1
|
Watson O, Hayta S. Precision breeding in agriculture and food systems in the United Kingdom. Transgenic Res 2024:10.1007/s11248-024-00397-7. [PMID: 39105945 DOI: 10.1007/s11248-024-00397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/10/2024] [Indexed: 08/07/2024]
Abstract
In recent years there have been major advances in precision breeding technologies, such as gene editing, that offer promising solutions to revolutionise global crop production and tackle the pressing issues in food systems. The UK has leading expertise in genomics, and research is already taking place to develop crops with improved resilience to climate change, resistance to disease and less reliance on chemical inputs. In March 2023, the Genetic Technology (Precision Breeding) Act received Royal Assent and passed into UK law. It provides a framework from which to build more proportionate regulations for plants and animals made using genetic technologies which contain genetic changes that could also arise through traditional breeding-known as 'Precision Bred Organisms'. New legislation and the utilization of UK world-leading research could help to enhance the efficiency of breeding systems and enable the development of plants and animals that are healthier, better for the environment and more resilient to climate change.
Collapse
Affiliation(s)
- Oli Watson
- Capabilities in Academic Policy Engagement, London, UK
| | - Sadiye Hayta
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK.
| |
Collapse
|
2
|
Zhuravleva АА, Silkova ОG. Disomic chromosome 3R(3B) substitution causes a complex of meiotic abnormalities in bread wheat Triticum aestivum L. Vavilovskii Zhurnal Genet Selektsii 2024; 28:365-376. [PMID: 39027125 PMCID: PMC11253021 DOI: 10.18699/vjgb-24-42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 07/20/2024] Open
Abstract
Triticum aestivum L. lines introgressed with alien chromosomes create a new genetic background that changes the gene expression of both wheat and donor chromosomes. The genes involved in meiosis regulation are localized on wheat chromosome 3B. The purpose of the present study was to investigate the effect of wheat chromosome 3B substituted with homoeologous rye chromosome 3R on meiosis regulation in disomically substituted wheat line 3R(3B). Employing immunostaining with antibodies against microtubule protein, α-tubulin, and the centromere-specific histone (CENH3), as well as FISH, we analyzed microtubule cytoskeleton dynamics and wheat and rye 3R chromosomes behavior in 3R(3B) (Triticum aestivum L. variety Saratovskaya 29 × Secale cereale L. variety Onokhoiskaya) meiosis. The results revealed a set of abnormalities in the microtubule dynamics and chromosome behavior in both first and second divisions. A feature of metaphase I in 3R(3B) was a decrease in the chiasmata number compared with variety Saratovskaya 29, 34.9 ± 0.62 and 41.92 ± 0.38, respectively. Rye homologs 3R in 13.18 % of meiocytes did not form bivalents. Chromosomes were characterized by varying degrees of compaction; 53.33 ± 14.62 cells lacked a metaphase plate. Disturbances were found in microtubule nucleation at the bivalent kinetochores and in their convergence at the spindle division poles. An important feature of meiosis was the asynchronous chromosome behavior in the second division and dyads at the telophase II in 8-13 % of meiocytes, depending on the anther studied. Considering the 3R(3B) meiotic phenotype, chromosome 3B contains the genes involved in the regulation of meiotic division, and substituting 3B3B chromosomes with rye 3R3R does not compensate for their absence.
