1
|
El Salamouni NS, Cater JH, Spenkelink LM, Yu H. Nanobody engineering: computational modelling and design for biomedical and therapeutic applications. FEBS Open Bio 2025; 15:236-253. [PMID: 38898362 PMCID: PMC11788755 DOI: 10.1002/2211-5463.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
Nanobodies, the smallest functional antibody fragment derived from camelid heavy-chain-only antibodies, have emerged as powerful tools for diverse biomedical applications. In this comprehensive review, we discuss the structural characteristics, functional properties, and computational approaches driving the design and optimisation of synthetic nanobodies. We explore their unique antigen-binding domains, highlighting the critical role of complementarity-determining regions in target recognition and specificity. This review further underscores the advantages of nanobodies over conventional antibodies from a biosynthesis perspective, including their small size, stability, and solubility, which make them ideal candidates for economical antigen capture in diagnostics, therapeutics, and biosensing. We discuss the recent advancements in computational methods for nanobody modelling, epitope prediction, and affinity maturation, shedding light on their intricate antigen-binding mechanisms and conformational dynamics. Finally, we examine a direct example of how computational design strategies were implemented for improving a nanobody-based immunosensor, known as a Quenchbody. Through combining experimental findings and computational insights, this review elucidates the transformative impact of nanobodies in biotechnology and biomedical research, offering a roadmap for future advancements and applications in healthcare and diagnostics.
Collapse
Affiliation(s)
- Nehad S. El Salamouni
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongAustralia
| | - Jordan H. Cater
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongAustralia
| | - Lisanne M. Spenkelink
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongAustralia
| | - Haibo Yu
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongAustralia
- ARC Centre of Excellence in Quantum BiotechnologyUniversity of WollongongAustralia
| |
Collapse
|
2
|
Liu H, Su Q, Duan S, Huang X, Yang X, Liu A, Liu S, Xu C, Lu X. Development of a Nanobody-Alkaline Phosphatase Fusion Protein for Detection of SARS-CoV-2 Spike Protein in a Fluorescence Enzyme Immunoassay. Anal Chem 2024. [PMID: 39699064 DOI: 10.1021/acs.analchem.4c04799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The continuous spread and evolution of severe acute respiratory symptom coronavirus 2 (SARS-CoV-2) necessitate the development of convenient and rapid detection methods. In this study, we developed a fluorescence enzyme immunoassay (FEIA) based on a nanobody (Nb)-alkaline phosphatase (ALP) fusion protein for detection of SARS-CoV-2 spike protein. The genetically modified anti-SARS-CoV-2 S-RBD Nb, Nb61, gene was fused with the ALP gene sequences via a flexible linker. Recombinant cloning was used to yield a recombinant prokaryotic expression plasmid, Nb61-ALP-His. The Nb61-ALP-His construct was transformed into E. coli BL21(DE3) and expressed in bacteria. Both Nb61 properties and ALP enzymatic activity were validated by colorimetric and fluorometric analysis. FEIA was optimized and established on the basis of the Nb61-ALP fusion protein. The detection limit of the FEIA was 3.18 ng/mL, with a linear range of 1.9-62.5 ng/mL. Comparison with a commercial kit indicated the reliability of the Nb61-ALP fusion-protein-based FEIA for monitoring the SARS-CoV-2 spike protein. This study highlights the potential of Nb-based enzyme immunoassays as a valuable tool for the rapid and accurate detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Heng Liu
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qianling Su
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Otolaryngology Head and Neck Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Siliang Duan
- Medical College, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, China
| | - Xianing Huang
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaomei Yang
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Aiqun Liu
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shiquan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chun Xu
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Xiaoling Lu
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
3
|
Hu W, Yang S, Wang X, Li X, Lei L, Lin H, Yuan Q, Mao D, Luo Y. Development of a Dual-Epitope Nanobody-Based Immunosensor with MXenes@CNTs@AuNPs for Ultrasensitive Detection of Rotavirus. Anal Chem 2024; 96:19678-19686. [PMID: 39556521 DOI: 10.1021/acs.analchem.4c04826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Immunoassays have become essential tools for detecting infectious viruses. However, traditional monoclonal antibody-dependent immunoassays are costly, fragile, and unstable, especially in complex media. To overcome these challenges, we have developed cost-effective, robust, and high-affinity nanobodies as alternatives to monoclonal antibodies for rapid detection applications. We engineered dual-epitope nanobody (NB) pairs and incorporated them into a sandwich immunosensor design to detect transmitted rotaviruses in rectal swabs and wastewater samples. To further enhance sensitivity, we synthesized an advanced two-dimensional material, MXenes@CNTs@AuNPs, which offers an extensive specific surface area that supports the enrichment and immobilization of NBs. This integration with catalase-modified magnetic probes facilitates signal generation. Subsequently, our sensor achieved a detection limit of 0.0207 pg/mL for the rotavirus VP6 antigen, significantly outperforming commercial antigen kits with a sensitivity enhancement of 3.77 × 105-fold. The exceptional sensor performance extended to specificity, repeatability, stability, and accuracy across various sample types, establishing it as a promising tool for rotavirus detection. This research outlines a viable strategy for creating a robust and ultrasensitive analytical nanoprobe, thereby addressing the critical need for efficient and reliable viral detection methods in various environments.
Collapse
Affiliation(s)
- Wenjin Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Shixiang Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Xiaolong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Xi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Liusheng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Huai Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Qingbin Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300350, China
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
4
|
Singh V, Bhutkar M, Choudhary S, Nehul S, Kumar R, Singla J, Kumar P, Tomar S. Structure-guided mutations in CDRs for enhancing the affinity of neutralizing SARS-CoV-2 nanobody. Biochem Biophys Res Commun 2024; 734:150746. [PMID: 39366179 DOI: 10.1016/j.bbrc.2024.150746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
The optimization of antibodies to attain the desired levels of affinity and specificity holds great promise for the development of next generation therapeutics. This study delves into the refinement and engineering of complementarity-determining regions (CDRs) through in silico affinity maturation followed by binding validation using isothermal titration calorimetry (ITC) and pseudovirus-based neutralization assays. Specifically, it focuses on engineering CDRs targeting the epitopes of receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. A structure-guided virtual library of 112 single mutations in CDRs was generated and screened against RBD to select the potential affinity-enhancing mutations. Protein-protein docking analysis identified 32 single mutants of which nine mutants were selected for molecular dynamics (MD) simulations. Subsequently, biophysical ITC studies provided insights into binding affinity, and consistent with in silico findings, six mutations that demonstrated better binding affinity than native nanobody were further tested in vitro for neutralization activity against SARS-CoV-2 pseudovirus. Leu106Thr mutant was found to be most effective in virus-neutralization with IC50 values of ∼0.03 μM, as compared to the native nanobody (IC50 ∼0.77 μM). Thus, in this study, the developed computational pipeline guided by structure-aided interface profiles and thermodynamic analysis holds promise for the streamlined development of antibody-based therapeutic interventions against emerging variants of SARS-CoV-2 and other infectious pathogens.
Collapse
Affiliation(s)
- Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Mandar Bhutkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Sanketkumar Nehul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Rajesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Jitin Singla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India; Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
5
|
Sun Y, Martinez-Ramos C, Chen E, Osawa Y, Zhang H. A General Method to Screen Nanobodies for Cytochrome P450 Enzymes from a Yeast Surface Display Library. Biomedicines 2024; 12:1863. [PMID: 39200327 PMCID: PMC11351928 DOI: 10.3390/biomedicines12081863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
The availability of yeast surface display nanobody (Nb) libraries offers a convenient way to acquire antigen-specific nanobodies that may be useful for protein structure-function studies and/or therapeutic applications, complementary to the conventional method of acquiring nanobodies through immunization in camelids. In this study, we developed a general approach to select nanobodies for cytochrome P450 enzymes from a highly diverse yeast display library. We tested our method on three P450 enzymes including CYP102A1, neuronal nitric oxide synthase (nNOS), and the complex of CYP2B4:POR, using a novel streamlined approach where biotinylated P450s were bound to fluorescent-labeled streptavidin for Nb screening. The Nb-antigen binders were selectively enriched using magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). After two rounds of MACS, the population of positive binders was enriched by >5-fold compared to the naïve library. The subsequent FACS selection, with a gating of 0.1%, identified 634, 270, and 215 positive binders for CYP102A1, nNOS, and CYP2B4:POR, respectively. The positive binders for CYP102A1 were further triaged based on EC50 determined at various antigen concentrations. DNA sequencing of the top 30 binders of CYP102A1 resulted in 26 unique clones, 8 of which were selected for over-expression and characterization. They were found to inhibit CYP102A1-catalyzed oxidation of omeprazole with IC50 values in the range of 0.16-2.8 µM. These results validate our approach and may be applied to other protein targets for the effective selection of specific nanobodies.
Collapse
Affiliation(s)
- Yudong Sun
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA; (Y.S.); (C.M.-R.); (Y.O.)
| | - Cristian Martinez-Ramos
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA; (Y.S.); (C.M.-R.); (Y.O.)
| | - Eugene Chen
- Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Yoichi Osawa
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA; (Y.S.); (C.M.-R.); (Y.O.)
| | - Haoming Zhang
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA; (Y.S.); (C.M.-R.); (Y.O.)
| |
Collapse
|
6
|
He L, Wu Q, Zhang Z, Chen L, Yu K, Li L, Jia Q, Wang Y, Ni J, Wang C, Li Q, Zhai X, Zhao J, Liu Y, Fan R, Li YP. Development of Broad-Spectrum Nanobodies for the Therapy and Diagnosis of SARS-CoV-2 and Its Multiple Variants. Mol Pharm 2024; 21:3866-3879. [PMID: 38920116 DOI: 10.1021/acs.molpharmaceut.4c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evaded the efficacy of previously developed antibodies and vaccines, thus remaining a significant global public health threat. Therefore, it is imperative to develop additional antibodies that are capable of neutralizing emerging variants. Nanobodies, as the smallest functional single-domain antibodies, exhibit enhanced stability and penetration ability, enabling them to recognize numerous concealed epitopes that are inaccessible to conventional antibodies. Herein, we constructed an immune library based on the immunization of alpaca with the S1 subunit of the SARS-CoV-2 spike protein, from which two nanobodies, Nb1 and Nb2, were selected using phage display technology for further characterization. Both nanobodies, with the binding residues residing within the receptor-binding domain (RBD) region of the spike, exhibited high affinity toward the S1 subunit. Moreover, they displayed cross-neutralizing activity against both wild-type SARS-CoV-2 and 10 ο variants, including BA.1, BA.2, BA.3, BA.5, BA.2.75, BF.7, BQ.1, EG.5.1, XBB.1.5, and JN.1. Molecular modeling and dynamics simulations predicted that both nanobodies interacted with the viral RBD through their complementarity determining region 1 (CDR1) and CDR2. These two nanobodies are novel tools for the development of therapeutic and diagnostic countermeasures targeting SARS-CoV-2 variants and potentially emerging coronaviruses.
Collapse
Affiliation(s)
- Lei He
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- China Animal Disease Control Center, Beijing 102618, China
| | - Qian Wu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Lingling Chen
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- China Animal Disease Control Center, Beijing 102618, China
| | - Kuai Yu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Leibin Li
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- China Animal Disease Control Center, Beijing 102618, China
| | - Qiong Jia
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jianqiang Ni
- China Animal Disease Control Center, Beijing 102618, China
| | - Chuanbin Wang
- China Animal Disease Control Center, Beijing 102618, China
| | - Qi Li
- China Animal Disease Control Center, Beijing 102618, China
| | - Xinyan Zhai
- China Animal Disease Control Center, Beijing 102618, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yuliang Liu
- China Animal Disease Control Center, Beijing 102618, China
| | - Ruiwen Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Yi-Ping Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
7
|
Hannula L, Kuivanen S, Lasham J, Kant R, Kareinen L, Bogacheva M, Strandin T, Sironen T, Hepojoki J, Sharma V, Saviranta P, Kipar A, Vapalahti O, Huiskonen JT, Rissanen I. Nanobody engineering for SARS-CoV-2 neutralization and detection. Microbiol Spectr 2024; 12:e0419922. [PMID: 38363137 PMCID: PMC10986514 DOI: 10.1128/spectrum.04199-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2024] [Indexed: 02/17/2024] Open
Abstract
In response to the ongoing COVID-19 pandemic, the quest for coronavirus inhibitors has inspired research on a variety of small proteins beyond conventional antibodies, including robust single-domain antibody fragments, i.e., "nanobodies." Here, we explore the potential of nanobody engineering in the development of antivirals and diagnostic tools. Through fusion of nanobody domains that target distinct binding sites, we engineered multimodular nanobody constructs that neutralize wild-type SARS-CoV-2 and the Alpha and Delta variants at high potency, with IC50 values as low as 50 pM. Despite simultaneous binding to distinct epitopes, Beta and Omicron variants were more resistant to neutralization by the multimodular nanobodies, which highlights the importance of accounting for antigenic drift in the design of biologics. To further explore the applications of nanobody engineering in outbreak management, we present an assay based on fusions of nanobodies with fragments of NanoLuc luciferase that can detect sub-nanomolar quantities of the SARS-CoV-2 spike protein in a single step. Our work showcases the potential of nanobody engineering to combat emerging infectious diseases. IMPORTANCE Nanobodies, small protein binders derived from the camelid antibody, are highly potent inhibitors of respiratory viruses that offer several advantages over conventional antibodies as candidates for specific therapies, including high stability and low production costs. In this work, we leverage the unique properties of nanobodies and apply them as building blocks for new therapeutic and diagnostic tools. We report ultra-potent SARS-CoV-2 inhibition by engineered nanobodies comprising multiple modules in structure-guided combinations and develop nanobodies that carry signal molecules, allowing rapid detection of the SARS-CoV-2 spike protein. Our results highlight the potential of engineered nanobodies in the development of effective countermeasures, both therapeutic and diagnostic, to manage outbreaks of emerging viruses.
