1
|
Almutlaq J, Liu Y, Mir WJ, Sabatini RP, Englund D, Bakr OM, Sargent EH. Engineering colloidal semiconductor nanocrystals for quantum information processing. NATURE NANOTECHNOLOGY 2024; 19:1091-1100. [PMID: 38514820 DOI: 10.1038/s41565-024-01606-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/10/2024] [Indexed: 03/23/2024]
Abstract
Quantum information processing-which relies on spin defects or single-photon emission-has shown quantum advantage in proof-of-principle experiments including microscopic imaging of electromagnetic fields, strain and temperature in applications ranging from battery research to neuroscience. However, critical gaps remain on the path to wider applications, including a need for improved functionalization, deterministic placement, size homogeneity and greater programmability of multifunctional properties. Colloidal semiconductor nanocrystals can close these gaps in numerous application areas, following years of rapid advances in synthesis and functionalization. In this Review, we specifically focus on three key topics: optical interfaces to long-lived spin states, deterministic placement and delivery for sensing beyond the standard quantum limit, and extensions to multifunctional colloidal quantum circuits.
Collapse
Affiliation(s)
- Jawaher Almutlaq
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuan Liu
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| | - Wasim J Mir
- KAUST Catalysis Center, Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Randy P Sabatini
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Dirk Englund
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Osman M Bakr
- KAUST Catalysis Center, Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
2
|
Chong WH, Chan DJC, Liu CZ, Lim J. Navigating the microenvironment with flip and turn under quadrupole magnetophoretic steering control: Nanosphere- and nanorod-coated microbead. Electrophoresis 2024; 45:357-368. [PMID: 38044267 DOI: 10.1002/elps.202300042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/07/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
The spatiotemporal accuracy of microscale magnetophoresis has improved significantly over the course of several decades of development. However, most of the studies so far were using magnetic microbead composed of nanosphere particle for magnetophoretic actuation purpose. Here, we developed an in-house method for magnetic sample analysis called quadrupole magnetic steering control (QMSC). QMSC was used to study the magnetophoretic behavior of polystyrene microbeads decorated with iron oxide nanospheres-coated polystyrene microbeads (IONSs-PS) and iron oxide nanorods-coated polystyrene microbeads (IONRs-PS) under the influence of a quadrupole low field gradient. During a 4-s QMSC experiment, the IONSs-PS and IONRs-PS were navigated to perform 180° flip and 90° turn formations, and their kinematic results (2 s before and 2 s after the flip/turn) were measured and compared. The results showed that the IONRs-PS suffered from significant kinematic disproportion, translating a highly uneven amount of kinetic energy from the same magnitude of magnetic control. Combining the kinematic analysis, transmission electron microscopy micrographs, and vibrating sample magnetometry measurements, it was found that the IONRs-PS experienced higher fluid drag force and had lower consistency than the IONSs-PS due to its extensive open fractal nanorod structure on the bead surface and uneven magnetization, which was attributed to its ferrimagnetic nature.
Collapse
Affiliation(s)
- Wai Hong Chong
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Chun-Zhao Liu
- State Key Laboratory of Biochemical Engineering & Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, Affiliated Qingdao Central Hospital, College of Materials Science and Engineering, Qingdao University, Qingdao, P. R. China
| | - JitKang Lim
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| |
Collapse
|
3
|
Huhnstock R, Paetzold L, Merkel M, Kuświk P, Ehresmann A. Combined Funnel, Concentrator, and Particle Valve Functional Element for Magnetophoretic Bead Transport Based on Engineered Magnetic Domain Patterns. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305675. [PMID: 37888794 DOI: 10.1002/smll.202305675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Controlled actuation of superparamagnetic beads (SPBs) within a microfluidic environment using tailored dynamic magnetic field landscapes (MFLs) is a potent approach for the realization of point-of-care diagnostics within Lab-on-a-chip (LOC) systems. Making use of an engineered magnetic domain pattern as the MFL source, a functional LOC-element with combined magnetophoretic "funnel", concentrator, and "valve" functions for micron-sized SPBs is presented. A parallel-stripe domain pattern design with periodically decreasing/increasing stripe lengths is fabricated in a topographically flat continuous exchange biased (EB) thin film system by ion bombardment induced magnetic patterning (IBMP). It is demonstrated that, upon application of external magnetic field pulses, a fully reversible concentration of SPBs at the domain pattern's focal point occurs. In addition, it is shown that this functionality may be used as an SPB "funnel", allowing only a maximum number of particles to pass through the focal point. Adjusting the pulse time length, the focal point can be clogged up for incoming SPBs, resembling an on/off switchable particle "valve". The observations are supported by quantitative theoretical force considerations.