Collapse
Affiliation(s)
- А А Zhuravleva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - О G Silkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
3
|
Chéron F, Petiot V, Lambing C, White C, Serra H. Incorrect recombination partner associations contribute to meiotic instability of neo-allopolyploid Arabidopsis suecica. THE NEW PHYTOLOGIST 2024; 241:2025-2038. [PMID: 38158491 DOI: 10.1111/nph.19487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Combining two or more related homoeologous genomes in a single nucleus, newly formed allopolyploids must rapidly adapt meiosis to restore balanced chromosome segregation, production of euploid gametes and fertility. The poor fertility of such neo-allopolyploids thus strongly selects for the limitation or avoidance of genetic crossover formation between homoeologous chromosomes. In this study, we have reproduced the interspecific hybridization between Arabidopsis thaliana and Arabidopsis arenosa leading to the allotetraploid Arabidopsis suecica and have characterized the first allopolyploid meioses. First-generation neo-allopolyploid siblings vary considerably in fertility, meiotic behavior and levels of homoeologous recombination. We show that centromere dynamics at early meiosis is altered in synthetic neo-allopolyploids compared with evolved A. suecica, with a significant increase in homoeologous centromere interactions at zygotene. At metaphase I, the presence of multivalents involving homoeologous chromosomes confirms that homoeologous recombination occurs in the first-generation synthetic allopolyploid plants and this is associated with a significant reduction in homologous recombination, compared to evolved A. suecica. Together, these data strongly suggest that the fidelity of recombination partner choice, likely during the DNA invasion step, is strongly impaired during the first meiosis of neo-allopolyploids and requires subsequent adaptation.
Collapse
Affiliation(s)
- Floriane Chéron
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Valentine Petiot
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | | | - Charles White
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Heïdi Serra
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| |
Collapse
|
4
|
Mu W, Li K, Yang Y, Breiman A, Yang J, Wu Y, Zhu M, Wang S, Catalan P, Nevo E, Liu J. Subgenomic Stability of Progenitor Genomes During Repeated Allotetraploid Origins of the Same Grass Brachypodium hybridum. Mol Biol Evol 2023; 40:msad259. [PMID: 38000891 PMCID: PMC10708906 DOI: 10.1093/molbev/msad259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Both homeologous exchanges and homeologous expression bias are generally found in most allopolyploid species. Whether homeologous exchanges and homeologous expression bias differ between repeated allopolyploid speciation events from the same progenitor species remains unknown. Here, we detected a third independent and recent allotetraploid origin for the model grass Brachypodium hybridum. Our homeologous exchange with replacement analyses indicated the absence of significant homeologous exchanges in any of the three types of wild allotetraploids, supporting the integrity of their progenitor subgenomes and the immediate creation of the amphidiploids. Further homeologous expression bias tests did not uncover significant subgenomic dominance in different tissues and conditions of the allotetraploids. This suggests a balanced expression of homeologs under similar or dissimilar ecological conditions in their natural habitats. We observed that the density of transposons around genes was not associated with the initial establishment of subgenome dominance; rather, this feature is inherited from the progenitor genome. We found that drought response genes were highly induced in the two subgenomes, likely contributing to the local adaptation of this species to arid habitats in the third allotetraploid event. These findings provide evidence for the consistency of subgenomic stability of parental genomes across multiple allopolyploidization events that led to the same species at different periods. Our study emphasizes the importance of selecting closely related progenitor species genomes to accurately assess homeologous exchange with replacement in allopolyploids, thereby avoiding the detection of false homeologous exchanges when using less related progenitor species genomes.