Collapse
Affiliation(s)
- Liina Hannula
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Suvi Kuivanen
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonathan Lasham
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ravi Kant
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdynia, Poland
| | - Lauri Kareinen
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Mariia Bogacheva
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Tomas Strandin
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tarja Sironen
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Jussi Hepojoki
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vivek Sharma
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Petri Saviranta
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Anja Kipar
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Olli Vapalahti
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Juha T. Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Ilona Rissanen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Park KS, Park TI, Lee JE, Hwang SY, Choi A, Pack SP. Aptamers and Nanobodies as New Bioprobes for SARS-CoV-2 Diagnostic and Therapeutic System Applications. BIOSENSORS 2024; 14:146. [PMID: 38534253 PMCID: PMC10968798 DOI: 10.3390/bios14030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
The global challenges posed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have underscored the critical importance of innovative and efficient control systems for addressing future pandemics. The most effective way to control the pandemic is to rapidly suppress the spread of the virus through early detection using a rapid, accurate, and easy-to-use diagnostic platform. In biosensors that use bioprobes, the binding affinity of molecular recognition elements (MREs) is the primary factor determining the dynamic range of the sensing platform. Furthermore, the sensitivity relies mainly on bioprobe quality with sufficient functionality. This comprehensive review investigates aptamers and nanobodies recently developed as advanced MREs for SARS-CoV-2 diagnostic and therapeutic applications. These bioprobes might be integrated into organic bioelectronic materials and devices, with promising enhanced sensitivity and specificity. This review offers valuable insights into advancing biosensing technologies for infectious disease diagnosis and treatment using aptamers and nanobodies as new bioprobes.
Collapse
Affiliation(s)
| | | | | | | | | | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (K.S.P.); (T.-I.P.); (J.E.L.); (S.-Y.H.); (A.C.)
| |
Collapse
|
9
|
Winiger RR, Perez L. Therapeutic antibodies and alternative formats against SARS-CoV-2. Antiviral Res 2024; 223:105820. [PMID: 38307147 DOI: 10.1016/j.antiviral.2024.105820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) heavily burdened the entire world. Despite a prompt generation of vaccines and therapeutics to confront infection, the virus remains a threat. The ancestor viral strain has evolved into several variants of concern, with the Omicron variant now having many distinct sublineages. Consequently, most available antibodies targeting the spike went obsolete and thus new therapies or therapeutic formats are needed. In this review we focus on antibody targets, provide an overview of the therapeutic progress made so far, describe novel formats being explored, and lessons learned from therapeutic antibodies that can enhance pandemic preparedness.
Collapse
Affiliation(s)
- Rahel R Winiger
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Switzerland.
| | - Laurent Perez
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Switzerland.
| |
Collapse
|
10
|
Matthys A, Saelens X. Promises and challenges of single-domain antibodies to control influenza. Antiviral Res 2024; 222:105807. [PMID: 38219914 DOI: 10.1016/j.antiviral.2024.105807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
The World Health Organization advices the use of a quadrivalent vaccine as prophylaxis against influenza, to prevent severe influenza-associated disease and -mortality, and to keep up with influenza antigenic diversity. Different small molecule antivirals to treat influenza have become available. However, emergence of drug resistant influenza viruses has been observed upon use of these antivirals. An appealing alternative approach to prevent or treat influenza is the use of antibody-based antivirals, such as conventional monoclonal antibodies and single-domain antibodies (sdAbs). The surface of the influenza A and B virion is decorated with hemagglutinin molecules, which act as receptor-binding and membrane fusion proteins and represent the main target of neutralizing antibodies. SdAbs that target influenza A and B hemagglutinin have been described. In addition, sdAbs directed against the influenza A virus neuraminidase have been reported, whereas no sdAbs targeting influenza B neuraminidase have been described to date. SdAbs directed against influenza A matrix protein 2 or its ectodomain have been reported, while no sdAbs have been described targeting the influenza B matrix protein 2. Known for their high specificity, ease of production and formatting, sdAb-based antivirals could be a major leap forward in influenza control.
Collapse
Affiliation(s)
- Arne Matthys
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
11
|
Solodkov PP, Najakshin AM, Chikaev NA, Kulemzin SV, Mechetina LV, Baranov KO, Guselnikov SV, Gorchakov AA, Belovezhets TN, Chikaev AN, Volkova OY, Markhaev AG, Kononova YV, Alekseev AY, Gulyaeva MA, Shestopalov AM, Taranin AV. Serial Llama Immunization with Various SARS-CoV-2 RBD Variants Induces Broad Spectrum Virus-Neutralizing Nanobodies. Vaccines (Basel) 2024; 12:129. [PMID: 38400113 PMCID: PMC10891761 DOI: 10.3390/vaccines12020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The emergence of SARS-CoV-2 mutant variants has posed a significant challenge to both the prevention and treatment of COVID-19 with anti-coronaviral neutralizing antibodies. The latest viral variants demonstrate pronounced resistance to the vast majority of human monoclonal antibodies raised against the ancestral Wuhan variant. Less is known about the susceptibility of the evolved virus to camelid nanobodies developed at the start of the pandemic. In this study, we compared nanobody repertoires raised in the same llama after immunization with Wuhan's RBD variant and after subsequent serial immunization with a variety of RBD variants, including that of SARS-CoV-1. We show that initial immunization induced highly potent nanobodies, which efficiently protected Syrian hamsters from infection with the ancestral Wuhan virus. These nanobodies, however, mostly lacked the activity against SARS-CoV-2 omicron-pseudotyped viruses. In contrast, serial immunization with different RBD variants resulted in the generation of nanobodies demonstrating a higher degree of somatic mutagenesis and a broad range of neutralization. Four nanobodies recognizing distinct epitopes were shown to potently neutralize a spectrum of omicron variants, including those of the XBB sublineage. Our data show that nanobodies broadly neutralizing SARS-CoV-2 variants may be readily induced by a serial variant RBD immunization.
Collapse
Affiliation(s)
- Pavel P. Solodkov
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Alexander M. Najakshin
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Nikolai A. Chikaev
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Sergey V. Kulemzin
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Ludmila V. Mechetina
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Konstantin O. Baranov
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Sergey V. Guselnikov
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Andrey A. Gorchakov
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Tatyana N. Belovezhets
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Anton N. Chikaev
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Olga Y. Volkova
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Alexander G. Markhaev
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (A.G.M.); (Y.V.K.); (A.Y.A.); (M.A.G.); (A.M.S.)
| | - Yulia V. Kononova
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (A.G.M.); (Y.V.K.); (A.Y.A.); (M.A.G.); (A.M.S.)
| | - Alexander Y. Alekseev
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (A.G.M.); (Y.V.K.); (A.Y.A.); (M.A.G.); (A.M.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Marina A. Gulyaeva
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (A.G.M.); (Y.V.K.); (A.Y.A.); (M.A.G.); (A.M.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexander M. Shestopalov
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (A.G.M.); (Y.V.K.); (A.Y.A.); (M.A.G.); (A.M.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexander V. Taranin
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| |
Collapse
|
12
|
Ghumra D, Shetty N, McBrearty KR, Puthussery JV, Sumlin BJ, Gardiner WD, Doherty BM, Magrecki JP, Brody DL, Esparza TJ, O’Halloran JA, Presti RM, Bricker TL, Boon ACM, Yuede CM, Cirrito JR, Chakrabarty RK. Rapid Direct Detection of SARS-CoV-2 Aerosols in Exhaled Breath at the Point of Care. ACS Sens 2023; 8:3023-3031. [PMID: 37498298 PMCID: PMC10463275 DOI: 10.1021/acssensors.3c00512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Airborne transmission via virus-laden aerosols is a dominant route for the transmission of respiratory diseases, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Direct, non-invasive screening of respiratory virus aerosols in patients has been a long-standing technical challenge. Here, we introduce a point-of-care testing platform that directly detects SARS-CoV-2 aerosols in as little as two exhaled breaths of patients and provides results in under 60 s. It integrates a hand-held breath aerosol collector and a llama-derived, SARS-CoV-2 spike-protein specific nanobody bound to an ultrasensitive micro-immunoelectrode biosensor, which detects the oxidation of tyrosine amino acids present in SARS-CoV-2 viral particles. Laboratory and clinical trial results were within 20% of those obtained using standard testing methods. Importantly, the electrochemical biosensor directly detects the virus itself, as opposed to a surrogate or signature of the virus, and is sensitive to as little as 10 viral particles in a sample. Our platform holds the potential to be adapted for multiplexed detection of different respiratory viruses. It provides a rapid and non-invasive alternative to conventional viral diagnostics.
Collapse
Affiliation(s)
- Dishit
P. Ghumra
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Nishit Shetty
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Kevin R. McBrearty
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Joseph V. Puthussery
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Benjamin J. Sumlin
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Woodrow D. Gardiner
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Brookelyn M. Doherty
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Jordan P. Magrecki
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - David L. Brody
- National
Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, United States
- Department
of Neurology, Uniformed Services University
of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Thomas J. Esparza
- National
Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, United States
| | - Jane A. O’Halloran
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
| | - Rachel M. Presti
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
| | - Traci L. Bricker
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
- Departments
Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Adrianus C. M. Boon
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
- Departments
Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Carla M. Yuede
- Department
of Psychiatry, Washington University School
of Medicine, Campus Box
8134, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - John R. Cirrito
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Rajan K. Chakrabarty
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
13
|
Hollingsworth SA, Noland CL, Vroom K, Saha A, Sam M, Gao Q, Zhou H, Grandy DU, Singh S, Wen Z, Warren C, Ma XS, Malashock D, Galli J, Go G, Eddins M, Mayhood T, Sathiyamoorthy K, Fridman A, Raoufi F, Gomez-Llorente Y, Patridge A, Tang Y, Chen SJ, Bailly M, Ji C, Kingsley LJ, Cheng AC, Geierstanger BH, Gorman DM, Zhang L, Pande K. Discovery and multimerization of cross-reactive single-domain antibodies against SARS-like viruses to enhance potency and address emerging SARS-CoV-2 variants. Sci Rep 2023; 13:13668. [PMID: 37608223 PMCID: PMC10444775 DOI: 10.1038/s41598-023-40919-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023] Open
Abstract
Coronaviruses have been the causative agent of three epidemics and pandemics in the past two decades, including the ongoing COVID-19 pandemic. A broadly-neutralizing coronavirus therapeutic is desirable not only to prevent and treat COVID-19, but also to provide protection for high-risk populations against future emergent coronaviruses. As all coronaviruses use spike proteins on the viral surface to enter the host cells, and these spike proteins share sequence and structural homology, we set out to discover cross-reactive biologic agents targeting the spike protein to block viral entry. Through llama immunization campaigns, we have identified single domain antibodies (VHHs) that are cross-reactive against multiple emergent coronaviruses (SARS-CoV, SARS-CoV-2, and MERS). Importantly, a number of these antibodies show sub-nanomolar potency towards all SARS-like viruses including emergent CoV-2 variants. We identified nine distinct epitopes on the spike protein targeted by these VHHs. Further, by engineering VHHs targeting distinct, conserved epitopes into multi-valent formats, we significantly enhanced their neutralization potencies compared to the corresponding VHH cocktails. We believe this approach is ideally suited to address both emerging SARS-CoV-2 variants during the current pandemic as well as potential future pandemics caused by SARS-like coronaviruses.
Collapse
Affiliation(s)
- Scott A Hollingsworth
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
- Molecular Structure and Design, Bristol-Myers Squibb Research and Development, 700 Bay Road, Redwood City, CA, 94063, USA
| | - Cameron L Noland
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Karin Vroom
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Anasuya Saha
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Miranda Sam
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Qinshan Gao
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Haihong Zhou
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - David U Grandy
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Sujata Singh
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Zhiyun Wen
- Infectious Disease and Vaccine Discovery, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA
| | - Christopher Warren
- Infectious Disease and Vaccine Discovery, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA
| | - Xiaohong Shirley Ma
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Daniel Malashock
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Jennifer Galli
- Infectious Disease and Vaccine Discovery, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA
| | - Gwenny Go
- Infectious Disease and Vaccine Discovery, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA
| | - Michael Eddins
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Todd Mayhood
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Karthik Sathiyamoorthy
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Arthur Fridman
- Data Science and Informatics, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ, 07065, USA
| | - Fahimeh Raoufi
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Yacob Gomez-Llorente
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Andrea Patridge
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Yinyan Tang
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Shi-Juan Chen
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Marc Bailly
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Chengjie Ji
- NovaBioAssays, LLC, 52 Dragon Ct, Woburn, MA, 01801, USA
| | - Laura J Kingsley
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
- Boehringer Ingelheim, 900 Ridgebury Rd, Ridgefield, CT, 06877, USA
| | - Alan C Cheng
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Bernhard H Geierstanger
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Daniel M Gorman
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Lan Zhang
- Infectious Disease and Vaccine Discovery, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA.
| | - Kalyan Pande
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA.
| |
Collapse
|
14
|
Stahl P, Kollenda S, Sager J, Schmidt L, Schroer MA, Stauber RH, Epple M, Knauer SK. Tuning Nanobodies' Bioactivity: Coupling to Ultrasmall Gold Nanoparticles Allows the Intracellular Interference with Survivin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300871. [PMID: 37035950 DOI: 10.1002/smll.202300871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Nanobodies are highly affine binders, often used to track disease-relevant proteins inside cells. However, they often fail to interfere with pathobiological functions, required for their clinical exploitation. Here, a nanobody targeting the disease-relevant apoptosis inhibitor and mitosis regulator Survivin (SuN) is utilized. Survivin's multifaceted functions are regulated by an interplay of dynamic cellular localization, dimerization, and protein-protein interactions. However, as Survivin harbors no classical "druggable" binding pocket, one must aim at blocking extended protein surface areas. Comprehensive experimental evidence demonstrates that intracellular expression of SuN allows to track Survivin at low nanomolar concentrations but failed to inhibit its biological functions. Small angle X-ray scattering of the Survivin-SuN complex locates the proposed interaction interface between the C-terminus and the globular domain, as such not blocking any pivotal interaction. By clicking multiple SuN to ultrasmall (2 nm) gold nanoparticles (SuN-N), not only intracellular uptake is enabled, but additionally, Survivin crosslinking and interference with mitotic progression in living cells are also enabled. In sum, it is demonstrated that coupling of nanobodies to nanosized scaffolds can be universally applicable to improve their function and therapeutic applicability.
