1
|
Apinjoh TO, Tangi LN, Oriero EC, Drammeh S, Ntui-Njock VN, Etoketim B, Chi HF, Kwi PN, Njie B, Oboh MA, Achidi EA, Amambua-Ngwa A. Histidine-rich protein (hrp) 2-based RDT false-negatives and Plasmodium falciparum hrp 2 and 3 gene deletions in low, seasonal and intense perennial transmission zones in Cameroon: a cross - sectional study. BMC Infect Dis 2024; 24:1080. [PMID: 39350071 PMCID: PMC11443727 DOI: 10.1186/s12879-024-09935-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND False negative rapid diagnostic tests (RDTs) accruing to the non-detection of Plasmodium falciparum histidine-rich protein 2/3 (Pfhrp2/3) is threatening the diagnosis and management of malaria. Although regular monitoring is necessary to gauge the level of efficacy of the tool, studies in Cameroon remain limited. This study assessed Plasmodium spp. prevalence and Pfhrp2/3 gene deletions across ecological and transmission zones in Cameroon. METHODS This is a cross-sectional, multi-site, community- and hospital- based study, in 21 health facilities and 14 communities covering all five ecological settings in low seasonal (LS) and intense perennial (IPT) malaria transmission zones between 2019 and 2021. Participants were screened for malaria parasite using Pfhrp2 RDT and light microscopic examination of thick peripheral blood smears. DNA was extracted from dried blood spot using chelex®-100 and P. falciparum confirmed using varATS real-time quantitative Polymerase Chain Reaction (qPCR), P. malariae and P. ovale by real-time qPCR of Plasmepsin gene, and P. vivax using a commercial kit. Isolates with amplified Pfcsp and Pfama-1 genes were assayed for Pfhrp 2/3 gene deletions by conventional PCR. RESULTS A total of 3,373 participants enrolled, 1,786 Plasmodium spp. infected, with 77.4% P. falciparum. Discordant RDT and qPCR results (False negatives) were reported in 191 (15.7%) P. falciparum mono-infected samples from LS (29%, 42) and IPT (13.9%, 149). The Pfhrp2+/Pfhrp3 + genotype was most frequent, similar between LS (5.5%, 8/145) and IPT (6.0%, 65/1,076). Single Pfhrp2 and Pfhrp3 gene deletions occurred in LS (0.7%, 1/145 each) and IPT (3.6%, 39/1,076 vs. 2.9%, 31/1,076), respectively. Whilst a single sample harboured Pfhrp2-/Pfhrp3- genotype in LS, 2.4% (26/1,076) were double deleted at IPT. Pfhrp2+/Pfhrp3- (0.3%, 3/1,076) and Pfhrp2-/Pfhrp3+ (1.2%, 13/1,076) genotypes were only observed in IPT. Pfhrp2, Pfhrp3 deletions and Pfhrp2-/Pfhrp3- genotype accounted for 78.8% (26), 69.7% (23) and 63.6% (21) RDT false negatives, respectively. CONCLUSION Plasmodium falciparum remains the most dominant and widely distributed Plasmodium species across transmission and ecological zones in Cameroon. Although the low prevalence of Pfhrp2/3 gene deletions supports the continued use of HRP2-based RDTs for routine malaria diagnosis, the high proportion of false-negatives due to gene deleted parasites necessitates continued surveillance to inform control and elimination efforts.
Collapse
Affiliation(s)
- Tobias Obejum Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon.
- Department of Chemical and Biological Engineering, The University of Bamenda, Bambili, Cameroon.
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia.
| | - Livinus Ngu Tangi
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Eniyou Cheryll Oriero
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Sainabou Drammeh
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | | | - Blessed Etoketim
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Hanesh Fru Chi
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Pilate Nkineh Kwi
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Bekai Njie
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Mary Aigbiremo Oboh
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Eric Akum Achidi
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia.
| |
Collapse
|
2
|
Gatton ML, Smith D, Pasay C, Anderson K, Mihreteab S, Valdivia HO, Sanchez JF, Beshir KB, Cunningham J, Cheng Q. Comparison of prevalence estimates of pfhrp2 and pfhrp3 deletions in Plasmodium falciparum determined by conventional PCR and multiplex qPCR and implications for surveillance and monitoring. Int J Infect Dis 2024; 144:107061. [PMID: 38631508 DOI: 10.1016/j.ijid.2024.107061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVES The accuracy of malaria rapid diagnostic tests is threatened by Plasmodium falciparum with pfhrp2/3 deletions. This study compares gene deletion prevalence determined by multiplex real time polymerase chain reaction (qPCR) and conventional polymerase chain reaction (cPCR) using existing samples with clonality previously determined by microsatellite genotyping. METHODS Multiplex qPCR was used to estimate prevalence of pfhrp2/3 deletions in three sets of previously collected patient samples from Eritrea and Peru. The qPCR was validated by multiplex digital polymerase chain reaction. Sample classification was compared with cPCR, and receiver operating characteristic curve analysis was used to determine the optimal ΔCq threshold that aligned the results of the two assays. RESULTS qPCR classified 75% (637 of 849) of samples as single, and 212 as mixed-pfhrp2/3 genotypes, with a positive association between clonality and proportion of mixed-pfhrp2/3 genotype samples. The sample classification agreement between cPCR and qPCR was 75.1% (95% confidence interval [CI] 68.6-80.7%) and 47.8% (95% CI 38.9-56.9%) for monoclonal and polyclonal infections. The qPCR prevalence estimates of pfhrp2/3 deletions showed almost perfect (κ = 0.804, 95% CI 0.714-0.895) and substantial agreement (κ = 0.717, 95% CI 0.562-0.872) with cPCR for Peru and 2016 Eritrean samples, respectively. For 2019 Eritrean samples, the prevalence of double pfhrp2/3 deletions was approximately two-fold higher using qPCR. The optimal threshold for matching the assay results was ΔCq = 3. CONCLUSIONS Multiplex qPCR and cPCR produce comparable estimates of gene deletion prevalence when monoclonal infections dominate; however, qPCR provides higher estimates where multi-clonal infections are common.