Collapse
Affiliation(s)
- Wenjie Mu
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kexin Li
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yongzhi Yang
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Adina Breiman
- Department of Evolutionary and Environmental Biology, University of Tel-Aviv, Tel-Aviv 6997801, Israel
| | - Jiao Yang
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Ying Wu
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Mingjia Zhu
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Shuai Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pilar Catalan
- Escuela Politecnica Superior de Huesca, Universidad de Zaragoza, Huesca 22071, Spain
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Jianquan Liu
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Katche EI, Schierholt A, Schiessl SV, He F, Lv Z, Batley J, Becker HC, Mason AS. Genetic factors inherited from both diploid parents interact to affect genome stability and fertility in resynthesized allotetraploid Brassica napus. G3 (BETHESDA, MD.) 2023; 13:jkad136. [PMID: 37313757 PMCID: PMC10411605 DOI: 10.1093/g3journal/jkad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
Established allopolyploids are known to be genomically stable and fertile. However, in contrast, most newly resynthesized allopolyploids are infertile and meiotically unstable. Identifying the genetic factors responsible for genome stability in newly formed allopolyploid is key to understanding how 2 genomes come together to form a species. One hypothesis is that established allopolyploids may have inherited specific alleles from their diploid progenitors which conferred meiotic stability. Resynthesized Brassica napus lines are often unstable and infertile, unlike B. napus cultivars. We tested this hypothesis by characterizing 41 resynthesized B. napus lines produced by crosses between 8 Brassica rapa and 8 Brassica oleracea lines for copy number variation resulting from nonhomologous recombination events and fertility. We resequenced 8 B. rapa and 5 B. oleracea parent accessions and analyzed 19 resynthesized lines for allelic variation in a list of meiosis gene homologs. SNP genotyping was performed using the Illumina Infinium Brassica 60K array for 3 individuals per line. Self-pollinated seed set and genome stability (number of copy number variants) were significantly affected by the interaction between both B. rapa and B. oleracea parental genotypes. We identified 13 putative meiosis gene candidates which were significantly associated with frequency of copy number variants and which contained putatively harmful mutations in meiosis gene haplotypes for further investigation. Our results support the hypothesis that allelic variants inherited from parental genotypes affect genome stability and fertility in resynthesized rapeseed.
Collapse
Affiliation(s)
- Elizabeth Ihien Katche
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
| | - Antje Schierholt
- Department of Crop Sciences, Division of Plant Breeding Methodology, Georg-August University Göttingen, Göttingen 37073, Germany
| | - Sarah-Veronica Schiessl
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main D-60325, Germany
| | - Fei He
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
| | - Zhenling Lv
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Heiko C Becker
- Department of Crop Sciences, Division of Plant Breeding Methodology, Georg-August University Göttingen, Göttingen 37073, Germany
| | - Annaliese S Mason
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
| |
Collapse
|
6
|
Li T, Kong C, Deng P, Li C, Zhao G, Li H, Gao L, Cui D, Jia J. Intra-Varietal Diversity and Its Contribution to Wheat Evolution, Domestication, and Improvement in Wheat. Int J Mol Sci 2023; 24:10217. [PMID: 37373363 DOI: 10.3390/ijms241210217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Crop genetic diversity is essential for adaptation and productivity in agriculture. A previous study revealed that poor allele diversity in wheat commercial cultivars is a major barrier to its further improvement. Homologs within a variety, including paralogs and orthologs in polyploid, account for a large part of the total genes of a species. Homolog diversity, intra-varietal diversity (IVD), and their functions have not been elucidated. Common wheat, an important food crop, is a hexaploid species with three subgenomes. This study analyzed the sequence, expression, and functional diversity of homologous genes in common wheat based on high-quality reference genomes of two representative varieties, a modern commercial variety Aikang 58 (AK58) and a landrace Chinese Spring (CS). A total of 85,908 homologous genes, accounting for 71.9% of all wheat genes, including inparalogs (IPs), outparalogs (OPs), and single-copy orthologs (SORs), were identified, suggesting that homologs are an important part of the wheat genome. The levels of sequence, expression, and functional variation in OPs and SORs were higher than that of IPs, which indicates that polyploids have more homologous diversity than diploids. Expansion genes, a specific type of OPs, made a great contribution to crop evolution and adaptation and endowed crop with special characteristics. Almost all agronomically important genes were from OPs and SORs, demonstrating their essential functions for polyploid evolution, domestication, and improvement. Our results suggest that IVD analysis is a novel approach for evaluating intra-genomic variations, and exploitation of IVD might be a new road for plant breeding, especially for polyploid crops, such as wheat.