Collapse
Affiliation(s)
- Paul Stahl
- Molecular Biology II, Department of Biology, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Sebastian Kollenda
- Inorganic Chemistry, Department of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Jonas Sager
- Inorganic Chemistry, Department of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Laura Schmidt
- Molecular Biology II, Department of Biology, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Martin A Schroer
- Nanoparticle Process Technology, Department of Engineering, University of Duisburg-Essen, Lotharstr. 1, 47057, Duisburg, Germany
| | - Roland H Stauber
- Molecular and Cellular Oncology/ENT, University Medical Center Mainz (UMM), Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Matthias Epple
- Inorganic Chemistry, Department of Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE) and Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Shirley K Knauer
- Molecular Biology II, Department of Biology, Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| |
Collapse
|
15
|
Modhiran N, Lauer SM, Amarilla AA, Hewins P, Lopes van den Broek SI, Low YS, Thakur N, Liang B, Nieto GV, Jung J, Paramitha D, Isaacs A, Sng JD, Song D, Jørgensen JT, Cheuquemilla Y, Bürger J, Andersen IV, Himelreichs J, Jara R, MacLoughlin R, Miranda-Chacon Z, Chana-Cuevas P, Kramer V, Spahn C, Mielke T, Khromykh AA, Munro T, Jones ML, Young PR, Chappell K, Bailey D, Kjaer A, Herth MM, Jurado KA, Schwefel D, Rojas-Fernandez A, Watterson D. A nanobody recognizes a unique conserved epitope and potently neutralizes SARS-CoV-2 omicron variants. iScience 2023; 26:107085. [PMID: 37361875 PMCID: PMC10251734 DOI: 10.1016/j.isci.2023.107085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/12/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) Omicron variant sub-lineages spread rapidly worldwide, mostly due to their immune-evasive properties. This has put a significant part of the population at risk for severe disease and underscores the need for effective anti-SARS-CoV-2 agents against emergent strains in vulnerable patients. Camelid nanobodies are attractive therapeutic candidates due to their high stability, ease of large-scale production, and potential for delivery via inhalation. Here, we characterize the receptor binding domain (RBD)-specific nanobody W25 and show superior neutralization activity toward Omicron sub-lineages in comparison to all other SARS-CoV2 variants. Structure analysis of W25 in complex with the SARS-CoV2 spike glycoprotein shows that W25 engages an RBD epitope not covered by any of the antibodies previously approved for emergency use. In vivo evaluation of W25 prophylactic and therapeutic treatments across multiple SARS-CoV-2 variant infection models, together with W25 biodistribution analysis in mice, demonstrates favorable pre-clinical properties. Together, these data endorse W25 for further clinical development.
Collapse
Affiliation(s)
- Naphak Modhiran
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
| | - Simon Malte Lauer
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Peter Hewins
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Irene Lopes van den Broek
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Yu Shang Low
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Nazia Thakur
- The Pirbright Institute, Ash Road, Guildford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benjamin Liang
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Guillermo Valenzuela Nieto
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - James Jung
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Devina Paramitha
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Ariel Isaacs
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Julian D.J. Sng
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - David Song
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesper Tranekjær Jørgensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Yorka Cheuquemilla
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Jörg Bürger
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Microscopy and Cryo-Electron Microscopy Service Group, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Ida Vang Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Johanna Himelreichs
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Ronald Jara
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland
| | | | - Pedro Chana-Cuevas
- CETRAM & Faculty of Medical Science Universidad de Santiago de Chile, Chile
| | - Vasko Kramer
- PositronPharma SA, Rancagua 878, 7500921 Providencia, Santiago, Chile
| | - Christian Spahn
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Thorsten Mielke
- Microscopy and Cryo-Electron Microscopy Service Group, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Trent Munro
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
| | - Martina L. Jones
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
| | - Paul R. Young
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Keith Chappell
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Dalan Bailey
- The Pirbright Institute, Ash Road, Guildford, UK
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Kellie Ann Jurado
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - David Schwefel
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Alejandro Rojas-Fernandez
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Berking Biotechnology, Valdivia, Chile
| | - Daniel Watterson
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Feng X, Wang H. Emerging Landscape of Nanobodies and Their Neutralizing Applications against SARS-CoV-2 Virus. ACS Pharmacol Transl Sci 2023; 6:925-942. [PMID: 37470012 PMCID: PMC10275483 DOI: 10.1021/acsptsci.3c00042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 07/21/2023]
Abstract
The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the coronavirus disease 2019 (COVID-19) has significantly altered people's way of life. Despite widespread knowledge of vaccination, mask use, and avoidance of close contact, COVID-19 is still spreading around the world. Numerous research teams are examining the SARS-CoV-2 infection process to discover strategies to identify, prevent, and treat COVID-19 to limit the spread of this chronic coronavirus illness and restore lives to normalcy. Nanobodies have advantages over polyclonal and monoclonal antibodies (Ab) and Ab fragments, including reduced size, high stability, simplicity in manufacture, compatibility with genetic engineering methods, and lack of solubility and aggregation issues. Recent studies have shown that nanobodies that target the SARS-CoV-2 receptor-binding domain and disrupt ACE2 interactions are helpful in the prevention and treatment of SARS-CoV-2-infected animal models, despite the lack of evidence in human patients. The creation and evaluation of nanobodies, as well as their diagnostic and therapeutic applications against COVID-19, are discussed in this paper.
Collapse
Affiliation(s)
- Xuemei Feng
- Department
of Microbiology and Immunology, College
of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Hu Wang
- Department
of Microbiology and Immunology, College
of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore 21215, United States
| |
Collapse
|
17
|
Puthussery JV, Ghumra DP, McBrearty KR, Doherty BM, Sumlin BJ, Sarabandi A, Mandal AG, Shetty NJ, Gardiner WD, Magrecki JP, Brody DL, Esparza TJ, Bricker TL, Boon ACM, Yuede CM, Cirrito JR, Chakrabarty RK. Real-time environmental surveillance of SARS-CoV-2 aerosols. Nat Commun 2023; 14:3692. [PMID: 37429842 DOI: 10.1038/s41467-023-39419-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023] Open
Abstract
Real-time surveillance of airborne SARS-CoV-2 virus is a technological gap that has eluded the scientific community since the beginning of the COVID-19 pandemic. Offline air sampling techniques for SARS-CoV-2 detection suffer from longer turnaround times and require skilled labor. Here, we present a proof-of-concept pathogen Air Quality (pAQ) monitor for real-time (5 min time resolution) direct detection of SARS-CoV-2 aerosols. The system synergistically integrates a high flow (~1000 lpm) wet cyclone air sampler and a nanobody-based ultrasensitive micro-immunoelectrode biosensor. The wet cyclone showed comparable or better virus sampling performance than commercially available samplers. Laboratory experiments demonstrate a device sensitivity of 77-83% and a limit of detection of 7-35 viral RNA copies/m3 of air. Our pAQ monitor is suited for point-of-need surveillance of SARS-CoV-2 variants in indoor environments and can be adapted for multiplexed detection of other respiratory pathogens of interest. Widespread adoption of such technology could assist public health officials with implementing rapid disease control measures.
Collapse
Affiliation(s)
- Joseph V Puthussery
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Dishit P Ghumra
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Kevin R McBrearty
- Department of Neurology, Hope Center for Neurological Disease, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, 63110, USA
| | - Brookelyn M Doherty
- Department of Neurology, Hope Center for Neurological Disease, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, 63110, USA
| | - Benjamin J Sumlin
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Amirhossein Sarabandi
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Anushka Garg Mandal
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Nishit J Shetty
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Woodrow D Gardiner
- Department of Neurology, Hope Center for Neurological Disease, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, 63110, USA
| | - Jordan P Magrecki
- Department of Neurology, Hope Center for Neurological Disease, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, 63110, USA
| | - David L Brody
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Thomas J Esparza
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Traci L Bricker
- Department of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University, St. Louis, MO, 63110, USA
- Departments Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carla M Yuede
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - John R Cirrito
- Department of Neurology, Hope Center for Neurological Disease, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, 63110, USA.
| | - Rajan K Chakrabarty
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
18
|
Yaniro V, Capristano S, Bailon H, Lévano J, Galarza M, García D, Cáceres O, Padilla C, Montejo H, García P, Celis M, Seraylan S, Garayar Y, Palomino M. Neutralization of SARS-CoV-2 (lineage B.1.1) by hyperimmune llama (Lama glama) serum in vero cell culture. Rev Peru Med Exp Salud Publica 2023; 40:287-296. [PMID: 37991032 PMCID: PMC10953648 DOI: 10.17843/rpmesp.2023.403.12509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/01/2023] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVE. To evaluate the serological antibody response of a llama (Lama glama) to SARS-CoV-2 (B.1.1 lineage) immunization and the neutralizing capacity of hyperimmune llama serum against SARS-CoV-2 virus (B.1.1 lineage) in Vero cells. MATERIALS AND METHODS. A llama was immunized with inactivated SARS-CoV-2 (B.1.1 lineage). Serum samples were analyzed to evaluate the level of antibodies by ELISA, as well as reactivity to SARS-CoV-2 antigens by Western Blot. In addition, viral neutralization in cell cultures was assessed by the Plate Reduction Neutralization Test (PRNT). RESULTS . Seroreactivity increased in the immunized llama from week 4 onwards. Antibody titers were the highest after the seventh immunization booster. Western blot results confirmed the positive ELISA findings, and immune serum antibodies recognized several viral proteins. The neutralization assay (PRNT) showed visible viral neutralization, which was in accordance with the ELISA and Western Blot results. CONCLUSIONS. The findings suggest that hyperimmune llama serum could constitute a source of therapeutic antibodies against SARS-CoV-2 infections (lineage B.1.1), and should be studied in further research.
Collapse
Affiliation(s)
- Verónica Yaniro
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Silvia Capristano
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Henri Bailon
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Juan Lévano
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Marco Galarza
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - David García
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Omar Cáceres
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Carlos Padilla
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Harrison Montejo
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Paquita García
- National Referral Laboratory for Viral Metaxenical Infections, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Viral Metaxenical InfectionsCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Mary Celis
- Laboratorio de Referencia Nacional de Virus Respiratorios, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú.Laboratorio de Referencia Nacional de Virus RespiratoriosCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Silvia Seraylan
- Centro Nacional de Producción de Biológicos, Instituto Nacional de Salud, Lima, Peru.Centro Nacional de Producción de BiológicosInstituto Nacional de SaludLimaPeru
| | - Yessica Garayar
- Centro Nacional de Producción de Biológicos, Instituto Nacional de Salud, Lima, Peru.Centro Nacional de Producción de BiológicosInstituto Nacional de SaludLimaPeru
| | - Miryam Palomino
- National Referral Laboratory for Viral Metaxenical Infections, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Viral Metaxenical InfectionsCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| |
Collapse
|
19
|
Yu X, Pan B, Zhao C, Shorty D, Solano LN, Sun G, Liu R, Lam KS. Discovery of Peptidic Ligands against the SARS-CoV-2 Spike Protein and Their Use in the Development of a Highly Sensitive Personal Use Colorimetric COVID-19 Biosensor. ACS Sens 2023; 8:2159-2168. [PMID: 37253267 PMCID: PMC10255569 DOI: 10.1021/acssensors.2c02386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In addition to efficacious vaccines and antiviral therapeutics, reliable and flexible in-home personal use diagnostics for the detection of viral antigens are needed for effective control of the COVID-19 pandemic. Despite the approval of several PCR-based and affinity-based in-home COVID-19 testing kits, many of them suffer from problems such as a high false-negative rate, long waiting time, and short storage period. Using the enabling one-bead-one-compound (OBOC) combinatorial technology, several peptidic ligands with a nanomolar binding affinity toward the SARS-CoV-2 spike protein (S-protein) were successfully discovered. Taking advantage of the high surface area of porous nanofibers, immobilization of these ligands on nanofibrous membranes allows the development of personal use sensors that can achieve low nanomolar sensitivity in the detection of the S-protein in saliva. This simple biosensor employing naked-eye reading exhibits detection sensitivity comparable to some of the current FDA-approved home detection kits. Furthermore, the ligand used in the biosensor was found to detect the S-protein derived from both the original strain and the Delta variant. The workflow reported here may enable us to rapidly respond to the development of home-based biosensors against future viral outbreaks.