Collapse
Affiliation(s)
- Michelle L Gatton
- Centre for Immunology and Infection Control, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| | - David Smith
- The Australian Defence Force Malaria and Infectious Disease Institute Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia; Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Cielo Pasay
- The Australian Defence Force Malaria and Infectious Disease Institute Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia; Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Karen Anderson
- The Australian Defence Force Malaria and Infectious Disease Institute Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia; Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Selam Mihreteab
- National Malaria Control Program, Ministry of Health, Asmara, Eritrea
| | - Hugo O Valdivia
- U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH), Lima, Peru
| | - Juan F Sanchez
- U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH), Lima, Peru
| | - Khalid B Beshir
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK; Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Jane Cunningham
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK; Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Qin Cheng
- The Australian Defence Force Malaria and Infectious Disease Institute Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia; Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| |
Collapse
|
3
|
Mekonen B, Dugassa S, Feleke SM, Dufera B, Gidisa B, Adamu A, Mandefro A, Tasew G, Golassa L. Widespread pfhrp2/3 deletions and HRP2-based false-negative results in southern Ethiopia. Malar J 2024; 23:108. [PMID: 38632640 PMCID: PMC11025231 DOI: 10.1186/s12936-024-04904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/08/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Rapid diagnostic tests (RDTs) play a significant role in expanding case management in peripheral healthcare systems. Histidine-rich protein-2 (HRP2) antigen detection RDTs are predominantly used to diagnose Plasmodium falciparum infection. However, the evolution and spread of P. falciparum parasite strains with deleted hrp2/3 genes, causing false-negative results, have been reported. This study assessed the diagnostic performance of HRP2-detecting RDTs for P. falciparum cases and the prevalence of pfhrp2/3 deletions among symptomatic patients seeking malaria diagnosis at selected health facilities in southern Ethiopia. METHODS A multi-health facilities-based cross-sectional study was conducted on self-presenting febrile patients seeking treatment in southern Ethiopia from July to September 2022. A purposive sampling strategy was used to enroll patients with microscopically confirmed P. falciparum infections. A capillary blood sample was obtained to prepare a blood film for microscopy and a RDT using the SD Bioline™ Malaria Pf/Pv Test. Dried blood spot samples were collected for further molecular analysis. DNA was extracted using gene aid kits and amplification was performed using nested PCR assay. Exon 2 of hrp2 and hrp3, which are the main protein-coding regions, was used to confirm its deletion. The diagnostic performance of RDT was evaluated using PCR as the gold standard test for P. falciparum infections. RESULTS Of 279 P. falciparum PCR-confirmed samples, 249 (89.2%) had successful msp-2 amplification, which was then genotyped for hrp2/3 gene deletions. The study revealed that pfhrp2/3 deletions were common in all health centres, and it was estimated that 144 patients (57.8%) across all health facilities had pfhrp2/3 deletions, leading to false-negative PfHRP2 RDT results. Deletions spanning exon 2 of hrp2, exon 2 of hrp3, and double deletions (hrp2/3) accounted for 68 (27.3%), 76 (30.5%), and 33 (13.2%) of cases, respectively. The study findings revealed the prevalence of P. falciparum parasites lacking a single pfhrp2-/3-gene and that both genes varied across the study sites. This study also showed that the sensitivity of the SD Bioline PfHRP2-RDT test was 76.5% when PCR was used as the reference test. CONCLUSION This study confirmed the existence of widespread pfhrp2/3- gene deletions, and their magnitude exceeded the WHO-recommended threshold (> 5%). False-negative RDT results resulting from deletions in Pfhrp2/3- affect a country's attempts at malaria control and elimination. Therefore, the adoption of non-HRP2-based RDTs as an alternative measure is required to avoid the consequences associated with the continued use of HRP-2-based RDTs, in the study area in particular and in Ethiopia in general.
Collapse
Affiliation(s)
- Bacha Mekonen
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
- Malaria and NTDs Research Team, Bacterial, Parasitic, and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
| | - Sisay Dugassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sindew Mekasha Feleke
- Malaria and NTDs Research Team, Bacterial, Parasitic, and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Boja Dufera
- Malaria and NTDs Research Team, Bacterial, Parasitic, and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Bedasa Gidisa
- Malaria and NTDs Research Team, Armeur Hansen Research Institute, Addis Ababa, Ethiopia
| | - Aderaw Adamu
- Department of Medical Laboratory Science, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Aynalem Mandefro
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Geremew Tasew
- Malaria and NTDs Research Team, Bacterial, Parasitic, and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
4
|
Sohail A, Barry A, Auburn S, Cheng Q, Lau CL, Lee R, Price RN, Furuya-Kanamori L, Bareng P, McGuinness SL, Leder K. Imported malaria into Australia: surveillance insights and opportunities. J Travel Med 2024; 31:taad164. [PMID: 38127641 PMCID: PMC10998534 DOI: 10.1093/jtm/taad164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Malaria continues to pose a significant burden in endemic countries, many of which lack access to molecular surveillance. Insights from malaria cases in travellers returning to non-endemic areas can provide valuable data to inform endemic country programmes. To evaluate the potential for novel global insights into malaria, we examined epidemiological and molecular data from imported malaria cases to Australia. METHODS We analysed malaria cases reported in Australia from 2012 to 2022 using National Notifiable Disease Surveillance System data. Molecular data on imported malaria cases were obtained from literature searches. RESULTS Between 2012 and 2022, 3204 malaria cases were reported in Australia. Most cases (69%) were male and 44% occurred in young adults aged 20-39 years. Incidence rates initially declined between 2012 and 2015, then increased until 2019. During 2012-2019, the incidence in travellers ranged from 1.34 to 7.71 per 100 000 trips. Cases were primarily acquired in Sub-Saharan Africa (n = 1433; 45%), Oceania (n = 569; 18%) and Southern and Central Asia (n = 367; 12%). The most common countries of acquisition were Papua New Guinea (n = 474) and India (n = 277). Plasmodium falciparum accounted for 58% (1871/3204) of cases and was predominantly acquired in Sub-Saharan Africa, and Plasmodium vivax accounted for 32% (1016/3204), predominantly from Oceania and Asia. Molecular studies of imported malaria cases to Australia identified genetic mutations and deletions associated with drug resistance and false-negative rapid diagnostic test results, and led to the establishment of reference genomes for P. vivax and Plasmodium malariae. CONCLUSIONS Our analysis highlights the continuing burden of imported malaria into Australia. Molecular studies have offered valuable insights into drug resistance and diagnostic limitations, and established reference genomes. Integrating molecular data into national surveillance systems could provide important infectious disease intelligence to optimize treatment guidelines for returning travellers and support endemic country surveillance programmes.