Collapse
Affiliation(s)
- Tianbao Li
- The College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuizheng Kong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Guangyao Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongjie Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lifeng Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dangqun Cui
- The College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, China
| | - Jizeng Jia
- The College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Deb SK, Edger PP, Pires JC, McKain MR. Patterns, mechanisms, and consequences of homoeologous exchange in allopolyploid angiosperms: a genomic and epigenomic perspective. THE NEW PHYTOLOGIST 2023; 238:2284-2304. [PMID: 37010081 DOI: 10.1111/nph.18927] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/16/2023] [Indexed: 05/19/2023]
Abstract
Allopolyploids result from hybridization between different evolutionary lineages coupled with genome doubling. Homoeologous chromosomes (chromosomes with common shared ancestry) may undergo recombination immediately after allopolyploid formation and continue over successive generations. The outcome of this meiotic pairing behavior is dynamic and complex. Homoeologous exchanges (HEs) may lead to the formation of unbalanced gametes, reduced fertility, and selective disadvantage. By contrast, HEs could act as sources of novel evolutionary substrates, shifting the relative dosage of parental gene copies, generating novel phenotypic diversity, and helping the establishment of neo-allopolyploids. However, HE patterns vary among lineages, across generations, and even within individual genomes and chromosomes. The causes and consequences of this variation are not fully understood, though interest in this evolutionary phenomenon has increased in the last decade. Recent technological advances show promise in uncovering the mechanistic basis of HEs. Here, we describe recent observations of the common patterns among allopolyploid angiosperm lineages, underlying genomic and epigenomic features, and consequences of HEs. We identify critical research gaps and discuss future directions with far-reaching implications in understanding allopolyploid evolution and applying them to the development of important phenotypic traits of polyploid crops.
Collapse
Affiliation(s)
- Sontosh K Deb
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48823, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, 48823, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Michael R McKain
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| |
Collapse
|
8
|
Draeger TN, Rey MD, Hayta S, Smedley M, Alabdullah AK, Moore G, Martín AC. ZIP4 is required for normal progression of synapsis and for over 95% of crossovers in wheat meiosis. FRONTIERS IN PLANT SCIENCE 2023; 14:1189998. [PMID: 37324713 PMCID: PMC10266424 DOI: 10.3389/fpls.2023.1189998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023]
Abstract
Tetraploid (AABB) and hexaploid (AABBDD) wheat have multiple sets of similar chromosomes, with successful meiosis and preservation of fertility relying on synapsis and crossover (CO) formation only taking place between homologous chromosomes. In hexaploid wheat, the major meiotic gene TaZIP4-B2 (Ph1) on chromosome 5B, promotes CO formation between homologous chromosomes, whilst suppressing COs between homeologous (related) chromosomes. In other species, ZIP4 mutations eliminate approximately 85% of COs, consistent with loss of the class I CO pathway. Tetraploid wheat has three ZIP4 copies: TtZIP4-A1 on chromosome 3A, TtZIP4-B1 on 3B and TtZIP4-B2 on 5B. Here, we have developed single, double and triple zip4 TILLING mutants and a CRISPR Ttzip4-B2 mutant, to determine the effect of ZIP4 genes on synapsis and CO formation in the tetraploid wheat cultivar 'Kronos'. We show that disruption of two ZIP4 gene copies in Ttzip4-A1B1 double mutants, results in a 76-78% reduction in COs when compared to wild-type plants. Moreover, when all three copies are disrupted in Ttzip4-A1B1B2 triple mutants, COs are reduced by over 95%, suggesting that the TtZIP4-B2 copy may also affect class II COs. If this is the case, the class I and class II CO pathways may be interlinked in wheat. When ZIP4 duplicated and diverged from chromosome 3B on wheat polyploidization, the new 5B copy, TaZIP4-B2, could have acquired an additional function to stabilize both CO pathways. In tetraploid plants deficient in all three ZIP4 copies, synapsis is delayed and does not complete, consistent with our previous studies in hexaploid wheat, when a similar delay in synapsis was observed in a 59.3 Mb deletion mutant, ph1b, encompassing the TaZIP4-B2 gene on chromosome 5B. These findings confirm the requirement of ZIP4-B2 for efficient synapsis, and suggest that TtZIP4 genes have a stronger effect on synapsis than previously described in Arabidopsis and rice. Thus, ZIP4-B2 in wheat accounts for the two major phenotypes reported for Ph1, promotion of homologous synapsis and suppression of homeologous COs.