Collapse
Affiliation(s)
- Xingjian Yu
- Department
of Biochemistry & Molecular Medicine, University of California, Sacramento, Sacramento, California 95817, United States
- Department
of Chemistry, University of California,
Sacramento, Sacramento, California 95616, United States
| | - Bofeng Pan
- Department
of Biological and Agricultural Engineering, University of California, Davis, Davis, California 95616, United States
| | - Cunyi Zhao
- Department
of Biological and Agricultural Engineering, University of California, Davis, Davis, California 95616, United States
| | - Diedra Shorty
- Department
of Biochemistry & Molecular Medicine, University of California, Sacramento, Sacramento, California 95817, United States
- Department
of Chemistry, University of California,
Sacramento, Sacramento, California 95616, United States
| | - Lucas N. Solano
- Department
of Biochemistry & Molecular Medicine, University of California, Sacramento, Sacramento, California 95817, United States
| | - Gang Sun
- Department
of Biological and Agricultural Engineering, University of California, Davis, Davis, California 95616, United States
| | - Ruiwu Liu
- Department
of Biochemistry & Molecular Medicine, University of California, Sacramento, Sacramento, California 95817, United States
| | - Kit S. Lam
- Department
of Biochemistry & Molecular Medicine, University of California, Sacramento, Sacramento, California 95817, United States
| |
Collapse
|
20
|
AlMalki FA, Albukhaty S, Alyamani AA, Khalaf MN, Thomas S. The relevant information about the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using the five-question approach (when, where, what, why, and how) and its impact on the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61430-61454. [PMID: 35175517 PMCID: PMC8852932 DOI: 10.1007/s11356-022-18868-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/21/2022] [Indexed: 05/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is regarded as a threat because it spreads quickly across the world without requiring a passport or establishing an identity. This tiny virus has wreaked havoc on people's lives, killed people, and created psychological problems all over the world. The viral spike protein (S) significantly contributes to host cell entry, and mutations associated with it, particularly in the receptor-binding protein (RBD), either facilitate the escape of virus from neutralizing antibodies or enhance its transmission by increasing the affinity for cell entry receptor, angiotensin-converting enzyme 2 (ACE2). The initial variants identified in Brazil, South Africa, and the UK have spread to various countries. On the other hand, new variants are being detected in India and the USA. The viral genome and proteome were applied for molecular detection techniques, and nanotechnology particles and materials were utilized in protection and prevention strategies. Consequently, the SARS-CoV-2 pandemic has resulted in extraordinary scientific community efforts to develop detection methods, diagnosis tools, and effective antiviral drugs and vaccines, where prevailing academic, governmental, and industrial institutions and organizations continue to engage themselves in large-scale screening of existing drugs, both in vitro and in vivo. In addition, COVID-19 pointed on the possible solutions for the environmental pollution globe problem. Therefore, this review aims to address SARS-CoV-2, its transmission, where it can be found, why it is severe in some people, how it can be stopped, its diagnosis and detection techniques, and its relationship with the environment.
Collapse
Affiliation(s)
- Faizah A AlMalki
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Kingdom of Saudi Arabia.
| | - Salim Albukhaty
- Deptartment of Chemistry, College of Science, University of Misan, Maysan, 62001, Iraq
| | - Amal A Alyamani
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Kingdom of Saudi Arabia
| | - Moayad N Khalaf
- Deptartment of Chemistry, College of Science, University of Basrah, Basrah, Iraq
| | - Sabu Thomas
- Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, 686 560, India
| |
Collapse
|
21
|
Tu B, Gao Y, An X, Wang H, Huang Y. Localized delivery of nanomedicine and antibodies for combating COVID-19. Acta Pharm Sin B 2023; 13:1828-1846. [PMID: 36168329 PMCID: PMC9502448 DOI: 10.1016/j.apsb.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been a major health burden in the world. So far, many strategies have been investigated to control the spread of COVID-19, including social distancing, disinfection protocols, vaccines, and antiviral treatments. Despite the significant achievement, due to the constantly emerging new variants, COVID-19 is still a great challenge to the global healthcare system. It is an urgent demand for the development of new therapeutics and technologies for containing the wild spread of SARS-CoV-2. Inhaled administration is useful for the treatment of lung and respiratory diseases, and enables the drugs to reach the site of action directly with benefits of decreased dose, improved safety, and enhanced patient compliance. Nanotechnology has been extensively applied in the prevention and treatment of COVID-19. In this review, the inhaled nanomedicines and antibodies, as well as intranasal nanodrugs, for the prevention and treatment of COVID-19 are summarized.
Collapse
Affiliation(s)
- Bin Tu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanrong Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinran An
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Huiyuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan 528437, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
- Taizhou University, School of Advanced Study, Institute of Natural Medicine and Health Product, Taizhou 318000, China
| |
Collapse
|
22
|
Naidoo DB, Chuturgoon AA. The Potential of Nanobodies for COVID-19 Diagnostics and Therapeutics. Mol Diagn Ther 2023; 27:193-226. [PMID: 36656511 PMCID: PMC9850341 DOI: 10.1007/s40291-022-00634-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
The infectious severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent for coronavirus disease 2019 (COVID-19). Globally, there have been millions of infections and fatalities. Unfortunately, the virus has been persistent and a contributing factor is the emergence of several variants. The urgency to combat COVID-19 led to the identification/development of various diagnosis (polymerase chain reaction and antigen tests) and treatment (repurposed drugs, convalescent plasma, antibodies and vaccines) options. These treatments may treat mild symptoms and decrease the risk of life-threatening disease. Although these options have been fairly beneficial, there are some challenges and limitations, such as cost of tests/drugs, specificity, large treatment dosages, intravenous administration, need for trained personal, lengthy production time, high manufacturing costs, and limited availability. Therefore, the development of more efficient COVID-19 diagnostic and therapeutic options are vital. Nanobodies (Nbs) are novel monomeric antigen-binding fragments derived from camelid antibodies. Advantages of Nbs include low immunogenicity, high specificity, stability and affinity. These characteristics allow for rapid Nb generation, inexpensive large-scale production, effective storage, and transportation, which is essential during pandemics. Additionally, the potential aerosolization and inhalation delivery of Nbs allows for targeted treatment delivery as well as patient self-administration. Therefore, Nbs are a viable option to target SARS-CoV-2 and overcome COVID-19. In this review we discuss (1) COVID-19; (2) SARS-CoV-2; (3) the present conventional COVID-19 diagnostics and therapeutics, including their challenges and limitations; (4) advantages of Nbs; and (5) the numerous Nbs generated against SARS-CoV-2 as well as their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Dhaneshree Bestinee Naidoo
- Discipline of Medical Biochemistry and Chemical Pathology, Faculty of Health Sciences, Howard College, University of Kwa-Zulu Natal, Durban, 4013, South Africa
| | - Anil Amichund Chuturgoon
- Discipline of Medical Biochemistry and Chemical Pathology, Faculty of Health Sciences, Howard College, University of Kwa-Zulu Natal, Durban, 4013, South Africa.
| |
Collapse
|
23
|
Shukla AK, Misra S. Bispecific antibodies and its applications: a novel approach for targeting SARS-Cov-2. J Basic Clin Physiol Pharmacol 2023; 34:161-168. [PMID: 36607905 DOI: 10.1515/jbcpp-2022-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
The COVID-19 pandemic remains a severe global threat, with the world engulfed in the struggle against the disease's second or third waves, which are approaching frightening proportions in terms of cases and mortality in many nations. Despite the critical need for effective therapy, there is still uncertainty about the optimal practices for treating COVID-19 with various pharmaceutical approaches. This being third year, global immunity and eradication of SARS-CoV-2 is currently seems to be out of reach. Efforts to produce safe and effective vaccinations have shown promise, and progress is being made. Additional therapeutic modalities, as well as vaccine testing in children, are required for prophylaxis and treatment of high-risk individuals. As a result, neutralising antibodies and other comparable therapeutic options offer a lot of promise as immediate and direct antiviral medications. Bispecific antibodies offer a lot of potential in COVID-19 treatment because of their qualities including stability, small size and ease of manufacture. These can be used to control the virus's infection of the lungs because they are available in an inhalational form. To combat the COVID-19 pandemic, innovative approaches with effective nanobodies, high-expression yield and acceptable costs may be required.
Collapse
Affiliation(s)
- Ajay Kumar Shukla
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS) Bhopal, Bhopal, India
| | - Saurav Misra
- Department of Pharmacology, Kalpana Chawla Government Medical College, Karnal, India
| |
Collapse
|
24
|
Wang W, Hu Y, Li B, Wang H, Shen J. Applications of nanobodies in the prevention, detection, and treatment of the evolving SARS-CoV-2. Biochem Pharmacol 2023; 208:115401. [PMID: 36592707 PMCID: PMC9801699 DOI: 10.1016/j.bcp.2022.115401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Global health and economy are deeply influenced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its newly emerging variants. Nanobodies with nanometer-scale size are promising for the detection and treatment of SARS-CoV-2 and its variants because they are superior to conventional antibodies in terms of cryptic epitope accessibility, tissue penetration, cost, formatting adaptability, and especially protein stability, which enables their aerosolized specific delivery to lung tissues. This review summarizes the progress in the prevention, detection, and treatment of SARS-CoV-2 using nanobodies, as well as strategies to combat the evolving SARS-CoV-2 variants. Generally, highly efficient generation of potent broad-spectrum nanobodies targeting conserved epitopes or further construction of multivalent formats targeting non-overlapping epitopes can promote neutralizing activity against SARS-CoV-2 variants and suppress immune escape.
Collapse
Affiliation(s)
- Wenyi Wang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China,Corresponding author
| | - Yue Hu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| | - Bohan Li
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| | - Huanan Wang
- Department of Respiratory Medicine, The 990th Hospital of Joint Logistics Support Force, Zhumadian, Henan 463000, PR China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| |
Collapse
|
25
|
Lu Y, Li Q, Fan H, Liao C, Zhang J, Hu H, Yi H, Peng Y, Lu J, Chen Z. A Multivalent and Thermostable Nanobody Neutralizing SARS-CoV-2 Omicron (B.1.1.529). Int J Nanomedicine 2023; 18:353-367. [PMID: 36700149 PMCID: PMC9869787 DOI: 10.2147/ijn.s387160] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants have risen to dominance, which contains far more mutations in the spike protein in comparison to previously reported variants, compromising the efficacy of most existing vaccines or therapeutic monoclonal antibodies. Nanobody screened from high-throughput naïve libraries is a potential candidate for developing preventive and therapeutic antibodies. Methods Four nanobodies specific to the SARS-CoV-2 wild-type receptor-binding domain (RBD) were screened from a naïve phage display library. Their affinity and neutralizing activity were evaluated by surface plasmon resonance assays, surrogate virus neutralization tests, and pseudovirus neutralization assays. Preliminary identification of the binding epitopes of nanobodies by peptide-based ELISA and competition assay. Then four multivalent nanobodies were engineered by attaching the monovalent nanobodies to an antibody-binding nanoplatform constructed based on the lumazine synthase protein cage nanoparticles isolated from the Aquifex aeolicus (AaLS). Finally, the differences in potency between the monovalent and multivalent nanobodies were compared using the same methods. Results Three of the four specific nanobodies could maintain substantial inhibitory activity against the Omicron (B.1.1.529), of them, B-B2 had the best neutralizing activity against the Omicron (B.1.1.529) pseudovirus (IC50 = 1.658 μg/mL). The antiviral ability of multivalent nanobody LS-B-B2 was improved in the Omicron (B.1.1.529) pseudovirus assays (IC50 = 0.653 μg/mL). The results of peptide-based ELISA indicated that LS-B-B2 might react with the linear epitopes in the SARS-CoV-2 RBD conserved regions, which would clarify the mechanisms for the maintenance of potent neutralization of Omicron (B.1.1.529) preliminary. Conclusion Our study indicated that the AaLS could be used as an antibody-binding nanoplatform to present nanobodies on its surface and improve the potency of nanobodies. The multivalent nanobody LS-B-B2 may serve as a potential agent for the neutralization of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yuying Lu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China,National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, People’s Republic of China,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, People’s Republic of China,Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, People’s Republic of China,Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou, People’s Republic of China
| | - Qianlin Li
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China,National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, People’s Republic of China,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, People’s Republic of China,Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, People’s Republic of China,Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou, People’s Republic of China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Conghui Liao
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China,National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, People’s Republic of China,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, People’s Republic of China,Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, People’s Republic of China,Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou, People’s Republic of China
| | - Jingsong Zhang
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China,National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, People’s Republic of China,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, People’s Republic of China,Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, People’s Republic of China,Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou, People’s Republic of China
| | - Huan Hu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China,National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, People’s Republic of China,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, People’s Republic of China,Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, People’s Republic of China,Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou, People’s Republic of China
| | - Huaimin Yi
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China,National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, People’s Republic of China,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, People’s Republic of China,Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, People’s Republic of China,Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou, People’s Republic of China
| | - Yuanli Peng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China,National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, People’s Republic of China,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, People’s Republic of China,Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, People’s Republic of China,Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou, People’s Republic of China
| | - Jiahai Lu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China,National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, People’s Republic of China,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, People’s Republic of China,Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, People’s Republic of China,Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou, People’s Republic of China,Correspondence: Jiahai Lu; Zeliang Chen, One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China, Email ;
| | - Zeliang Chen
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China,National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, People’s Republic of China,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, People’s Republic of China,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, People’s Republic of China
| |
Collapse
|
26
|
Pitino M, Fleites LA, Shrum L, Heck M, Shatters RG. Plant production of high affinity nanobodies that block SARS-CoV-2 spike protein binding with its receptor, human angiotensin converting enzyme. Front Bioeng Biotechnol 2022; 10:1045337. [PMID: 36619377 PMCID: PMC9822723 DOI: 10.3389/fbioe.2022.1045337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022] Open
Abstract
Nanobodies® (VHH antibodies), are small peptides that represent the antigen binding domain, VHH of unique single domain antibodies (heavy chain only antibodies, HcAb) derived from camelids. Here, we demonstrate production of VHH nanobodies against the SARS-CoV-2 spike proteins in the solanaceous plant Nicotiana benthamiana through transient expression and their subsequent detection verified through western blot. We demonstrate that these nanobodies competitively inhibit binding between the SARS-CoV-2 spike protein receptor binding domain and its human receptor protein, angiotensin converting enzyme 2. There has been significant interest and a number of publications on the use of plants as biofactories and even some reports of producing nanobodies in plants. Our data demonstrate that functional nanobodies blocking a process necessary to initiate SARS-CoV-2 infection into mammalian cells can be produced in plants. This opens the alternative of using plants in a scheme to rapidly respond to therapeutic needs for emerging pathogens in human medicine and agriculture.