Collapse
Affiliation(s)
- Asma Sohail
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
- Department of Infectious Diseases, Grampians Health, Ballarat 3350, Australia
| | - Alyssa Barry
- Institute for Physical and Mental Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong 3220, Australia
- Disease Elimination Program, Burnet Institute, Melbourne 3004, Australia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin 0800, Australia
| | - Qin Cheng
- Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane 4051, Australia
| | - Colleen L Lau
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston 4006, Australia
| | - Rogan Lee
- Parasitology Unit, Institute of Clinical Pathology and Medical Research, Sydney 2145, Australia
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin 0800, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Luis Furuya-Kanamori
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston 4006, Australia
| | - Paolo Bareng
- Institute for Physical and Mental Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong 3220, Australia
| | - Sarah L McGuinness
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
- Department of Infectious Diseases, Alfred Health, Melbourne 3004, Australia
| | - Karin Leder
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
- Victorian Infectious Diseases Service, Melbourne Health, Melbourne 3052, Australia
| |
Collapse
|
5
|
Abdi Moussa R, Papa Mze N, Yonis Arreh H, Abdillahi Hamoud A, Mohamed Alaleh K, Mohamed Aden F, Yonis Omar AR, Osman Abdi W, Kayad Guelleh S, Ahmed Abdi AI, Basco LK, Abdi Khaireh B, Bogreau H. Assessment of the Performance of Lactate Dehydrogenase-Based Rapid Diagnostic Test for Malaria in Djibouti in 2022-2023. Diagnostics (Basel) 2024; 14:262. [PMID: 38337778 PMCID: PMC10854848 DOI: 10.3390/diagnostics14030262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Until 2020, Djiboutian health authorities relied on histidine-rich protein-2 (HRP2)-based rapid diagnostic tests (RDTs) to establish the diagnosis of Plasmodium falciparum. The rapid spread of P. falciparum histidine-rich protein-2 and -3 (pfhrp2/3) gene-deleted parasite strains in Djibouti has led the authorities to switch from HRP2-based RDTs to lactate dehydrogenase (LDH)-based RDTs targeting the plasmodial lactate dehydrogenase (pLDH) specific for P. falciparum and P. vivax (RapiGEN BIOCREDIT Malaria Ag Pf/Pv pLDH/pLDH) in 2021. This study was conducted with the primary objective of evaluating the diagnostic performance of this alternative RDT. Operational constraints related, in particular, to the implementation of this RDT during the COVID-19 pandemic were also considered. The performance of BIOCREDIT Malaria Ag Pf/Pv (pLDH/pLDH) RDT was also compared to our previously published data on the performance of two HRP2-based RDTs deployed in Djibouti in 2018-2020. The diagnosis of 350 febrile patients with suspected malaria in Djibouti city was established using two batches of RapiGEN BIOCREDIT Malaria Ag Pf/Pv (pLDH/pLDH) RDT over a two-year period (2022 and 2023) and confirmed by real-time quantitative polymerase chain reaction. The sensitivity and specificity for the detection of P. falciparum were 88.2% and 100%, respectively. For P. vivax, the sensitivity was 86.7% and the specificity was 100%. Re-training and closer supervision of the technicians between 2022 and 2023 have led to an increased sensitivity to detect P. falciparum (69.8% in 2022 versus 88.2% in 2023; p < 0.01). The receiver operating characteristic curve analysis highlighted a better performance in the diagnosis of P. falciparum with pLDH-based RDTs compared with previous HRP2-based RDTs. In Djibouti, where pfhrp2-deleted strains are rapidly gaining ground, LDH-based RDTs seem to be more suitable for diagnosing P. falciparum than HRP2-based RDTs. Awareness-raising and training for technical staff have also been beneficial.
Collapse
Affiliation(s)
- Rahma Abdi Moussa
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France (L.K.B.)
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Nasserdine Papa Mze
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France (L.K.B.)
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Houssein Yonis Arreh
- Laboratoire National de Référence, Hôpital Peltier, Ministère de la Santé, Djibouti ville 98230, Djibouti
| | | | - Kahiya Mohamed Alaleh
- Caisse Nationale de Sécurité Sociale (CNSS), Djibouti ville 98230, Djibouti (K.M.A.)
| | - Fatouma Mohamed Aden
- Caisse Nationale de Sécurité Sociale (CNSS), Djibouti ville 98230, Djibouti (K.M.A.)
| | - Abdoul-Razak Yonis Omar
- Laboratoire de Diagnostic, Centre de Santé Communautaire d’Einguela, Ministère de la Santé, Djibouti ville 98230, Djibouti
| | - Warsama Osman Abdi
- Caisse Nationale de Sécurité Sociale (CNSS), Djibouti ville 98230, Djibouti (K.M.A.)
| | - Samatar Kayad Guelleh
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé, Djibouti ville 98230, Djibouti;
| | - Abdoul-Ilah Ahmed Abdi
- Service de Santé des Armées, Présidence de la République, Djibouti ville 98230, Djibouti;
| | - Leonardo K. Basco
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France (L.K.B.)
| | - Bouh Abdi Khaireh
- UNDP Djibouti, Global Fund to Fight AIDS-TB-Malaria, Djibouti ville 98230, Djibouti;
| | - Hervé Bogreau
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France (L.K.B.)