Collapse
Affiliation(s)
- Rico Huhnstock
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Str. 40, D-34132, Kassel, Germany
- Artificial Intelligence Methods for Experiment Design (AIM-ED), Joint Lab of Helmholtzzentrum für Materialien und Energie, Berlin (HZB) and University of Kassel, Hahn Meitner-Platz 1, D-14109, Berlin, Germany
| | - Lukas Paetzold
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Str. 40, D-34132, Kassel, Germany
- Artificial Intelligence Methods for Experiment Design (AIM-ED), Joint Lab of Helmholtzzentrum für Materialien und Energie, Berlin (HZB) and University of Kassel, Hahn Meitner-Platz 1, D-14109, Berlin, Germany
| | - Maximilian Merkel
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Str. 40, D-34132, Kassel, Germany
- Artificial Intelligence Methods for Experiment Design (AIM-ED), Joint Lab of Helmholtzzentrum für Materialien und Energie, Berlin (HZB) and University of Kassel, Hahn Meitner-Platz 1, D-14109, Berlin, Germany
| | - Piotr Kuświk
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, Poznań, 60-179, Poland
| | - Arno Ehresmann
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Str. 40, D-34132, Kassel, Germany
- Artificial Intelligence Methods for Experiment Design (AIM-ED), Joint Lab of Helmholtzzentrum für Materialien und Energie, Berlin (HZB) and University of Kassel, Hahn Meitner-Platz 1, D-14109, Berlin, Germany
| |
Collapse
|
4
|
da Mota AF, Sadafi MM, Mosallaei H. Asymmetric imaging through engineered Janus particle obscurants using a Monte Carlo approach for highly asymmetric scattering media. Sci Rep 2024; 14:3850. [PMID: 38360866 PMCID: PMC10869813 DOI: 10.1038/s41598-024-54035-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
The advancement of imaging systems has significantly ameliorated various technologies, including Intelligence Surveillance Reconnaissance Systems and Guidance Systems, by enhancing target detection, recognition, identification, positioning, and tracking capabilities. These systems can be countered by deploying obscurants like smoke, dust, or fog to hinder visibility and communication. However, these counter-systems affect the visibility of both sides of the cloud. In this sense, this manuscript introduces a new concept of a smoke cloud composed of engineered Janus particles to conceal the target image on one side while providing clear vision from the other. The proposed method exploits the unique scattering properties of Janus particles, which selectively interact with photons from different directions to open up the possibility of asymmetric imaging. This approach employs a model that combines a genetic algorithm with Discrete Dipole Approximation to optimize the Janus particles' geometrical parameters for the desired scattering properties. Moreover, we propose a Monte Carlo-based approach to calculate the image formed as photons pass through the cloud, considering highly asymmetric particles, such as Janus particles. The effectiveness of the cloud in disguising a target is evaluated by calculating the Probability of Detection (PD) and the Probability of Identification (PID) based on the constructed image. The optimized Janus particles can produce a cloud where it is possible to identify a target more than 50% of the time from one side (PID > 50%) while the target is not detected more than 50% of the time from the other side (PD < 50%). The results demonstrate that the Janus particle-engineered smoke enables asymmetric imaging with simultaneous concealment from one side and clear visualization from the other. This research opens intriguing possibilities for modern obscurant design and imaging systems through highly asymmetric and inhomogeneous particles besides target detection and identification capabilities in challenging environments.