Collapse
Affiliation(s)
| | | | | | - Michelle Heck
- Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, NY, United States
| | - Robert G. Shatters
- U.S. Horticultural Research Laboratory, Subtropical Insects and Horticulture Research Unit, USDA Agricultural Research Service, Fort Pierce, FL, United States,*Correspondence: Robert G. Shatters Jr,
| |
Collapse
|
27
|
Lim HT, Kok BH, Lim CP, Abdul Majeed AB, Leow CY, Leow CH. Single domain antibodies derived from ancient animals as broadly neutralizing agents for SARS-CoV-2 and other coronaviruses. BIOMEDICAL ENGINEERING ADVANCES 2022; 4:100054. [PMID: 36158162 PMCID: PMC9482557 DOI: 10.1016/j.bea.2022.100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/28/2022] Open
Abstract
With severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as an emergent human virus since December 2019, the world population is susceptible to coronavirus disease 2019 (COVID-19). SARS-CoV-2 has higher transmissibility than the previous coronaviruses, associated by the ribonucleic acid (RNA) virus nature with high mutation rate, caused SARS-CoV-2 variants to arise while circulating worldwide. Neutralizing antibodies are identified as immediate and direct-acting therapeutic against COVID-19. Single-domain antibodies (sdAbs), as small biomolecules with non-complex structure and intrinsic stability, can acquire antigen-binding capabilities comparable to conventional antibodies, which serve as an attractive neutralizing solution. SARS-CoV-2 spike protein attaches to human angiotensin-converting enzyme 2 (ACE2) receptor on lung epithelial cells to initiate viral infection, serves as potential therapeutic target. sdAbs have shown broad neutralization towards SARS-CoV-2 with various mutations, effectively stop and prevent infection while efficiently block mutational escape. In addition, sdAbs can be developed into multivalent antibodies or inhaled biotherapeutics against COVID-19.
Collapse
Key Words
-
γ
, Gamma
-
δ
, Delta
- ACE2, Angiotensin-converting enzyme 2
- ADCC, Antibody-dependent cell-mediated cytotoxicity
- ADCP, Antibody-dependent cellular phagocytosis
- ADE, Antibody-dependent enhancement
- Alb, Albumin
- Bat-SL-CoV, Bat SARS-like coronavirus
- Broad neutralization
- CDC, Complement-dependent cytotoxicity
- CDR, Complementarity-determining region
- CH, Constant domain of antibody heavy chain
- CHO, Chinese hamster ovary
- CL, Constant domain of antibody light chain
- CNAR, Constant domain of immunoglobulin new antigen receptor
- COVID-19
- COVID-19, Coronavirus disease 2019
- Cryo-EM, Cryogenic electron microscopy
- Cu, Copper
- DNA, Deoxyribonucleic acid
- DPP4, Dipeptidyl peptidase 4
- E, Envelope
- EC50, Half-maximal effective concentration
- FDA, The United States Food and Drug Administration
- Fab, Antigen-binding fragment
- Fc, Crystallisable fragment
- FcR, Crystallisable fragment receptor
- Fig., Figure
- HCoV, Human coronavirus
- HIV, Human immunodeficiency virus
- HR, Heptad repeat
- HRP, Horseradish peroxidase
- HV, Hypervariable region
- IC50, Half-maximal inhibitory concentration
- Ig, Immunoglobulin
- IgNAR, Immunoglobulin new antigen receptor
- KD, Equilibrium dissociation constant
- L, Litre
- LRT, Lower respiratory tract
- M, Membrane
- MERS, Middle East respiratory syndrome
- MERS-CoV, Middle East respiratory syndrome coronavirus
- N, Nucleocapsid
- ND50, 50% neutralizing dose
- NTD, N-terminal domain
- Nb, Nanobody
- PCR, Polymerase chain reaction
- PEG, Polyethylene glycol
- RBD, Receptor-binding domain
- RBM, Receptor-binding motif
- RNA, Ribonucleic acid
- S, Spike
- SARS, Severe acute respiratory syndrome
- SARS-CoV, Severe acute respiratory syndrome coronavirus
- SARS-CoV-2 mutation
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- SPAAC, Strain-promoted azide-alkyne cycloaddition
- Single-domain antibody
- Spike protein
- TMPRSS2, Transmembrane serine protease 2
- Therapeutic
- URT, Upper respiratory tract
- VH, Variable domain of antibody heavy chain
- VHH, Variable domain of camelid heavy-chain only antibody
- VL, Variable domain of antibody light chain
- VNAR, Variable domain of immunoglobulin new antigen receptor
- WHO, World Health Organization
- cDNA, Complementary deoxyribonucleic acid
- dpi, Days' post infection
- g, Gram
- kDa, Kilodalton
- koff, Dissociation rate constant
- mAb, Monoclonal antibody
- mRNA, Messenger ribonucleic acid
- nM, Nanomolar
- pM, Picomolar
- scFv, Single-chain variable fragment
- sdAb, Single-domain antibody
- ß, Beta
- α, Alpha
Collapse
Affiliation(s)
- H T Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| | - B H Kok
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| | - C P Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| | - A B Abdul Majeed
- Faculty of Pharmacy, Universiti Teknologi MARA, Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia
| | - C Y Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| | - C H Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| |
Collapse
|
28
|
Birnbaum DP, Vilardi KJ, Anderson CL, Pinto AJ, Joshi NS. Simple Affinity-Based Method for Concentrating Viruses from Wastewater Using Engineered Curli Fibers. ACS ES&T WATER 2022; 2:1836-1843. [PMID: 36778666 PMCID: PMC9916486 DOI: 10.1021/acsestwater.1c00208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Wastewater surveillance is a proven method for tracking community spread and prevalence of some infectious viral diseases. A primary concentration step is often used to enrich viral particles from wastewater prior to subsequent viral quantification and/or sequencing. Here, we present a simple procedure for concentrating viruses from wastewater using bacterial biofilm protein nanofibers known as curli fibers. Through simple genetic engineering, we produced curli fibers functionalized with single-domain antibodies (also known as nanobodies) specific for the coat protein of the model virus bacteriophage MS2. Using these modified fibers in a simple spin-down protocol, we demonstrated efficient concentration of MS2 in both phosphate-buffered saline (PBS) and in the wastewater matrix. Additionally, we produced nanobody-functionalized curli fibers capable of binding the spike protein of SARS-CoV-2, showing the versatility of the system. Our concentration protocol is simple to implement, can be performed quickly under ambient conditions, and requires only components produced through bacterial culture. We believe this technology represents an attractive alternative to existing concentration methods and warrants further research and optimization for field-relevant applications.
Collapse
Affiliation(s)
- Daniel P Birnbaum
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States; Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Katherine J Vilardi
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Christopher L Anderson
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ameet J Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Neel S Joshi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
29
|
Elkhatib WF, Abdelkareem SS, Khalaf WS, Shahin MI, Elfadil D, Alhazmi A, El-Batal AI, El-Sayyad GS. Narrative review on century of respiratory pandemics from Spanish flu to COVID-19 and impact of nanotechnology on COVID-19 diagnosis and immune system boosting. Virol J 2022; 19:167. [PMID: 36280866 PMCID: PMC9589879 DOI: 10.1186/s12985-022-01902-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022] Open
Abstract
The rise of the highly lethal severe acute respiratory syndrome-2 (SARS-2) as corona virus 2019 (COVID-19) reminded us of the history of other pandemics that happened in the last century (Spanish flu) and stayed in the current century, which include Severe-Acute-Respiratory-Syndrome (SARS), Middle-East-Respiratory-Syndrome (MERS), Corona Virus 2019 (COVID-19). We review in this report the newest findings and data on the origin of pandemic respiratory viral diseases, reservoirs, and transmission modes. We analyzed viral adaption needed for host switch and determinants of pathogenicity, causative factors of pandemic viruses, and symptoms and clinical manifestations. After that, we concluded the host factors associated with pandemics morbidity and mortality (immune responses and immunopathology, ages, and effect of pandemics on pregnancy). Additionally, we focused on the burdens of COVID-19, non-pharmaceutical interventions (quarantine, mass gatherings, facemasks, and hygiene), and medical interventions (antiviral therapies and vaccines). Finally, we investigated the nanotechnology between COVID-19 analysis and immune system boosting (Nanoparticles (NPs), antimicrobial NPs as antivirals and immune cytokines). This review presents insights about using nanomaterials to treat COVID-19, improve the bioavailability of the abused drugs, diminish their toxicity, and improve their performance.
Collapse
Affiliation(s)
- Walid F Elkhatib
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo, 11566, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
| | - Shereen S Abdelkareem
- Department of Alumni, School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, Egypt
| | - Wafaa S Khalaf
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11751, Egypt
| | - Mona I Shahin
- Zoology Department, Faculty of Tymaa, Tabuk University, Tymaa, 71491, Kingdom of Saudi Arabia
| | - Dounia Elfadil
- Biology and Chemistry Department, Hassan II University of Casablanca, Casablanca, Morocco
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Ahmed I El-Batal
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
30
|
Selection of single domain anti-transferrin receptor antibodies for blood-brain barrier transcytosis using a neurotensin based assay and histological assessment of target engagement in a mouse model of Alzheimer's related amyloid-beta pathology. PLoS One 2022; 17:e0276107. [PMID: 36256604 PMCID: PMC9578589 DOI: 10.1371/journal.pone.0276107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
The blood-brain barrier (BBB) presents a major obstacle in developing specific diagnostic imaging agents for many neurological disorders. In this study we aimed to generate single domain anti-mouse transferrin receptor antibodies (anti-mTfR VHHs) to mediate BBB transcytosis as components of novel MRI molecular contrast imaging agents. Anti-mTfR VHHs were produced by immunizing a llama with mTfR, generation of a VHH phage display library, immunopanning, and in vitro characterization of candidates. Site directed mutagenesis was used to generate additional variants. VHH fusions with neurotensin (NT) allowed rapid, hypothermia-based screening for VHH-mediated BBB transcytosis in wild-type mice. One anti-mTfR VHH variant was fused with an anti-amyloid-beta (Aβ) VHH dimer and labeled with fluorescent dye for direct assessment of in vivo target engagement in a mouse model of AD-related Aβ plaque pathology. An anti-mTfR VHH called M1 and variants had binding affinities to mTfR of <1nM to 1.52nM. The affinity of the VHH binding to mTfR correlated with the efficiency of the VHH-NT induced hypothermia effects after intravenous injection of 600 nmol/kg body weight, ranging from undetectable for nonbinding mutants to -6°C for the best mutants. The anti-mTfR VHH variant M1P96H with the strongest hypothermia effect was fused to the anti-Aβ VHH dimer and labeled with Alexa647; the dye-labeled VHH fusion construct still bound both mTfR and Aβ plaques at concentrations as low as 0.22 nM. However, after intravenous injection at 600 nmol/kg body weight into APP/PS1 transgenic mice, there was no detectible labeling of plaques above control levels. Thus, NT-induced hypothermia did not correlate with direct target engagement in cortex, likely because the concentration required for NT-induced hypothermia was lower than the concentration required to produce in situ labeling. These findings reveal an important dissociation between NT-induced hypothermia, presumably mediated by hypothalamus, and direct engagement with Aβ-plaques in cortex. Additional methods to assess anti-mTfR VHH BBB transcytosis will need to be developed for anti-mTfR VHH screening and the development of novel MRI molecular contrast agents.