- IHU-Méditerranée Infection, 13005 Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France
| |
Collapse
|
6
|
Nana RRD, Ngum NL, Makoge V, Amvongo-Adja N, Hawadak J, Singh V. Rapid diagnostic tests for malaria diagnosis in Cameroon: impact of histidine rich protein 2/3 deletions and lactate dehydrogenase gene polymorphism. Diagn Microbiol Infect Dis 2024; 108:116103. [PMID: 37944271 DOI: 10.1016/j.diagmicrobio.2023.116103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
Malaria rapid diagnostic tests (mRDT) play a vital role in malaria control in endemic areas. In this study, histidine-rich protein (hrp) and lactate dehydrogenase (ldh) genes were genotyped in Plasmodium falciparum (Pf) and Plasmodium ovale (Po) spp. isolates. Deletions in P. falciparum hrp2/3 (pfhrp2/3) proteins and single nucleotide polymorphisms (SNPs) were analyzed. Twenty-four samples were analyzed for pfhrp2/3 gene deletions and 25 for SNPs in ldh gene (18 Pf and 7 Po spp.). Deletions in pfhrp2/3 genes were observed in 1.9% malaria positive isolates. The pfldh gene sequences showed one SNP at codon 272 (D272N) in 22.2% of samples while in Po spp., sequences were 100% similar to P. ovale curtisi but when compared to P. ovale wallikeri reference sequence, SNPs at positions 143 (P143S), 168 (K168N), 204 (V204I) were found. Findings suggest low prevalence in pfhrp2/3 genes and highlight the circulation of P. ovale curtisi in the studies areas.
Collapse
Affiliation(s)
- Rodrigue Roman Dongang Nana
- Institute of Medical Research and Medicinal Plants studies (IMPM), P.O Box 13033 Yaoundé, Cameroon; Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi 110077, India..
| | - Ngum Lesly Ngum
- Institute of Medical Research and Medicinal Plants studies (IMPM), P.O Box 13033 Yaoundé, Cameroon
| | - Valerie Makoge
- Institute of Medical Research and Medicinal Plants studies (IMPM), P.O Box 13033 Yaoundé, Cameroon
| | - Nathalie Amvongo-Adja
- Institute of Medical Research and Medicinal Plants studies (IMPM), P.O Box 13033 Yaoundé, Cameroon
| | - Joseph Hawadak
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi 110077, India
| | - Vineeta Singh
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi 110077, India..
| |
Collapse
|
7
|
Walker IS, Rogerson SJ. Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence 2023; 14:2150456. [PMID: 36419237 PMCID: PMC9815252 DOI: 10.1080/21505594.2022.2150456] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Infections with Plasmodium falciparum and Plasmodium vivax cause over 600,000 deaths each year, concentrated in Africa and in young children, but much of the world's population remain at risk of infection. In this article, we review the latest developments in the immunogenicity and pathogenesis of malaria, with a particular focus on P. falciparum, the leading malaria killer. Pathogenic factors include parasite-derived toxins and variant surface antigens on infected erythrocytes that mediate sequestration in the deep vasculature. Host response to parasite toxins and to variant antigens is an important determinant of disease severity. Understanding how parasites sequester, and how antibody to variant antigens could prevent sequestration, may lead to new approaches to treat and prevent disease. Difficulties in malaria diagnosis, drug resistance, and specific challenges of treating P. vivax pose challenges to malaria elimination, but vaccines and other preventive strategies may offer improved disease control.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| |
Collapse
|
8
|
Mshani IH, Siria DJ, Mwanga EP, Sow BB, Sanou R, Opiyo M, Sikulu-Lord MT, Ferguson HM, Diabate A, Wynne K, González-Jiménez M, Baldini F, Babayan SA, Okumu F. Key considerations, target product profiles, and research gaps in the application of infrared spectroscopy and artificial intelligence for malaria surveillance and diagnosis. Malar J 2023; 22:346. [PMID: 37950315 PMCID: PMC10638832 DOI: 10.1186/s12936-023-04780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Studies on the applications of infrared (IR) spectroscopy and machine learning (ML) in public health have increased greatly in recent years. These technologies show enormous potential for measuring key parameters of malaria, a disease that still causes about 250 million cases and 620,000 deaths, annually. Multiple studies have demonstrated that the combination of IR spectroscopy and machine learning (ML) can yield accurate predictions of epidemiologically relevant parameters of malaria in both laboratory and field surveys. Proven applications now include determining the age, species, and blood-feeding histories of mosquito vectors as well as detecting malaria parasite infections in both humans and mosquitoes. As the World Health Organization encourages malaria-endemic countries to improve their surveillance-response strategies, it is crucial to consider whether IR and ML techniques are likely to meet the relevant feasibility and cost-effectiveness requirements-and how best they can be deployed. This paper reviews current applications of IR spectroscopy and ML approaches for investigating malaria indicators in both field surveys and laboratory settings, and identifies key research gaps relevant to these applications. Additionally, the article suggests initial target product profiles (TPPs) that should be considered when developing or testing these technologies for use in low-income settings.
Collapse
Affiliation(s)
- Issa H Mshani
- Ifakara Health Institute, Environmental Health, and Ecological Sciences Department, Morogoro, United Republic of Tanzania.
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.
| | - Doreen J Siria
- Ifakara Health Institute, Environmental Health, and Ecological Sciences Department, Morogoro, United Republic of Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Emmanuel P Mwanga
- Ifakara Health Institute, Environmental Health, and Ecological Sciences Department, Morogoro, United Republic of Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Bazoumana Bd Sow
- Department of Medical Biology and Public Health, Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Roger Sanou
- Department of Medical Biology and Public Health, Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Mercy Opiyo
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Malaria Elimination Initiative (MEI), Institute for Global Health Sciences, University of California, San Francisco, USA
| | - Maggy T Sikulu-Lord
- Faculty of Science, School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| | - Heather M Ferguson
- Ifakara Health Institute, Environmental Health, and Ecological Sciences Department, Morogoro, United Republic of Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Abdoulaye Diabate
- Department of Medical Biology and Public Health, Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Klaas Wynne
- School of Chemistry, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mario González-Jiménez
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- School of Chemistry, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Francesco Baldini
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Simon A Babayan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.
| | - Fredros Okumu
- Ifakara Health Institute, Environmental Health, and Ecological Sciences Department, Morogoro, United Republic of Tanzania.
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.
- School of Life Sciences and Biotechnology, Nelson Mandela African Institution of Science and Technology, Arusha, United Republic of Tanzania.