Collapse
Affiliation(s)
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Sadiye Hayta
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Mark Smedley
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Graham Moore
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Azahara C. Martín
- Department of Plant Genetic Improvement, Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| |
Collapse
|
9
|
Bomblies K. Learning to tango with four (or more): the molecular basis of adaptation to polyploid meiosis. PLANT REPRODUCTION 2023; 36:107-124. [PMID: 36149479 PMCID: PMC9957869 DOI: 10.1007/s00497-022-00448-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/10/2022] [Indexed: 05/29/2023]
Abstract
Polyploidy, which arises from genome duplication, has occurred throughout the history of eukaryotes, though it is especially common in plants. The resulting increased size, heterozygosity, and complexity of the genome can be an evolutionary opportunity, facilitating diversification, adaptation and the evolution of functional novelty. On the other hand, when they first arise, polyploids face a number of challenges, one of the biggest being the meiotic pairing, recombination and segregation of the suddenly more than two copies of each chromosome, which can limit their fertility. Both for developing polyploidy as a crop improvement tool (which holds great promise due to the high and lasting multi-stress resilience of polyploids), as well as for our basic understanding of meiosis and plant evolution, we need to know both the specific nature of the challenges polyploids face, as well as how they can be overcome in evolution. In recent years there has been a dramatic uptick in our understanding of the molecular basis of polyploid adaptations to meiotic challenges, and that is the focus of this review.
Collapse
Affiliation(s)
- Kirsten Bomblies
- Plant Evolutionary Genetics, Institute of Plant Molecular Biology, Department of Biology, ETH Zürich, Zurich, Switzerland.
| |
Collapse
|
10
|
Wang B, Lv R, Zhang Z, Yang C, Xun H, Liu B, Gong L. Homoeologous exchange enables rapid evolution of tolerance to salinity and hyper-osmotic stresses in a synthetic allotetraploid wheat. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7488-7502. [PMID: 36055762 DOI: 10.1093/jxb/erac355] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The link between polyploidy and enhanced adaptation to environmental stresses could be a result of polyploidy itself harbouring higher tolerance to adverse conditions, or polyploidy possessing higher evolvability than diploids under stress conditions. Natural polyploids are inherently unsuitable to disentangle these two possibilities. Using selfed progenies of a synthetic allotetraploid wheat AT3 (AADD) along with its diploid parents, Triticum urartu TMU38 (AA) and Aegilops tauschii TQ27 (DD), we addressed the foregoing issue under abiotic salinity and hyper-osmotic (drought-like) stress. Under short duration of both stresses, euploid plants of AT3 showed intermediate tolerance of diploid parents; under life-long duration of both stresses, tolerant individuals to either stress emerged from selfed progenies of AT3, but not from comparable-sized diploid parent populations. Tolerance to both stresses were conditioned by the same two homoeologous exchanges (HEs; 2DS/2AS and 3DL/3AL), and at least one HE needed to be at the homozygous state. Transcriptomic analyses revealed that hyper-up-regulation of within-HE stress responsive genes of the A sub-genome origin is likely responsible for the dual-stress tolerant phenotypes. Our results suggest that HE-mediated inter-sub-genome rearrangements can be an important mechanism leading to adaptive evolution in allopolyploids as well as a promising target for genetic manipulation in crop improvement.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Hongwei Xun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
11
|
Abdul Aziz M, Brini F, Rouached H, Masmoudi K. Genetically engineered crops for sustainably enhanced food production systems. FRONTIERS IN PLANT SCIENCE 2022; 13:1027828. [PMID: 36426158 PMCID: PMC9680014 DOI: 10.3389/fpls.2022.1027828] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Genetic modification of crops has substantially focused on improving traits for desirable outcomes. It has resulted in the development of crops with enhanced yields, quality, and tolerance to biotic and abiotic stresses. With the advent of introducing favorable traits into crops, biotechnology has created a path for the involvement of genetically modified (GM) crops into sustainable food production systems. Although these plants heralded a new era of crop production, their widespread adoption faces diverse challenges due to concerns about the environment, human health, and moral issues. Mitigating these concerns with scientific investigations is vital. Hence, the purpose of the present review is to discuss the deployment of GM crops and their effects on sustainable food production systems. It provides a comprehensive overview of the cultivation of GM crops and the issues preventing their widespread adoption, with appropriate strategies to overcome them. This review also presents recent tools for genome editing, with a special focus on the CRISPR/Cas9 platform. An outline of the role of crops developed through CRSIPR/Cas9 in achieving sustainable development goals (SDGs) by 2030 is discussed in detail. Some perspectives on the approval of GM crops are also laid out for the new age of sustainability. The advancement in molecular tools through plant genome editing addresses many of the GM crop issues and facilitates their development without incorporating transgenic modifications. It will allow for a higher acceptance rate of GM crops in sustainable agriculture with rapid approval for commercialization. The current genetic modification of crops forecasts to increase productivity and prosperity in sustainable agricultural practices. The right use of GM crops has the potential to offer more benefit than harm, with its ability to alleviate food crises around the world.