Collapse
|
31
|
Pymm P, Redmond SJ, Dolezal O, Mordant F, Lopez E, Cooney JP, Davidson KC, Haycroft ER, Tan CW, Seneviratna R, Grimley SL, Purcell DF, Kent SJ, Wheatley AK, Wang LF, Leis A, Glukhova A, Pellegrini M, Chung AW, Subbarao K, Uldrich AP, Tham WH, Godfrey DI, Gherardin NA. Biparatopic nanobodies targeting the receptor binding domain efficiently neutralize SARS-CoV-2. iScience 2022; 25:105259. [PMID: 36213007 PMCID: PMC9529347 DOI: 10.1016/j.isci.2022.105259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/15/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
The development of therapeutics to prevent or treat COVID-19 remains an area of intense focus. Protein biologics, including monoclonal antibodies and nanobodies that neutralize virus, have potential for the treatment of active disease. Here, we have used yeast display of a synthetic nanobody library to isolate nanobodies that bind the receptor-binding domain (RBD) of SARS-CoV-2 and neutralize the virus. We show that combining two clones with distinct binding epitopes within the RBD into a single protein construct to generate biparatopic reagents dramatically enhances their neutralizing capacity. Furthermore, the biparatopic nanobodies exhibit enhanced control over clinically relevant RBD variants that escaped recognition by the individual nanobodies. Structural analysis of biparatopic binding to spike (S) protein revealed a unique binding mode whereby the two nanobody paratopes bridge RBDs encoded by distinct S trimers. Accordingly, biparatopic nanobodies offer a way to rapidly generate powerful viral neutralizers with enhanced ability to control viral escape mutants.
Collapse
Affiliation(s)
- Phillip Pymm
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Samuel J. Redmond
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - Olan Dolezal
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Biomedical Program, Clayton, VIC 3168, Australia
| | - Francesca Mordant
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - Ester Lopez
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - James P. Cooney
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kathryn C. Davidson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ebene R. Haycroft
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke NUS Medical School, Singapore 169857, Singapore
| | - Rebecca Seneviratna
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - Samantha L. Grimley
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - Damian F.J. Purcell
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - Stephen J. Kent
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia,Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne VIC 3010, Australia
| | - Adam K. Wheatley
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia,Programme in Emerging Infectious Diseases, Duke NUS Medical School, Singapore 169857, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke NUS Medical School, Singapore 169857, Singapore
| | - Andrew Leis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Alisa Glukhova
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia,Drug Discovery Biology, Monash Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville 3052 VIC, Australia,WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Amy W. Chung
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - Kanta Subbarao
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - Adam P. Uldrich
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Dale I. Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia,Corresponding author
| | - Nicholas A. Gherardin
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia,Corresponding author
| |
Collapse
|
32
|
Preventing SARS-CoV-2 Infection Using Anti-spike Nanobody-IFN-β Conjugated Exosomes. Pharm Res 2022; 40:927-935. [PMID: 36163411 PMCID: PMC9512977 DOI: 10.1007/s11095-022-03400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/18/2022] [Indexed: 12/03/2022]
Abstract
Purpose To inhibit the transmission of SARS-CoV-2, we developed engineered exosomes that were conjugated with anti-spike nanobodies and type I interferon β (IFN-β). We evaluated the efficacy and potency of nanobody-IFN-β conjugated exosomes to treatment of SARS-CoV-2 infection. Methods Milk fat globule epidermal growth factor 8 (MFG-E8) is a glycoprotein that binds to phosphatidylserine (PS) exposed on the exosomes. We generated nanobody-IFN-β conjugated exosomes by fusing an anti-spike nanobody and IFN-β with MFG-E8. We used the SARS-CoV-2 pseudovirus with the spike of the D614G mutant that encodes ZsGreen to mimic the infection process of the SARS-CoV-2. The SARS-CoV-2 pseudovirus was infected with angiotensin-converting enzyme-2 (ACE2) expressing adenocarcinomic human alveolar basal epithelial cells (A549) or ACE2 expressing HEK-blue IFNα/β cells in the presence of nanobody-IFN-β conjugated exosomes. By assessing the expression of ZsGreen in target cells and the upregulation of interferon-stimulated genes (ISGs) in infected cells, we evaluated the anti-viral effects of nanobody-IFN-β conjugated exosomes. Results We confirmed the anti-spike nanobody and IFN-β expressions on the exosomes. Exosomes conjugated with nanobody-hIFN-β inhibited the interaction between the spike protein and ACE2, thereby inhibiting the infection of host cells with SARS-CoV-2 pseudovirus. At the same time, IFN-β was selectively delivered to SARS-CoV-2 infected cells, resulting in the upregulation of ISGs expression. Conclusion Exosomes conjugated with nanobody-IFN-β may provide potential benefits in the treatment of COVID-19 because of the cooperative anti-viral effects of the anti-spike nanobody and the IFN-β. Supplementary Information The online version contains supplementary material available at 10.1007/s11095-022-03400-0.
Collapse
|
33
|
Li Q, Humphries F, Girardin RC, Wallace A, Ejemel M, Amcheslavsky A, McMahon CT, Schiller ZA, Ma Z, Cruz J, Dupuis AP, Payne AF, Maryam A, Yilmaz NK, McDonough KA, Pierce BG, Schiffer CA, Kruse AC, Klempner MS, Cavacini LA, Fitzgerald KA, Wang Y. Mucosal nanobody IgA as inhalable and affordable prophylactic and therapeutic treatment against SARS-CoV-2 and emerging variants. Front Immunol 2022; 13:995412. [PMID: 36172366 PMCID: PMC9512078 DOI: 10.3389/fimmu.2022.995412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Anti-COVID antibody therapeutics have been developed but not widely used due to their high cost and escape of neutralization from the emerging variants. Here, we describe the development of VHH-IgA1.1, a nanobody IgA fusion molecule as an inhalable, affordable and less invasive prophylactic and therapeutic treatment against SARS-CoV-2 Omicron variants. VHH-IgA1.1 recognizes a conserved epitope of SARS-CoV-2 spike protein Receptor Binding Domain (RBD) and potently neutralizes major global SARS-CoV-2 variants of concern (VOC) including the Omicron variant and its sub lineages BA.1.1, BA.2 and BA.2.12.1. VHH-IgA1.1 is also much more potent against Omicron variants as compared to an IgG Fc fusion construct, demonstrating the importance of IgA mediated mucosal protection for Omicron infection. Intranasal administration of VHH-IgA1.1 prior to or after challenge conferred significant protection from severe respiratory disease in K18-ACE2 transgenic mice infected with SARS-CoV-2 VOC. More importantly, for cost-effective production, VHH-IgA1.1 produced in Pichia pastoris had comparable potency to mammalian produced antibodies. Our study demonstrates that intranasal administration of affordably produced VHH-IgA fusion protein provides effective mucosal immunity against infection of SARS-CoV-2 including emerging variants.
Collapse
Affiliation(s)
- Qi Li
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Fiachra Humphries
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Roxie C. Girardin
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Aaron Wallace
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Monir Ejemel
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Alla Amcheslavsky
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Conor T. McMahon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Zachary A. Schiller
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Zepei Ma
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - John Cruz
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Alan P. Dupuis
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Anne F. Payne
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Arooma Maryam
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | | | - Brian G. Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Andrew C. Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Mark S. Klempner
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Lisa A. Cavacini
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
- *Correspondence: Yang Wang, ; Katherine A. Fitzgerald, ; Lisa A. Cavacini,
| | - Katherine A. Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
- *Correspondence: Yang Wang, ; Katherine A. Fitzgerald, ; Lisa A. Cavacini,
| | - Yang Wang
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
- *Correspondence: Yang Wang, ; Katherine A. Fitzgerald, ; Lisa A. Cavacini,
| |
Collapse
|
34
|
Rossotti MA, van Faassen H, Tran AT, Sheff J, Sandhu JK, Duque D, Hewitt M, Wen X, Bavananthasivam J, Beitari S, Matte K, Laroche G, Giguère PM, Gervais C, Stuible M, Guimond J, Perret S, Hussack G, Langlois MA, Durocher Y, Tanha J. Arsenal of nanobodies shows broad-spectrum neutralization against SARS-CoV-2 variants of concern in vitro and in vivo in hamster models. Commun Biol 2022; 5:933. [PMID: 36085335 PMCID: PMC9461429 DOI: 10.1038/s42003-022-03866-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Nanobodies offer several potential advantages over mAbs for the control of SARS-CoV-2. Their ability to access cryptic epitopes conserved across SARS-CoV-2 variants of concern (VoCs) and feasibility to engineer modular, multimeric designs, make these antibody fragments ideal candidates for developing broad-spectrum therapeutics against current and continually emerging SARS-CoV-2 VoCs. Here we describe a diverse collection of 37 anti-SARS-CoV-2 spike glycoprotein nanobodies extensively characterized as both monovalent and IgG Fc-fused bivalent modalities. The nanobodies were collectively shown to have high intrinsic affinity; high thermal, thermodynamic and aerosolization stability; broad subunit/domain specificity and cross-reactivity across existing VoCs; wide-ranging epitopic and mechanistic diversity and high and broad in vitro neutralization potencies. A select set of Fc-fused nanobodies showed high neutralization efficacies in hamster models of SARS-CoV-2 infection, reducing viral burden by up to six orders of magnitude to below detectable levels. In vivo protection was demonstrated with anti-RBD and previously unreported anti-NTD and anti-S2 nanobodies. This collection of nanobodies provides a potential therapeutic toolbox from which various cocktails or multi-paratopic formats could be built to combat multiple SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Martin A Rossotti
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Henk van Faassen
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Anh T Tran
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Joey Sheff
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Jagdeep K Sandhu
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Diana Duque
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Melissa Hewitt
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Xiaoxue Wen
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Jegarubee Bavananthasivam
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Saina Beitari
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Kevin Matte
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Patrick M Giguère
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Christian Gervais
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Montréal, QC, Canada
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Montréal, QC, Canada
| | - Julie Guimond
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Montréal, QC, Canada
| | - Sylvie Perret
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Montréal, QC, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Montréal, QC, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
35
|
Mei Y, Chen Y, Sivaccumar JP, An Z, Xia N, Luo W. Research progress and applications of nanobody in human infectious diseases. Front Pharmacol 2022; 13:963978. [PMID: 36034845 PMCID: PMC9411660 DOI: 10.3389/fphar.2022.963978] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/04/2022] [Indexed: 01/18/2023] Open
Abstract
Infectious diseases, caused by pathogenic microorganisms, are capable of affecting crises. In addition to persistent infectious diseases such as malaria and dengue fever, the vicious outbreaks of infectious diseases such as Neocon, Ebola and SARS-CoV-2 in recent years have prompted the search for more efficient and convenient means for better diagnosis and treatment. Antibodies have attracted a lot of attention due to their good structural characteristics and applications. Nanobodies are the smallest functional single-domain antibodies known to be able to bind stably to antigens, with the advantages of high stability, high hydrophilicity, and easy expression and modification. They can directly target antigen epitopes or be constructed as multivalent nanobodies or nanobody fusion proteins to exert therapeutic effects. This paper focuses on the construction methods and potential functions of nanobodies, outlines the progress of their research, and highlights their various applications in human infectious diseases.
Collapse
Affiliation(s)
- Yaxian Mei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Yuanzhi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Jwala P. Sivaccumar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- *Correspondence: Wenxin Luo,
| |
Collapse
|
36
|
Kandeel M, Al-Mubarak AIA. Camel viral diseases: Current diagnostic, therapeutic, and preventive strategies. Front Vet Sci 2022; 9:915475. [PMID: 36032287 PMCID: PMC9403476 DOI: 10.3389/fvets.2022.915475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Many pathogenic viruses infect camels, generally regarded as especially hardy livestock because of their ability to thrive in harsh and arid conditions. Transmission of these viruses has been facilitated by the commercialization of camel milk and meat and their byproducts, and vaccines are needed to prevent viruses from spreading. There is a paucity of information on the effectiveness of viral immunizations in camels, even though numerous studies have looked into the topic. More research is needed to create effective vaccines and treatments for camels. Because Camels are carriers of coronavirus, capable of producing a powerful immune response to recurrent coronavirus infections. As a result, camels may be a suitable model for viral vaccine trials since vaccines are simple to create and can prevent viral infection transfer from animals to humans. In this review, we present available data on the diagnostic, therapeutic, and preventative strategies for the following viral diseases in camels, most of which result in significant economic loss: camelpox, Rift Valley fever, peste des petits ruminants, bovine viral diarrhea, bluetongue, rotavirus, Middle East respiratory syndrome, and COVID-19. Although suitable vaccines have been developed for controlling viral infections and perhaps interrupting the transmission of the virus from the affected animals to blood-feeding vectors, there is a paucity of information on the effectiveness of viral immunizations in camels and more research is needed. Recent therapeutic trials that include specific antivirals or supportive care have helped manage viral infections.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
- *Correspondence: Mahmoud Kandeel
| | - Abdullah I. A. Al-Mubarak
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| |
Collapse
|
37
|
Maeda R, Fujita J, Konishi Y, Kazuma Y, Yamazaki H, Anzai I, Watanabe T, Yamaguchi K, Kasai K, Nagata K, Yamaoka Y, Miyakawa K, Ryo A, Shirakawa K, Sato K, Makino F, Matsuura Y, Inoue T, Imura A, Namba K, Takaori-Kondo A. A panel of nanobodies recognizing conserved hidden clefts of all SARS-CoV-2 spike variants including Omicron. Commun Biol 2022; 5:669. [PMID: 35794202 PMCID: PMC9257560 DOI: 10.1038/s42003-022-03630-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/24/2022] [Indexed: 12/15/2022] Open
Abstract
We are amid the historic coronavirus infectious disease 2019 (COVID-19) pandemic. Imbalances in the accessibility of vaccines, medicines, and diagnostics among countries, regions, and populations, and those in war crises, have been problematic. Nanobodies are small, stable, customizable, and inexpensive to produce. Herein, we present a panel of nanobodies that can detect the spike proteins of five SARS-CoV-2 variants of concern (VOCs) including Omicron. Here we show via ELISA, lateral flow, kinetic, flow cytometric, microscopy, and Western blotting assays that our nanobodies can quantify the spike variants. This panel of nanobodies broadly neutralizes viral infection caused by pseudotyped and authentic SARS-CoV-2 VOCs. Structural analyses show that the P86 clone targets epitopes that are conserved yet unclassified on the receptor-binding domain (RBD) and contacts the N-terminal domain (NTD). Human antibodies rarely access both regions; consequently, the clone buries hidden crevasses of SARS-CoV-2 spike proteins that go undetected by conventional antibodies. A panel of nanobodies are presented that can detect the spike proteins of five SARS-CoV-2 variants of concern and structural analyses show that one clone targets conserved epitopes on the receptor-binding domain and contacts the N-terminal domain.