- School of Public Health, The University of the Witwatersrand, Park Town, South Africa.
| |
Collapse
|
9
|
Mihreteab S, Platon L, Berhane A, Stokes BH, Warsame M, Campagne P, Criscuolo A, Ma L, Petiot N, Doderer-Lang C, Legrand E, Ward KE, Kassahun AZ, Ringwald P, Fidock DA, Ménard D. Increasing Prevalence of Artemisinin-Resistant HRP2-Negative Malaria in Eritrea. N Engl J Med 2023; 389:1191-1202. [PMID: 37754284 PMCID: PMC10539021 DOI: 10.1056/nejmoa2210956] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
BACKGROUND Although the clinical efficacy of antimalarial artemisinin-based combination therapies in Africa remains high, the recent emergence of partial resistance to artemisinin in Plasmodium falciparum on the continent is troubling, given the lack of alternative treatments. METHODS In this study, we used data from drug-efficacy studies conducted between 2016 and 2019 that evaluated 3-day courses of artemisinin-based combination therapy (artesunate-amodiaquine or artemether-lumefantrine) for uncomplicated malaria in Eritrea to estimate the percentage of patients with day-3 positivity (i.e., persistent P. falciparum parasitemia 3 days after the initiation of therapy). We also assayed parasites for mutations in Pfkelch13 as predictive markers of partial resistance to artemisinin and screened for deletions in hrp2 and hrp3 that result in variable performance of histidine rich protein 2 (HRP2)-based rapid diagnostic tests for malaria. RESULTS We noted an increase in the percentage of patients with day-3 positivity from 0.4% (1 of 273) in 2016 to 1.9% (4 of 209) in 2017 and 4.2% (15 of 359) in 2019. An increase was also noted in the prevalence of the Pfkelch13 R622I mutation, which was detected in 109 of 818 isolates before treatment, from 8.6% (24 of 278) in 2016 to 21.0% (69 of 329) in 2019. The odds of day-3 positivity increased by a factor of 6.2 (95% confidence interval, 2.5 to 15.5) among the patients with Pfkelch13 622I variant parasites. Partial resistance to artemisinin, as defined by the World Health Organization, was observed in Eritrea. More than 5% of the patients younger than 15 years of age with day-3 positivity also had parasites that carried Pfkelch13 R622I. In vitro, the R622I mutation conferred a low level of resistance to artemisinin when edited into NF54 and Dd2 parasite lines. Deletions in both hrp2 and hrp3 were identified in 16.9% of the parasites that carried the Pfkelch13 R622I mutation, which made them potentially undetectable by HRP2-based rapid diagnostic tests. CONCLUSIONS The emergence and spread of P. falciparum lineages with both Pfkelch13-mediated partial resistance to artemisinin and deletions in hrp2 and hrp3 in Eritrea threaten to compromise regional malaria control and elimination campaigns. (Funded by the Bill and Melinda Gates Foundation and others; Australian New Zealand Clinical Trials Registry numbers, ACTRN12618001223224, ACTRN12618000353291, and ACTRN12619000859189.).
Collapse
Affiliation(s)
- Selam Mihreteab
- National Malaria Control Program, Ministry of Health, Asmara, Eritrea
| | - Lucien Platon
- Institut Pasteur, Université Paris Cité, Malaria Genetic and Resistance Unit, INSERM U1201, F-75015 Paris, France
- Institut Pasteur, Université Paris Cité, Malaria Parasite Biology and Vaccines, F-75015 Paris
- Sorbonne Université, Collège doctoral ED 515 Complexité du Vivant, F-75015 Paris, France
| | - Araia Berhane
- Communicable Diseases Control Division, Ministry of Health, Asmara, Eritrea
| | - Barbara H. Stokes
- Columbia University Irving Medical Center, Department of Microbiology & Immunology, New York, NY 10032, USA
| | - Marian Warsame
- Gothenburg University, School of Public Health and Social Medicine, Gothenburg, Sweden
| | - Pascal Campagne
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Alexis Criscuolo
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Laurence Ma
- Institut Pasteur, Biomics Platform, C2RT, F-75015 Paris, France
| | - Nathalie Petiot
- Institut Pasteur, Université Paris Cité, Malaria Genetic and Resistance Unit, INSERM U1201, F-75015 Paris, France
| | - Cécile Doderer-Lang
- Université de Strasbourg, Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, F-67000 Strasbourg, France
| | - Eric Legrand
- Institut Pasteur, Université Paris Cité, Malaria Genetic and Resistance Unit, INSERM U1201, F-75015 Paris, France
- Institut Pasteur, Université Paris Cité, Malaria Parasite Biology and Vaccines, F-75015 Paris
| | - Kurt E. Ward
- Columbia University Irving Medical Center, Department of Microbiology & Immunology, New York, NY 10032, USA
| | | | - Pascal Ringwald
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - David A. Fidock
- Columbia University Irving Medical Center, Department of Microbiology & Immunology, New York, NY 10032, USA
- Columbia University Irving Medical Center, Center for Malaria Therapeutics and Antimicrobial Resistance. Division of Infectious Diseases. Department of Medicine, New York, NY 10032, USA
| | - Didier Ménard
- Institut Pasteur, Université Paris Cité, Malaria Genetic and Resistance Unit, INSERM U1201, F-75015 Paris, France
- Institut Pasteur, Université Paris Cité, Malaria Parasite Biology and Vaccines, F-75015 Paris
- Université de Strasbourg, Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, F-67000 Strasbourg, France
- CHU Strasbourg, Laboratory of Parasitology and Medical Mycology, F-67000 Strasbourg, France
| |
Collapse
|
10
|
Kojom Foko LP, Jakhan J, Narang G, Singh V. Global polymorphism of Plasmodium falciparum histidine rich proteins 2/3 and impact on malaria rapid diagnostic test detection: a systematic review and meta-analysis. Expert Rev Mol Diagn 2023; 23:925-943. [PMID: 37698448 DOI: 10.1080/14737159.2023.2255136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND This review presents an overview of field findings on sequence variation of Plasmodium falciparum histidine-rich proteins 2/3 (PfHRP2/3) for which reference types (1-24) have been identified, and its critical impact on PfHRP2-based rapid diagnostic test (RDT) detection. RESEARCH DESIGN AND METHODS This systematic review and meta-analysis was registered with PROSPERO, CRD42022316027, and conducted as per the PRISMA guidelines, and the methodological quality of studies was assessed. RESULTS Of the 2184 records identified, 34 studies were included mostly from Africa (47.1%) and Asia (35.3%). The reference PfHRP2 types 1, 2, 3, 6, and 7 are invariably found at proportions ≥ 80-100% in all areas with the exception of The Americas where their proportion is very low. The proteins exhibited high diversity of variants/unknown types, especially for types 1, 2, 4, and 7. Eleven major PfHRP2 epitopes were found at pooled proportion > 90%. The existing models to predict RDT detection are greatly limited by the impact of factors such as low (very low) parasitemia, RDT brand, and PfHRP3 cross-reactivity. PfHRP2 length and presence/number of a given reference repeat type/variant did not seem to impact RDT detection. CONCLUSIONS PfHRP2/3 are highly polymorphic and current findings are insufficient, conflicting and not convincing enough to conclude on the role of PfHRP2/3 sequence polymorphism in PfHRP2-based RDT detection.