Collapse
Affiliation(s)
- Achiles F da Mota
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
- Department of Electrical Engineering, University of Brasília (UnB), Brasília, 70910-900, Brazil
| | - Mohammad Mojtaba Sadafi
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Hossein Mosallaei
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Manna G, Zinn T, Sharpnack L, Narayanan T. Orientational ordering and assembly of silica-nickel Janus particles in a magnetic field. IUCRJ 2024; 11:109-119. [PMID: 38099813 PMCID: PMC10833383 DOI: 10.1107/s205225252301000x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/16/2023] [Indexed: 01/10/2024]
Abstract
The orientation ordering and assembly behavior of silica-nickel Janus particles in a static external magnetic field were probed by ultra small-angle X-ray scattering (USAXS). Even in a weak applied field, the net magnetic moments of the individual particles aligned in the direction of the field, as indicated by the anisotropy in the recorded USAXS patterns. X-ray photon correlation spectroscopy (XPCS) measurements on these suspensions revealed that the corresponding particle dynamics are primarily Brownian diffusion [Zinn, Sharpnack & Narayanan (2023). Soft Matter, 19, 2311-2318]. At higher fields, the magnetic forces led to chain-like configurations of particles, as indicated by an additional feature in the USAXS pattern. A theoretical framework is provided for the quantitative interpretation of the observed anisotropic scattering diagrams and the corresponding degree of orientation. No anisotropy was detected when the magnetic field was applied along the beam direction, which is also replicated by the model. The method presented here could be useful for the interpretation of oriented scattering patterns from a wide variety of particulate systems. The combination of USAXS and XPCS is a powerful approach for investigating asymmetric colloidal particles in external fields.
Collapse
Affiliation(s)
| | - Thomas Zinn
- ESRF – The European Synchrotron, 38043 Grenoble, France
| | | | | |
Collapse
|
6
|
Zinn T, Sharpnack L, Narayanan T. Dynamics of magnetic Janus colloids studied by ultra small-angle X-ray photon correlation spectroscopy. SOFT MATTER 2023; 19:2311-2318. [PMID: 36415911 DOI: 10.1039/d2sm01334g] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The orientation behavior and the translational dynamics of spherical magnetic silica-nickel Janus colloids in an external magnetic field have been studied by small-angle X-ray scattering and X-ray photon correlation spectroscopy at ultra small-angles. For weak applied fields and at low volume fractions, the particle dynamics is dominated by Brownian motion even though the net magnetic moments of the individual particles are aligned in the direction of the field as indicated by the anisotropy in the small-angle scattering patterns. For higher fields the magnetic forces result in more complex structural changes with nickel caps of Janus particles pointing predominantly along the applied magnetic field. The alignment ultimately leads to chain-like configurations and the intensity-intensity autocorrelation functions, g2(q,t), show a second slower decay which becomes more pronounced at higher volume fractions. A direction dependent analysis of g2(q,t) revealed a faster than exponential decay perpendicular to the field which is related to the sedimentation of magnetically ordered domains. The corresponding velocity fluctuations could be decoupled from the diffusion of particles by decomposing g2(q,t) into advective and diffusive contributions. Finally, the particle dynamics becomes anisotropic at higher volume fractions and strong magnetic fields. The derived translational diffusion coefficients indicate slower particle dynamics perpendicular to the field as compared to the parallel direction.