Collapse
|
38
|
Wu P, Yang Q, Zhao X, Liu Q, Xi J, Zhang F, He J, Yang H, Zhang C, Ma Z, Deng X, Wang Y, Chen C. A SARS-CoV-2 nanobody that can bind to the RBD region may be used for treatment in COVID-19 in animals. Res Vet Sci 2022; 145:46-49. [PMID: 35152188 PMCID: PMC8821020 DOI: 10.1016/j.rvsc.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/16/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by an infectious virus, severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), poses a threat to the world. The suitable treatments must be identified for this disease in animals. Nanobody have therapeutic potential in the COVID-19. In this study, SARS-CoV-2 Spike RBD protein was used to make the nanobody. Nanobodies binding to the SARS-CoV-2 Spike RBD protein was obtained. Interestingly, the nanobody could bind to SARS-CoV-2 Spike S protein and RBD protein at the same time. Nanobodies were validated with a neutralizing antibody detection kit. The use of pseudoviruses confirmed that nanobodies could prevent pseudoviruses from infecting cells. We believe the nanobody are very valuable and could be used in the treatment of COVID-19. SARS-CoV-2 nanobodies can be rapidly mass-produced from microorganisms to block SARS-CoV-2 infection in vitro and in vivo with preventive and therapeutic effects.
Collapse
Affiliation(s)
- Peng Wu
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Qin Yang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xiaoli Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Qingqing Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jing Xi
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Fan Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jinke He
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Hang Yang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Chao Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhongchen Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xiaoyu Deng
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yong Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China; Key Laboratory of Prevention and Control of Animal Disease of Xinjiang Crops, Shihezi, China.
| |
Collapse
|
39
|
Li T, Zhou B, Luo Z, Lai Y, Huang S, Zhou Y, Li Y, Gautam A, Bourgeau S, Wang S, Bao J, Tan J, Lavillette D, Li D. Structural Characterization of a Neutralizing Nanobody With Broad Activity Against SARS-CoV-2 Variants. Front Microbiol 2022; 13:875840. [PMID: 35722331 PMCID: PMC9201380 DOI: 10.3389/fmicb.2022.875840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
SARS-CoV-2 and its variants, such as the Omicron continue to threaten public health. The virus recognizes the host cell by attaching its Spike (S) receptor-binding domain (RBD) to the host receptor, ACE2. Therefore, RBD is a primary target for neutralizing antibodies and vaccines. Here, we report the isolation and biological and structural characterization of a single-chain antibody (nanobody) from RBD-immunized alpaca. The nanobody, named DL28, binds to RBD tightly with a KD of 1.56 nM and neutralizes the original SARS-CoV-2 strain with an IC50 of 0.41 μg mL−1. Neutralization assays with a panel of variants of concern (VOCs) reveal its wide-spectrum activity with IC50 values ranging from 0.35 to 1.66 μg mL−1 for the Alpha/Beta/Gamma/Delta and an IC50 of 0.66 μg mL−1 for the currently prevalent Omicron. Competition binding assays show that DL28 blocks ACE2-binding. However, structural characterizations and mutagenesis suggest that unlike most antibodies, the blockage by DL28 does not involve direct competition or steric hindrance. Rather, DL28 may use a “conformation competition” mechanism where it excludes ACE2 by keeping an RBD loop in a conformation incompatible with ACE2-binding.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Bingjie Zhou
- University of CAS, Beijing, China.,CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China
| | - Zhipu Luo
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Yanling Lai
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of CAS, Beijing, China
| | - Suqiong Huang
- University of CAS, Beijing, China.,CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China.,College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yuanze Zhou
- Nanjing Crycision Biotech Co., Ltd., Nanjing, China
| | - Yaning Li
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of CAS, Beijing, China
| | - Anupriya Gautam
- University of CAS, Beijing, China.,CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China
| | - Salome Bourgeau
- University of CAS, Beijing, China.,CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China.,Institut National de la Santé et de la Recherche Médicale, École des Hautes Etudes en Santé Publique, Institut de Recherche en Santé, Environnement et Travail, Université de Rennes, Rennes, France
| | - Shurui Wang
- Nanjing Crycision Biotech Co., Ltd., Nanjing, China
| | - Juan Bao
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jingquan Tan
- Nanjing Crycision Biotech Co., Ltd., Nanjing, China
| | - Dimitri Lavillette
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China.,Pasteurien College, Soochow University, Suzhou, China
| | - Dianfan Li
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
40
|
Mahmud N, Anik MI, Hossain MK, Khan MI, Uddin S, Ashrafuzzaman M, Rahaman MM. Advances in Nanomaterial-Based Platforms to Combat COVID-19: Diagnostics, Preventions, Therapeutics, and Vaccine Developments. ACS APPLIED BIO MATERIALS 2022; 5:2431-2460. [PMID: 35583460 PMCID: PMC9128020 DOI: 10.1021/acsabm.2c00123] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2, a ribonucleic acid (RNA) virus that emerged less than two years ago but has caused nearly 6.1 million deaths to date. Recently developed variants of the SARS-CoV-2 virus have been shown to be more potent and expanded at a faster rate. Until now, there is no specific and effective treatment for SARS-CoV-2 in terms of reliable and sustainable recovery. Precaution, prevention, and vaccinations are the only ways to keep the pandemic situation under control. Medical and scientific professionals are now focusing on the repurposing of previous technology and trying to develop more fruitful methodologies to detect the presence of viruses, treat the patients, precautionary items, and vaccine developments. Nanomedicine or nanobased platforms can play a crucial role in these fronts. Researchers are working on many effective approaches by nanosized particles to combat SARS-CoV-2. The role of a nanobased platform to combat SARS-CoV-2 is extremely diverse (i.e., mark to personal protective suit, rapid diagnostic tool to targeted treatment, and vaccine developments). Although there are many theoretical possibilities of a nanobased platform to combat SARS-CoV-2, until now there is an inadequate number of research targeting SARS-CoV-2 to explore such scenarios. This unique mini-review aims to compile and elaborate on the recent advances of nanobased approaches from prevention, diagnostics, treatment to vaccine developments against SARS-CoV-2, and associated challenges.
Collapse
Affiliation(s)
- Niaz Mahmud
- Department of Biomedical Engineering,
Military Institute of Science and Technology, Dhaka 1216,
Bangladesh
| | - Muzahidul I. Anik
- Department of Chemical Engineering,
University of Rhode Island, Kingston, Rhode Island 02881,
United States
| | - M. Khalid Hossain
- Interdisciplinary Graduate School of Engineering
Science, Kyushu University, Fukuoka 816-8580,
Japan
- Atomic Energy Research Establishment,
Bangladesh Atomic Energy Commission, Dhaka 1349,
Bangladesh
| | - Md Ishak Khan
- Department of Neurosurgery, University of
Pennsylvania, Philadelphia, Pennsylvania 19104, United
States
| | - Shihab Uddin
- Department of Applied Chemistry, Graduate School of
Engineering, Kyushu University, Fukuoka 819-0395,
Japan
- Department of Chemical Engineering,
Massachusetts Institute of Technology, Cambridge
Massachusetts 02139, United States
| | - Md. Ashrafuzzaman
- Department of Biomedical Engineering,
Military Institute of Science and Technology, Dhaka 1216,
Bangladesh
| | - Md Mushfiqur Rahaman
- Department of Emergency Medicine, NYU
Langone Health, New York, New York 10016, United
States
| |
Collapse
|
41
|
Li T, Zhou B, Li Y, Huang S, Luo Z, Zhou Y, Lai Y, Gautam A, Bourgeau S, Wang S, Bao J, Tan J, Lavillette D, Li D. Isolation, characterization, and structure-based engineering of a neutralizing nanobody against SARS-CoV-2. Int J Biol Macromol 2022; 209:1379-1388. [PMID: 35460753 PMCID: PMC9020654 DOI: 10.1016/j.ijbiomac.2022.04.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022]
Abstract
SARS-CoV-2 engages with human cells through the binding of its Spike receptor-binding domain (S-RBD) to the receptor ACE2. Molecular blocking of this engagement represents a proven strategy to treat COVID-19. Here, we report a single-chain antibody (nanobody, DL4) isolated from immunized alpaca with picomolar affinity to RBD. DL4 neutralizes SARS-CoV-2 pseudoviruses with an IC50 of 0.101 μg mL-1 (6.2 nM). A crystal structure of the DL4-RBD complex at 1.75-Å resolution unveils the interaction detail and reveals a direct competition mechanism for DL4's ACE2-blocking and hence neutralizing activity. The structural information allows us to rationally design a mutant with higher potency. Our work adds diversity of neutralizing nanobodies against SARS-CoV-2 and should encourage protein engineering to improve antibody affinities in general.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200030, China
| | - Bingjie Zhou
- University of CAS, Beijing 101408, China,CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, 320 Yueyang Road, Shanghai 200031, China
| | - Yaning Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200030, China,University of CAS, Beijing 101408, China
| | - Suqiong Huang
- University of CAS, Beijing 101408, China,CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, 320 Yueyang Road, Shanghai 200031, China,College of Pharmacy, Chongqing Medical University, China
| | - Zhipu Luo
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Yuanze Zhou
- Nanjing Crycision Biotech Co., Ltd., Nanjing, China
| | - Yanling Lai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200030, China,University of CAS, Beijing 101408, China
| | - Anupriya Gautam
- University of CAS, Beijing 101408, China,CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, 320 Yueyang Road, Shanghai 200031, China
| | - Salome Bourgeau
- University of CAS, Beijing 101408, China,CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, 320 Yueyang Road, Shanghai 200031, China,Institut National de la Santé et de la Recherche Médicale, École des Hautes Etudes en Santé Publique, Institut de Recherche en Santé, Environnement et Travail, Université de Rennes, F-35000 Rennes, France
| | - Shurui Wang
- Nanjing Crycision Biotech Co., Ltd., Nanjing, China
| | - Juan Bao
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200030, China
| | - Jingquan Tan
- Nanjing Crycision Biotech Co., Ltd., Nanjing, China
| | - Dimitri Lavillette
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, 320 Yueyang Road, Shanghai 200031, China; Pasteurien College, Soochow University, Jiangsu, China.
| | - Dianfan Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200030, China.
| |
Collapse
|
42
|
Huang K, Ying T, Wu Y. Single-Domain Antibodies as Therapeutics for Respiratory RNA Virus Infections. Viruses 2022; 14:1162. [PMID: 35746634 PMCID: PMC9230756 DOI: 10.3390/v14061162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Over the years, infectious diseases with high morbidity and mortality disrupted human healthcare systems and devastated economies globally. Respiratory viruses, especially emerging or re-emerging RNA viruses, including influenza and human coronavirus, are the main pathogens of acute respiratory diseases that cause epidemics or even global pandemics. Importantly, due to the rapid mutation of viruses, there are few effective drugs and vaccines for the treatment and prevention of these RNA virus infections. Of note, a class of antibodies derived from camelid and shark, named nanobody or single-domain antibody (sdAb), was characterized by smaller size, lower production costs, more accessible binding epitopes, and inhalable properties, which have advantages in the treatment of respiratory diseases compared to conventional antibodies. Currently, a number of sdAbs have been developed against various respiratory RNA viruses and demonstrated potent therapeutic efficacy in mouse models. Here, we review the current status of the development of antiviral sdAb and discuss their potential as therapeutics for respiratory RNA viral diseases.
Collapse
Affiliation(s)
- Keke Huang
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Tianlei Ying
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| | - Yanling Wu
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| |
Collapse
|
43
|
Lupașcu (Moisi) RE, Ilie MI, Velescu BȘ, Udeanu DI, Sultana C, Ruță S, Arsene AL. COVID-19-Current Therapeutical Approaches and Future Perspectives. Processes (Basel) 2022; 10:1053. [DOI: 10.3390/pr10061053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The ongoing pandemic of coronavirus disease (COVID-19) stimulated an unprecedented international collaborative effort for rapid diagnosis, epidemiologic surveillance, clinical management, prevention, and treatment. This review focuses on the current and new therapeutical approaches, summarizing the viral structure and life cycle, with an emphasis on the specific steps that can be interfered by antivirals: (a) inhibition of viral entry with anti-spike monoclonal antibodies; (b) inhibition of the RNA genome replication with nucleosidic analogs blocking the viral RNA polymerase; (c) inhibition of the main viral protease (Mpro), which directs the formation of the nonstructural proteins. An overview of the immunomodulatory drugs currently used for severe COVID-19 treatment and future therapeutical options are also discussed.