Collapse
Affiliation(s)
- Loick P Kojom Foko
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, India
| | - Jahnvi Jakhan
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, India
| | - Geetika Narang
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, India
| | - Vineeta Singh
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, India
| |
Collapse
|
11
|
Moussa RA, Papa Mze N, Arreh HY, Hamoud AA, Alaleh KM, Omar ARY, Abdi WO, Guelleh SK, Abdi AIA, Aboubaker MH, Basco LK, Khaireh BA, Bogreau H. Molecular investigation of malaria-infected patients in Djibouti city (2018-2021). Malar J 2023; 22:147. [PMID: 37131225 PMCID: PMC10154177 DOI: 10.1186/s12936-023-04546-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/30/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND The Republic of Djibouti is a malaria endemic country that was in pre-elimination phase in 2006-2012. From 2013, however, malaria has re-emerged in the country, and its prevalence has been increasing every year. Given the co-circulation of several infectious agents in the country, the assessment of malaria infection based on microscopy or histidine-rich protein 2 (HRP2)-based rapid diagnostic tests (RDT) has shown its limitations. This study, therefore, aimed to assess the prevalence of malaria among febrile patients in Djibouti city using more robust molecular tools. METHODS All suspected malaria cases reported to be microscopy-positive were randomly sampled (n = 1113) and included in four health structures in Djibouti city over a 4-year period (2018-2021), mainly during the malaria transmission season (January-May). Socio-demographic information was collected, and RDT was performed in most of the included patients. The diagnosis was confirmed by species-specific nested polymerase chain reaction (PCR). Data were analysed using Fisher's exact test and kappa statistics. RESULTS In total, 1113 patients with suspected malaria and available blood samples were included. PCR confirmed that 788/1113 (70.8%) were positive for malaria. Among PCR-positive samples, 656 (83.2%) were due to Plasmodium falciparum, 88 (11.2%) Plasmodium vivax, and 44 (5.6%) P. falciparum/P. vivax mixed infections. In 2020, P. falciparum infections were confirmed by PCR in 50% (144/288) of negative RDTs. After the change of RDT in 2021, this percentage decreased to 17%. False negative RDT results were found more frequently (P < 0.05) in four districts of Djibouti city (Balbala, Quartier 7, Quartier 6, and Arhiba). Malaria occurred less frequently in regular bed net users than in non-users (odds ratio [OR]: 0.62, 95% confidence interval [CI]: 0.42-0.92). CONCLUSIONS The present study confirmed the high prevalence of falciparum malaria and, to a lesser extent, vivax malaria. Nevertheless, 29% of suspected malaria cases were misdiagnosed by microscopy and/or RDT. There is a need to strengthen the capacity for diagnosis by microscopy and to evaluate the possible role of P. falciparum hrp2 gene deletion, which leads to false negative cases of P. falciparum.
Collapse
Affiliation(s)
- Rahma Abdi Moussa
- Université d'Aix Marseille, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Laboratoire de Diagnostic, Caisse Nationale de Sécurité Sociale (CNSS), Djibouti, Republic of Djibouti
| | - Nasserdine Papa Mze
- Université d'Aix Marseille, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Houssein Yonis Arreh
- Laboratoire National de Référence, Hôpital Général Peltier, Ministère de La Santé, Djibouti, Republic of Djibouti
| | - Aicha Abdillahi Hamoud
- Laboratoire de Diagnostic, Caisse Nationale de Sécurité Sociale (CNSS), Djibouti, Republic of Djibouti
| | - Kahiya Mohamed Alaleh
- Laboratoire de Diagnostic, Caisse Nationale de Sécurité Sociale (CNSS), Djibouti, Republic of Djibouti
| | - Abdoul-Razak Yonis Omar
- Laboratoire de Diagnostic, Centre de Santé Communautaire d'Einguela, Ministère de La Santé, Djibouti, Republic of Djibouti
| | - Warsama Osman Abdi
- Caisse Nationale de Sécurité Sociale (CNSS), Djibouti, Republic of Djibouti
| | - Samatar Kayad Guelleh
- Programme National de Lutte Contre Le Paludisme, Direction des Programmes de Santé Prioritaires, Ministère de La Santé, Djibouti, Republic of Djibouti
| | - Abdoul-Ilah Ahmed Abdi
- Service de Santé des Armées, Présidence de la République, Djibouti, Republic of Djibouti
| | - Mohamed Houmed Aboubaker
- Laboratoire de Diagnostic, Caisse Nationale de Sécurité Sociale (CNSS), Djibouti, Republic of Djibouti
| | - Leonardo K Basco
- Université d'Aix Marseille, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Bouh Abdi Khaireh
- UNDP Djibouti, Global Fund to Fight AIDS-TB-Malaria, Djibouti, Republic of Djibouti
| | - Hervé Bogreau
- Université d'Aix Marseille, IRD, AP-HM, SSA, VITROME, Marseille, France.
- IHU-Méditerranée Infection, Marseille, France.