Collapse
Affiliation(s)
- Mughair Abdul Aziz
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al−Ain, Abu−Dhabi, United Arab Emirates
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Hatem Rouached
- Michigan State University, Plant and Soil Science Building, East Lansing, MI, United States
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al−Ain, Abu−Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Nibau C, Gonzalo A, Evans A, Sweet‐Jones W, Phillips D, Lloyd A. Meiosis in allopolyploid Arabidopsis suecica. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1110-1122. [PMID: 35759495 PMCID: PMC9545853 DOI: 10.1111/tpj.15879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 06/01/2023]
Abstract
Polyploidy is a major force shaping eukaryote evolution but poses challenges for meiotic chromosome segregation. As a result, first-generation polyploids often suffer from more meiotic errors and lower fertility than established wild polyploid populations. How established polyploids adapt their meiotic behaviour to ensure genome stability and accurate chromosome segregation remains an active research question. We present here a cytological description of meiosis in the model allopolyploid species Arabidopsis suecica (2n = 4x = 26). In large part meiosis in A. suecica is diploid-like, with normal synaptic progression and no evidence of synaptic partner exchanges. Some abnormalities were seen at low frequency, including univalents at metaphase I, anaphase bridges and aneuploidy at metaphase II; however, we saw no evidence of crossover formation occurring between non-homologous chromosomes. The crossover number in A. suecica is similar to the combined number reported from its diploid parents Arabidopsis thaliana (2n = 2x = 10) and Arabidopsis arenosa (2n = 2x = 16), with an average of approximately 1.75 crossovers per chromosome pair. This contrasts with naturally evolved autotetraploid A. arenosa, where accurate chromosome segregation is achieved by restricting crossovers to approximately 1 per chromosome pair. Although an autotetraploid donor is hypothesized to have contributed the A. arenosa subgenome to A. suecica, A. suecica harbours diploid A. arenosa variants of key meiotic genes. These multiple lines of evidence suggest that meiosis in the recently evolved allopolyploid A. suecica is essentially diploid like, with meiotic adaptation following a very different trajectory to that described for autotetraploid A. arenosa.
Collapse
Affiliation(s)
- Candida Nibau
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityPenglaisAberystwythCeredigionSY23 3DAUK
| | - Adrián Gonzalo
- John Innes CentreColney LaneNorwichNR4 7UHUK
- Department of Biology, Institute of Molecular Plant BiologySwiss Federal Institute of Technology (ETH) ZürichZürich8092Switzerland
| | - Aled Evans
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityPenglaisAberystwythCeredigionSY23 3DAUK
| | - William Sweet‐Jones
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityPenglaisAberystwythCeredigionSY23 3DAUK
| | - Dylan Phillips
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityPenglaisAberystwythCeredigionSY23 3DAUK
| | - Andrew Lloyd
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityPenglaisAberystwythCeredigionSY23 3DAUK
| |
Collapse
|
13
|
Unravelling mechanisms that govern meiotic crossover formation in wheat. Biochem Soc Trans 2022; 50:1179-1186. [PMID: 35901450 PMCID: PMC9444065 DOI: 10.1042/bst20220405] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Wheat is a major cereal crop that possesses a large allopolyploid genome formed through hybridisation of tetraploid and diploid progenitors. During meiosis, crossovers (COs) are constrained in number to 1–3 per chromosome pair that are predominantly located towards the chromosome ends. This reduces the probability of advantageous traits recombining onto the same chromosome, thus limiting breeding. Therefore, understanding the underlying factors controlling meiotic recombination may provide strategies to unlock the genetic potential in wheat. In this mini-review, we will discuss the factors associated with restricted CO formation in wheat, such as timing of meiotic events, chromatin organisation, pre-meiotic DNA replication and dosage of CO genes, as a means to modulate recombination.