Collapse
Affiliation(s)
- Raluca Elisabeta Lupașcu (Moisi)
- Department of General and Pharmaceutical Microbiology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Marina Ionela Ilie
- Department of General and Pharmaceutical Microbiology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Bruno Ștefan Velescu
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Denisa Ioana Udeanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Camelia Sultana
- Department of Virology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, 285 sos Mihai Bravu, 030304 Bucharest, Romania
| | - Simona Ruță
- Department of Virology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, 285 sos Mihai Bravu, 030304 Bucharest, Romania
| | - Andreea Letiția Arsene
- Department of General and Pharmaceutical Microbiology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| |
Collapse
|
44
|
Moliner-Morro A, McInerney GM, Hanke L. Nanobodies in the limelight: Multifunctional tools in the fight against viruses. J Gen Virol 2022; 103. [PMID: 35579613 DOI: 10.1099/jgv.0.001731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibodies are natural antivirals generated by the vertebrate immune system in response to viral infection or vaccination. Unsurprisingly, they are also key molecules in the virologist's molecular toolbox. With new developments in methods for protein engineering, protein functionalization and application, smaller antibody-derived fragments are moving in focus. Among these, camelid-derived nanobodies play a prominent role. Nanobodies can replace full-sized antibodies in most applications and enable new possible applications for which conventional antibodies are challenging to use. Here we review the versatile nature of nanobodies, discuss their promise as antiviral therapeutics, for diagnostics, and their suitability as research tools to uncover novel aspects of viral infection and disease.
Collapse
Affiliation(s)
- Ainhoa Moliner-Morro
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
45
|
Li J, Jia H, Tian M, Wu N, Yang X, Qi J, Ren W, Li F, Bian H. SARS-CoV-2 and Emerging Variants: Unmasking Structure, Function, Infection, and Immune Escape Mechanisms. Front Cell Infect Microbiol 2022; 12:869832. [PMID: 35646741 PMCID: PMC9134119 DOI: 10.3389/fcimb.2022.869832] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022] Open
Abstract
As of April 1, 2022, over 468 million COVID-19 cases and over 6 million deaths have been confirmed globally. Unlike the common coronavirus, SARS-CoV-2 has highly contagious and attracted a high level of concern worldwide. Through the analysis of SARS-CoV-2 structural, non-structural, and accessory proteins, we can gain a deeper understanding of structure-function relationships, viral infection mechanisms, and viable strategies for antiviral therapy. Angiotensin-converting enzyme 2 (ACE2) is the first widely acknowledged SARS-CoV-2 receptor, but researches have shown that there are additional co-receptors that can facilitate the entry of SARS-CoV-2 to infect humans. We have performed an in-depth review of published papers, searching for co-receptors or other auxiliary membrane proteins that enhance viral infection, and analyzing pertinent pathogenic mechanisms. The genome, and especially the spike gene, undergoes mutations at an abnormally high frequency during virus replication and/or when it is transmitted from one individual to another. We summarized the main mutant strains currently circulating global, and elaborated the structural feature for increased infectivity and immune evasion of variants. Meanwhile, the principal purpose of the review is to update information on the COVID-19 outbreak. Many countries have novel findings on the early stage of the epidemic, and accruing evidence has rewritten the timeline of the outbreak, triggering new thinking about the origin and spread of COVID-19. It is anticipated that this can provide further insights for future research and global epidemic prevention and control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feifei Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
46
|
Hong J, Kwon HJ, Cachau R, Chen CZ, Butay KJ, Duan Z, Li D, Ren H, Liang T, Zhu J, Dandey VP, Martin NP, Esposito D, Ortega-Rodriguez U, Xu M, Borgnia MJ, Xie H, Ho M. Dromedary camel nanobodies broadly neutralize SARS-CoV-2 variants. Proc Natl Acad Sci U S A 2022; 119:e2201433119. [PMID: 35476528 PMCID: PMC9170159 DOI: 10.1073/pnas.2201433119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/24/2022] [Indexed: 01/07/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is a trimer of S1/S2 heterodimers with three receptor-binding domains (RBDs) at the S1 subunit for human angiotensin-converting enzyme 2 (hACE2). Due to their small size, nanobodies can recognize protein cavities that are not accessible to conventional antibodies. To isolate high-affinity nanobodies, large libraries with great diversity are highly desirable. Dromedary camels (Camelus dromedarius) are natural reservoirs of coronaviruses like Middle East respiratory syndrome CoV (MERS-CoV) that are transmitted to humans. Here, we built large dromedary camel VHH phage libraries to isolate nanobodies that broadly neutralize SARS-CoV-2 variants. We isolated two VHH nanobodies, NCI-CoV-7A3 (7A3) and NCI-CoV-8A2 (8A2), which have a high affinity for the RBD via targeting nonoverlapping epitopes and show broad neutralization activity against SARS-CoV-2 and its emerging variants of concern. Cryoelectron microscopy (cryo-EM) complex structures revealed that 8A2 binds the RBD in its up mode with a long CDR3 loop directly involved in the ACE2 binding residues and that 7A3 targets a deeply buried region that uniquely extends from the S1 subunit to the apex of the S2 subunit regardless of the conformational state of the RBD. At a dose of ≥5 mg/kg, 7A3 efficiently protected transgenic mice expressing hACE2 from the lethal challenge of variants B.1.351 or B.1.617.2, suggesting its therapeutic use against COVID-19 variants. The dromedary camel VHH phage libraries could be helpful as a unique platform ready for quickly isolating potent nanobodies against future emerging viruses.
Collapse
Affiliation(s)
- Jessica Hong
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20891
| | - Hyung Joon Kwon
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993
| | - Raul Cachau
- Data Science and Information Technology Program, Leidos Biomedical Research, Inc., Frederick, MD 21702
| | - Catherine Z. Chen
- National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850
| | - Kevin John Butay
- Molecular Microscopy Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Zhijian Duan
- Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20891
| | - Dan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20891
| | - Hua Ren
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20891
| | - Tianyuzhou Liang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20891
| | - Jianghai Zhu
- Data Science and Information Technology Program, Leidos Biomedical Research, Inc., Frederick, MD 21702
| | - Venkata P. Dandey
- Molecular Microscopy Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Negin P. Martin
- Viral Vector Core, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Dominic Esposito
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Uriel Ortega-Rodriguez
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993
| | - Miao Xu
- National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850
| | - Mario J. Borgnia
- Molecular Microscopy Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Hang Xie
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20891
- Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20891
| |
Collapse
|
47
|
Strohl WR, Ku Z, An Z, Carroll SF, Keyt BA, Strohl LM. Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs 2022; 36:231-323. [PMID: 35476216 PMCID: PMC9043892 DOI: 10.1007/s40259-022-00529-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic is now approaching 2 years old, with more than 440 million people infected and nearly six million dead worldwide, making it the most significant pandemic since the 1918 influenza pandemic. The severity and significance of SARS-CoV-2 was recognized immediately upon discovery, leading to innumerable companies and institutes designing and generating vaccines and therapeutic antibodies literally as soon as recombinant SARS-CoV-2 spike protein sequence was available. Within months of the pandemic start, several antibodies had been generated, tested, and moved into clinical trials, including Eli Lilly's bamlanivimab and etesevimab, Regeneron's mixture of imdevimab and casirivimab, Vir's sotrovimab, Celltrion's regdanvimab, and Lilly's bebtelovimab. These antibodies all have now received at least Emergency Use Authorizations (EUAs) and some have received full approval in select countries. To date, more than three dozen antibodies or antibody combinations have been forwarded into clinical trials. These antibodies to SARS-CoV-2 all target the receptor-binding domain (RBD), with some blocking the ability of the RBD to bind human ACE2, while others bind core regions of the RBD to modulate spike stability or ability to fuse to host cell membranes. While these antibodies were being discovered and developed, new variants of SARS-CoV-2 have cropped up in real time, altering the antibody landscape on a moving basis. Over the past year, the search has widened to find antibodies capable of neutralizing the wide array of variants that have arisen, including Alpha, Beta, Gamma, Delta, and Omicron. The recent rise and dominance of the Omicron family of variants, including the rather disparate BA.1 and BA.2 variants, demonstrate the need to continue to find new approaches to neutralize the rapidly evolving SARS-CoV-2 virus. This review highlights both convalescent plasma- and polyclonal antibody-based approaches as well as the top approximately 50 antibodies to SARS-CoV-2, their epitopes, their ability to bind to SARS-CoV-2 variants, and how they are delivered. New approaches to antibody constructs, including single domain antibodies, bispecific antibodies, IgA- and IgM-based antibodies, and modified ACE2-Fc fusion proteins, are also described. Finally, antibodies being developed for palliative care of COVID-19 disease, including the ramifications of cytokine release syndrome (CRS) and acute respiratory distress syndrome (ARDS), are described.
Collapse
Affiliation(s)
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | | | | | | |
Collapse
|
48
|
Xiang R, Wang Y, Wang L, Deng X, Huo S, Jiang S, Yu F. Neutralizing monoclonal antibodies against highly pathogenic coronaviruses. Curr Opin Virol 2022; 53:101199. [PMID: 35038651 PMCID: PMC8716168 DOI: 10.1016/j.coviro.2021.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
The pandemic of Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome 2 coronavirus (SARS-CoV-2) is a continuing worldwide threat to human health and social economy. Historically, SARS-CoV-2 follows SARS and MERS as the third coronavirus spreading across borders and continents, but far more dangerous with long-lasting symptomatic consequences. The current situation is strong evidence that coronaviruses will continue to be pathogens of consequence in the future, thus calling for the development of neutralizing antibody-based prophylactics and therapeutics for prevention and treatment of COVID-19 and other human coronavirus diseases. This review summarized the progresses of developing neutralizing monoclonal antibodies against infection of SARS-CoV-2, SARS-CoV, and MERS-CoV, and discussed their potential applications in prevention and treatment of COVID-19 and other human coronavirus diseases.
Collapse
Affiliation(s)
- Rong Xiang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yang Wang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Lili Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Xiaoqian Deng
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- College of Life Sciences, Hebei Agricultural University, Baoding, China; Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| | - Fei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China; Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, China.
| |
Collapse
|
49
|
Kondo T, Matsuoka K, Umemoto S, Fujino T, Hayashi G, Iwatani Y, Murakami H. Monobodies with potent neutralizing activity against SARS-CoV-2 Delta and other variants of concern. Life Sci Alliance 2022; 5:5/6/e202101322. [PMID: 35256514 PMCID: PMC8906176 DOI: 10.26508/lsa.202101322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/24/2022] Open
Abstract
Neutralizing antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are useful for patients' treatment of the coronavirus disease 2019 (COVID-19). We report here affinity maturation of monobodies against the SARS-CoV-2 spike protein and their neutralizing activity against SARS-CoV-2 B.1.1 (Pango v.3.1.14) as well as four variants of concern. We selected matured monobodies from libraries with multi-site saturation mutagenesis on the recognition loops through in vitro selection. One clone, the C4-AM2 monobody, showed extremely high affinity (K D < 0.01 nM) against the receptor-binding domain of the SARS-CoV-2 B.1.1, even in monomer form. Furthermore, the C4-AM2 monobody efficiently neutralized the SARS-CoV-2 B.1.1 (IC 50 = 46 pM, 0.62 ng/ml), and the Alpha (IC 50 = 77 pM, 1.0 ng/ml), Beta (IC 50 = 0.54 nM, 7.2 ng/ml), Gamma (IC 50 = 0.55 nM, 7.4 ng/ml), and Delta (IC 50 = 0.59 nM, 8.0 ng/ml) variants. The obtained monobodies would be useful as neutralizing proteins against current and potentially hazardous future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Taishi Kondo
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Kazuhiro Matsuoka
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Shun Umemoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Tomoshige Fujino
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan.,Japan Science and Technology Agency (JST), PRESTO, Kawaguchi, Japan
| | - Yasumasa Iwatani
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan .,Division of Basic Medicine, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hiroshi Murakami
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| |
Collapse
|
50
|
Outlook of therapeutic and diagnostic competency of nanobodies against SARS-CoV-2: A systematic review. Anal Biochem 2022; 640:114546. [PMID: 34995616 PMCID: PMC8730734 DOI: 10.1016/j.ab.2022.114546] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/29/2021] [Accepted: 01/02/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE The newly emerged coronavirus (SARS-CoV-2) continues to infect humans, and no completely efficient treatment has yet been found. Antibody therapy is one way to control infection caused by COVID-19, but the use of classical antibodies has many disadvantages. Heavy chain antibodies (HCAbs) are single-domain antibodies derived from the Camelidae family. The variable part of these antibodies (Nanobodies or VHH) has interesting properties such as small size, identify criptic epitopes, stability in harsh conditions, good tissue permeability and cost-effective production causing nanobodies have become a good candidate in the treatment and diagnosis of viral infections. METHODS Totally 157 records (up to November 10, 2021), were recognized to be reviewed in this study. 62 studies were removed after first step screening due to their deviation from inclusion criteria. The remaining 95 studies were reviewed in details. After removing articles that were not in the study area, 45 remaining studies met the inclusion criteria and were qualified to be included in the systematic review. RESULTS In this systematic review, the application of nanobodies in the treatment and detection of COVID-19 infection was reviewed. The results of this study showed that extensive and sufficient studies have been performed in the field of production of nanobodies against SARS-CoV-2 virus and the obtained nanobodies have a great potential for use in patients infected with SARS-CoV-2 virus. CONCLUSION According to the obtained results, it was found that nanobodies can be used effectively in the treatment and diagnosis of SARS-CoV-2 virus.
Collapse
|