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.
| |
Collapse
|
12
|
Low Prevalence of Plasmodium falciparum Histidine-Rich Protein 2 and 3 Gene Deletions—A Multiregional Study in Central and West Africa. Pathogens 2023; 12:pathogens12030455. [PMID: 36986377 PMCID: PMC10054520 DOI: 10.3390/pathogens12030455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Plasmodium falciparum parasites carrying deletions of histidine-rich protein 2 and 3 genes, pfhrp2 and pfhrp3, respectively, are likely to escape detection via HRP2-based rapid diagnostic tests (RDTs) and, consequently, treatment, posing a major risk to both the health of the infected individual and malaria control efforts. This study assessed the frequency of pfhrp2- and pfhrp3-deleted strains at four different study sites in Central Africa (number of samples analyzed: Gabon N = 534 and the Republic of Congo N = 917) and West Africa (number of samples analyzed: Nigeria N = 466 and Benin N = 120) using a highly sensitive multiplex qPCR. We found low prevalences for pfhrp2 (1%, 0%, 0.03% and 0) and pfhrp3 single deletions (0%, 0%, 0.03% and 0%) at all study sites (Gabon, the Republic of Congo, Nigeria and Benin, respectively). Double-deleted P. falciparum were only found in Nigeria in 1.6% of all internally controlled samples. The results of this pilot investigation do not point towards a high risk for false-negative RDT results due to pfhrp2/pfhrp3 deletions in Central and West African regions. However, as this scenario can change rapidly, continuous monitoring is essential to ensure that RDTs remain a suitable tool for the malaria diagnostic strategy.
Collapse
|
13
|
Okanda D, Ndwiga L, Osoti V, Achieng N, Wambua J, Ngetsa C, Lubell-Doughtie P, Shankar A, Bejon P, Ochola-Oyier LI. Low frequency of Plasmodium falciparum hrp2/3 deletions from symptomatic infections at a primary healthcare facility in Kilifi, Kenya. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1083114. [PMID: 38455911 PMCID: PMC10910971 DOI: 10.3389/fepid.2023.1083114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/23/2023] [Indexed: 03/09/2024]
Abstract
There is a growing concern for malaria control in the Horn of Africa region due to the spread and rise in the frequency of Plasmodium falciparum Histidine-rich Protein (hrp) 2 and 3 deletions. Parasites containing these gene deletions escape detection by the major PfHRP2-based rapid diagnostic test. In this study, the presence of Pfhrp2/3 deletions was examined in uncomplicated malaria patients in Kilifi County, from a region of moderate-high malaria transmission. 345 samples were collected from the Pingilikani dispensary in 2019/2020 during routine malaria care for patients attending this primary health care facility. The Carestart™ RDT and microscopy were used to test for malaria. In addition, qPCR was used to confirm the presence of parasites. In total, 249 individuals tested positive for malaria by RDT, 242 by qPCR, and 170 by microscopy. 11 samples that were RDT-negative and microscopy positive and 25 samples that were qPCR-positive and RDT-negative were considered false negative tests and were examined further for Pfhrp2/3 deletions. Pfhrp2/3-negative PCR samples were further genotyped at the dihydrofolate reductase (Pfdhfr) gene which served to further confirm that parasite DNA was present in the samples. The 242 qPCR-positive samples (confirmed the presence of DNA) were also selected for Pfhrp2/3 genotyping. To determine the frequency of false negative results in low parasitemia samples, the RDT- and qPCR-negative samples were genotyped for Pfdhfr before testing for Pfhrp2/3. There were no Pfhrp2 and Pfhrp3 negative but positive for dhfr parasites in the 11 (RDT negative and microscopy positive) and 25 samples (qPCR-positive and RDT-negative). In the larger qPCR-positive sample set, only 5 samples (2.1%) were negative for both hrp2 and hrp3, but positive for dhfr. Of the 5 samples, there were 4 with more than 100 parasites/µl, suggesting true hrp2/3 deletions. These findings revealed that there is currently a low prevalence of Pfhrp2 and Pfhrp3 deletions in the health facility in Kilifi. However, routine monitoring in other primary health care facilities across the different malaria endemicities in Kenya is urgently required to ensure appropriate use of malaria RDTs.
Collapse
Affiliation(s)
- Dorcas Okanda
- Biosciences Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Leonard Ndwiga
- Biosciences Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Victor Osoti
- Biosciences Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Nicole Achieng
- Biosciences Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Juliana Wambua
- Biosciences Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Caroline Ngetsa
- Biosciences Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Anuraj Shankar
- Nuffield Department of Medicine, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Philip Bejon
- Biosciences Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Medicine, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
14
|
Thang ND, Rovira-Vallbona E, Binh NTH, Dung DV, Ngoc NTH, Long TK, Duong TT, Martin NJ, Edgel KA. Surveillance of pfhrp2 and pfhrp3 gene deletions among symptomatic Plasmodium falciparum malaria patients in Central Vietnam. Malar J 2022; 21:371. [PMID: 36471315 PMCID: PMC9724378 DOI: 10.1186/s12936-022-04399-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Malaria rapid diagnostic tests (RDTs) remain the main point-of-care tests for diagnosis of symptomatic Plasmodium falciparum malaria in endemic areas. However, parasites with gene deletions in the most common RDT target, histidine rich protein 2 (pfhrp2/HRP2), can produce false-negative RDT results leading to inadequate case management. The objective of this study was to determine the prevalence of hrp2/3 deletions causing false-negative RDT results in Vietnam (Gia Lai and Dak Lak provinces). METHODS Individuals presenting with malaria symptoms at health facilities were screened for P. falciparum infection using light microscopy and HRP2-RDT (SD Bioline Malaria Antigen Pf/Pv RDT, Abbott). Microscopically confirmed P. falciparum infections were analysed for parasite species by 18S rRNA qPCR, and pfhrp2 and pfhrp3 exon2 deletions were investigated by nested PCR. pfhrp2 amplicons were sequenced by the Sanger method and HRP2 plasma levels were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS The prevalence of false-negative RDT results among symptomatic cases was 5.6% (15/270). No pfhrp2 and pfhrp3 deletions were identified. False-negative RDT results were associated with lower parasite density (p = 0.005) and lower HRP2 plasma concentrations (p < 0.001), as compared to positive RDT. CONCLUSIONS The absence of hrp2/3 deletions detected in this survey suggests that HRP2-based malaria RDTs remain effective for the diagnosis of symptomatic P. falciparum malaria in Central Vietnam.