Collapse
Affiliation(s)
- Thomas Zinn
- The European Synchrotron, 38043 Grenoble, France.
| | | | | |
Collapse
|
7
|
Huhnstock R, Reginka M, Sonntag C, Merkel M, Dingel K, Sick B, Vogel M, Ehresmann A. Three-dimensional close-to-substrate trajectories of magnetic microparticles in dynamically changing magnetic field landscapes. Sci Rep 2022; 12:20890. [PMID: 36463293 PMCID: PMC9719552 DOI: 10.1038/s41598-022-25391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
The transport of magnetic particles (MPs) by dynamic magnetic field landscapes (MFLs) using magnetically patterned substrates is promising for the development of Lab-on-a-chip (LOC) systems. The inherent close-to-substrate MP motion is sensitive to changing particle-substrate interactions. Thus, the detection of a modified particle-substrate separation distance caused by surface binding of an analyte is expected to be a promising probe in analytics and diagnostics. Here, we present an essential prerequisite for such an application, namely the label-free quantitative experimental determination of the three-dimensional trajectories of superparamagnetic particles (SPPs) transported by a dynamically changing MFL. The evaluation of defocused SPP images from optical bright-field microscopy revealed a "hopping"-like motion of the magnetic particles, previously predicted by theory, additionally allowing a quantification of maximum jump heights. As our findings pave the way towards precise determination of particle-substrate separations, they bear deep implications for future LOC detection schemes using only optical microscopy.
Collapse
Affiliation(s)
- Rico Huhnstock
- grid.5155.40000 0001 1089 1036Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany ,grid.5155.40000 0001 1089 1036Artificial Intelligence Methods for Experiment Design (AIM-ED), Joint Lab of Helmholtzzentrum für Materialien und Energie, Berlin (HZB) and University of Kassel, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Meike Reginka
- grid.5155.40000 0001 1089 1036Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Claudius Sonntag
- grid.5155.40000 0001 1089 1036Intelligent Embedded Systems, University of Kassel, Wilhelmshöher Allee 71-73, 34121 Kassel, Germany
| | - Maximilian Merkel
- grid.5155.40000 0001 1089 1036Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany ,grid.5155.40000 0001 1089 1036Artificial Intelligence Methods for Experiment Design (AIM-ED), Joint Lab of Helmholtzzentrum für Materialien und Energie, Berlin (HZB) and University of Kassel, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Kristina Dingel
- grid.5155.40000 0001 1089 1036Artificial Intelligence Methods for Experiment Design (AIM-ED), Joint Lab of Helmholtzzentrum für Materialien und Energie, Berlin (HZB) and University of Kassel, Hahn-Meitner-Platz 1, 14109 Berlin, Germany ,grid.5155.40000 0001 1089 1036Intelligent Embedded Systems, University of Kassel, Wilhelmshöher Allee 71-73, 34121 Kassel, Germany
| | - Bernhard Sick
- grid.5155.40000 0001 1089 1036Artificial Intelligence Methods for Experiment Design (AIM-ED), Joint Lab of Helmholtzzentrum für Materialien und Energie, Berlin (HZB) and University of Kassel, Hahn-Meitner-Platz 1, 14109 Berlin, Germany ,grid.5155.40000 0001 1089 1036Intelligent Embedded Systems, University of Kassel, Wilhelmshöher Allee 71-73, 34121 Kassel, Germany
| | - Michael Vogel
- grid.5155.40000 0001 1089 1036Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany ,grid.5155.40000 0001 1089 1036Artificial Intelligence Methods for Experiment Design (AIM-ED), Joint Lab of Helmholtzzentrum für Materialien und Energie, Berlin (HZB) and University of Kassel, Hahn-Meitner-Platz 1, 14109 Berlin, Germany ,grid.9764.c0000 0001 2153 9986Present Address: Institute for Materials Science, Kiel University, Kaiserstraße 2, 24143 Kiel, Germany
| | - Arno Ehresmann
- grid.5155.40000 0001 1089 1036Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany ,grid.5155.40000 0001 1089 1036Artificial Intelligence Methods for Experiment Design (AIM-ED), Joint Lab of Helmholtzzentrum für Materialien und Energie, Berlin (HZB) and University of Kassel, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| |
Collapse
|