extractable Cd concentration in soil was reduced by 36.4% in the flowering stage treatments and by 27.6% in the maturity stage treatments, which also led to the same decreasing trend of Cd accumulation of S. nigrum. In conclusion, the study results have demonstrated that the planting mode of two harvests a year at the flowering stage seems to be a viable option to apply for continuous phytoremediation of Cd-contaminated farmland soil.
Collapse
Affiliation(s)
- Xuekai Dou
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, 723001, China.
| | - Lidia Skuza
- Institute of Biology, The Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin, 71-415, Poland
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
15
|
Wei W, Peng H, Xie Y, Wang X, Huang R, Chen H, Ji X. The role of silicon in cadmium alleviation by rice root cell wall retention and vacuole compartmentalization under different durations of Cd exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112810. [PMID: 34571424 DOI: 10.1016/j.ecoenv.2021.112810] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 05/22/2023]
Abstract
Silicon (Si) plays a pivotal role in mitigating phytotoxicity caused by cadmium (Cd). However, few former reports focused on the internal mechanism how Si assisted in alleviating Cd stress in rice under different durations of Cd exposure. Herein, the effects of Si on subcellular distribution of Cd in rice roots under short-term (12 h) and long-term (20 d) Cd exposure were explored. Results showed that Si decreased shoot Cd concentration but had little impact on root Cd levels. Under short-term Cd exposure, subcellular distribution analysis showed that Si increased the ratio of Cd in root cell wall by 23.2~24.0%, and decreased the ratio of Cd in root soluble fraction by 20.6~21.5%. This suggested that Si supply improved root retention of Cd by fixing it on the cell wall and thus restricted intracellular transportation of Cd. Further analysis unraveled that pectin (especially ionic-soluble pectin) of the cell wall was the main binding component, and Si supply induced more Cd accumulation in covalent-soluble pectin and hemicellulose. Moreover, the overexpression of germin-like proteins (GLPs) proved the role of cell wall in moderating Cd toxicity. Under long-term Cd exposure, Si promoted phytochelatin 2 (PC2) and phytochelatin 3 (PC3) synthesis in cytosol, at the same time, Si down-regulated the expression of the Cd efflux-related protein multidrug resistance-associated protein-like ATP-binding cassette transporters (MRP-like ABC transporters) and limited Cd transportation from vacuole to cytosol. Taken together, Si rather predominates in limiting Cd translocation by the cell wall of root under short-term Cd exposure and promoting vacuole compartmentalization to mitigate the Cd toxicity under long-term exposure, instead of reducing the absorption of Cd in rice roots, thereby decreasing Cd delivery into shoots.
Collapse
Affiliation(s)
- Wei Wei
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Hua Peng
- Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural, Science (HAAS), Changsha 410125, China
| | - Yunhe Xie
- Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural, Science (HAAS), Changsha 410125, China
| | - Xin Wang
- School of Geographic Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Rui Huang
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Haoyu Chen
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Xionghui Ji
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China; Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural, Science (HAAS), Changsha 410125, China.
| |
Collapse
|
16
|
Yang YH, Wang CJ, Li RF, Yi YJ, Zeng L, Yang H, Zhang CF, Song KY, Guo SJ. Transcriptome-based identification and expression characterization of RgABCC transporters in Rehmannia glutinosa. PLoS One 2021; 16:e0253188. [PMID: 34170906 PMCID: PMC8232422 DOI: 10.1371/journal.pone.0253188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
ABCC multidrug resistance-associated proteins (ABCCs/MRPs), a subfamily of ABC transporters, are involved in multiple physiological processes. Although these proteins have been characterized in some plants, limited efforts have been made to address their possible roles in Rehmannia glutinosa, a medicinal plant. Here, we scanned R. glutinosa transcriptome sequences and identified 18 RgABCC genes by in silico analysis. Sequence alignment revealed that the RgABCCs were closely phylogenetically related and highly conserved with other plant ABCCs/MRPs. Subcellular localization revealed that most of the RgABCCs were deposited in vacuoles and a few in plasma membranes. Tissue-specific expression of the RgABCCs indicated significant specific accumulation patterns, implicating their roles in the respective tissues. Differential temporal expression patterns of the RgABCCs exhibited their potential roles during root development. Various abiotic stress and hormone treatment experiments indicated that some RgABCCs could be transcriptionally regulated in roots. Furthermore, the transcription of several RgABCCs in roots was strongly activated by cadmium (Cd), suggesting possible roles under heavy metal stresses. Functional analysis of RgABCC1 heterologous expression revealed that it may increase the tolerance to Cd in yeast, implying its Cd transport activity. Our study provides a detailed inventory and molecular characterization of the RgABCCs and valuable information for exploring their functions in R. glutinosa.
Collapse
Affiliation(s)
- Yan Hui Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
- * E-mail:
| | - Chao Jie Wang
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| | - Rui Fang Li
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| | - Yan Jie Yi
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| | - Lei Zeng
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| | - Heng Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| | - Chang Fu Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| | - Kai Yi Song
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| | - Si Jiao Guo
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| |
Collapse
|