Collapse
Affiliation(s)
- Ngo Duc Thang
- grid.452658.8National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | | | - Nguyen Thi Huong Binh
- grid.452658.8National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Dang Viet Dung
- grid.452658.8National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Nguyen Thi Hong Ngoc
- grid.452658.8National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | | | - Tran Thanh Duong
- grid.452658.8National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | | | | |
Collapse
|
15
|
Valdivia HO, Anderson K, Smith D, Pasay C, Salas CJ, Braga G, Lucas CM, Lizewski SE, Joya CA, Kooken JM, Sanchez JF, Cheng Q. Spatiotemporal dynamics of Plasmodium falciparum histidine-rich protein 2 and 3 deletions in Peru. Sci Rep 2022; 12:19845. [PMID: 36400806 PMCID: PMC9674673 DOI: 10.1038/s41598-022-23881-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Peru was the first country where pfhrp2 and pfhrp3 gene deletions were detected despite the fact that rapid diagnostics tests are not commonly used for confirmatory malaria diagnosis. This context provides a unique scenario to study the dynamics of pfhrp2 and pfhrp3 gene deletions without apparent RDTs selection pressure. In this study we characterized the presence of pfhrp2 and pfhrp3 genes on 325 P. falciparum samples collected in Iquitos and surrounding communities between 2011 and 2018 in order to understand the dynamics of gene deletion prevalence, potential associations with clinical symptomatology and parasite genetic background. P. falciparum presence was confirmed by microscopy and PCR of 18 s rRNA, pfmsp1 and pfmsp2. Gene deletions were assessed by amplification of exon1 and exon2 of pfhrp2 and pfhrp3 using gene specific PCRs. Confirmation of absence of HRP2 expression was assessed by ELISA of HRP2 and pLDH. Genotyping of 254 samples were performed using a panel of seven neutral microsatellite markers. Overall, pfhrp2 and pfhrp3 dual gene deletions were detected in 67% (217/324) parasite samples. Concordance between pfhrp2 deletion and negligible HRP2 protein levels was observed (Cohen's Kappa = 0.842). Prevalence of gene deletions was heterogeneous across study sites (adjusted p < 0.005) but there is an overall tendency towards increase through time in the prevalence of dual pfhrp2/3-deleted parasites between 2011 (14.3%) and 2016 (88.39%) stabilizing around 65% in 2018. Dual deletions increase was associated with dominance of a single new parasite haplotype (H8) which rapidly spread to all study sites during the 8 study years. Interestingly, participants infected with dual pfhrp2/3-deleted parasites had a significantly lower parasitemias than those without gene deletions in this cohort. Our study showed the increase of pfhrp2/3 deletions in the absence of RDTs pressure and a clonal replacement of circulating lines in the Peruvian Amazon basin. These results suggest that other factors linked to the pfhrp2/3 deletion provide a selective advantage over non-deleted strains and highlight the need for additional studies and continuing surveillance.
Collapse
Affiliation(s)
- Hugo O. Valdivia
- grid.415929.20000 0004 0486 6610U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Karen Anderson
- Australia Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia ,grid.1049.c0000 0001 2294 1395QIMR-Berghofer Medical Research Institute, Brisbane, Australia
| | - David Smith
- Australia Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia ,grid.1049.c0000 0001 2294 1395QIMR-Berghofer Medical Research Institute, Brisbane, Australia
| | - Cielo Pasay
- Australia Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia ,grid.1049.c0000 0001 2294 1395QIMR-Berghofer Medical Research Institute, Brisbane, Australia
| | - Carola J. Salas
- grid.415929.20000 0004 0486 6610U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Greys Braga
- grid.415929.20000 0004 0486 6610U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Carmen M. Lucas
- grid.415929.20000 0004 0486 6610U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Stephen E. Lizewski
- grid.415929.20000 0004 0486 6610U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Christie A. Joya
- grid.415929.20000 0004 0486 6610U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Jennifer M. Kooken
- Australia Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia ,grid.507680.c0000 0001 2230 3166Walter Reed Army Institute for Research, Silver Spring, USA
| | - Juan F. Sanchez
- grid.415929.20000 0004 0486 6610U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Qin Cheng
- Australia Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia ,grid.1049.c0000 0001 2294 1395QIMR-Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
16
|
Beshir KB, Parr JB, Cunningham J, Cheng Q, Rogier E. Screening strategies and laboratory assays to support Plasmodium falciparum histidine-rich protein deletion surveillance: where we are and what is needed. Malar J 2022; 21:201. [PMID: 35751070 PMCID: PMC9233320 DOI: 10.1186/s12936-022-04226-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/17/2022] [Indexed: 11/10/2022] Open
Abstract
Rapid diagnostic tests (RDTs) detecting Plasmodium falciparum histidine-rich protein 2 (HRP2) have been an important tool for malaria diagnosis, especially in resource-limited settings lacking quality microscopy. Plasmodium falciparum parasites with deletion of the pfhrp2 gene encoding this antigen have now been identified in dozens of countries across Asia, Africa, and South America, with new reports revealing a high prevalence of deletions in some selected regions. To determine whether HRP2-based RDTs are appropriate for continued use in a locality, focused surveys and/or surveillance activities of the endemic P. falciparum population are needed. Various survey and laboratory methods have been used to determine parasite HRP2 phenotype and pfhrp2 genotype, and the data collected by these different methods need to be interpreted in the appropriate context of survey and assay utilized. Expression of the HRP2 antigen can be evaluated using point-of-care RDTs or laboratory-based immunoassays, but confirmation of a deletion (or mutation) of pfhrp2 requires more intensive laboratory molecular assays, and new tools and strategies for rigorous but practical data collection are particularly needed for large surveys. Because malaria diagnostic strategies are typically developed at the national level, nationally representative surveys and/or surveillance that encompass broad geographical areas and large populations may be required. Here is discussed contemporary assays for the phenotypic and genotypic evaluation of P. falciparum HRP2 status, consider their strengths and weaknesses, and highlight key concepts relevant to timely and resource-conscious workflows required for efficient diagnostic policy decision making.
Collapse
Affiliation(s)
- Khalid B Beshir
- Faculty of Infectious Diseases, London School of Hygiene and Tropical Diseases, Keppel Street, London, WC1E 7HT, UK
| | - Jonathan B Parr
- Division of Infectious Diseases and Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jane Cunningham
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Qin Cheng
- Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Eric Rogier
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30029, USA.
| |
Collapse
|