Collapse
|
14
|
Assessing the Heat Tolerance of Meiosis in Spanish Landraces of Tetraploid Wheat Triticum turgidum. PLANTS 2022; 11:plants11131661. [PMID: 35807613 PMCID: PMC9268776 DOI: 10.3390/plants11131661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Heat stress alters the number and distribution of meiotic crossovers in wild and cultivated plant species. Hence, global warming may have a negative impact on meiosis, fertility, and crop productions. Assessment of germplasm collections to identify heat-tolerant genotypes is a priority for future crop improvement. Durum wheat, Triticum turgidum, is an important cultivated cereal worldwide and given the genetic diversity of the durum wheat Spanish landraces core collection, we decided to analyse the heat stress effect on chiasma formation in a sample of 16 landraces of T. turgidum ssp. turgidum and T. turgidum ssp. durum, from localities with variable climate conditions. Plants of each landrace were grown at 18–22 °C and at 30 °C during the premeiotic temperature-sensitive stage. The number of chiasmata was not affected by heat stress in three genotypes, but decreased by 0.3–2 chiasmata in ten genotypes and more than two chiasmata in the remaining three ones. Both thermotolerant and temperature-sensitive genotypes were found in the two subspecies, and in some of the agroecological zones studied, which supports that genotypes conferring a heat tolerant meiotic phenotype are not dependent on subspecies or geographical origin. Implications of heat adaptive genotypes in future research and breeding are discussed.
Collapse
|
15
|
Türkösi E, Ivanizs L, Farkas A, Gaál E, Kruppa K, Kovács P, Szakács É, Szőke-Pázsi K, Said M, Cápal P, Griffiths S, Doležel J, Molnár I. Transfer of the ph1b Deletion Chromosome 5B From Chinese Spring Wheat Into a Winter Wheat Line and Induction of Chromosome Rearrangements in Wheat- Aegilops biuncialis Hybrids. FRONTIERS IN PLANT SCIENCE 2022; 13:875676. [PMID: 35769292 PMCID: PMC9234525 DOI: 10.3389/fpls.2022.875676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/09/2022] [Indexed: 06/10/2023]
Abstract
Effective utilization of genetic diversity in wild relatives to improve wheat requires recombination between wheat and alien chromosomes. However, this is suppressed by the Pairing homoeologous gene, Ph1, on the long arm of wheat chromosome 5B. A deletion mutant of the Ph1 locus (ph1b) has been used widely to induce homoeologous recombination in wheat × alien hybrids. However, the original ph1b mutation, developed in Chinese Spring (CS) background has poor agronomic performance. Hence, alien introgression lines are first backcrossed with adapted wheat genotypes and after this step, alien chromosome segments are introduced into breeding lines. In this work, the ph1b mutation was transferred from two CSph1b mutants into winter wheat line Mv9kr1. Homozygous genotypes Mv9kr1 ph1b/ph1b exhibited improved plant and spike morphology compared to Chinese Spring. Flow cytometric chromosome analysis confirmed reduced DNA content of the mutant 5B chromosome in both wheat genotype relative to the wild type chromosome. The ph1b mutation in the Mv9kr1 genotype allowed wheat-alien chromosome pairing in meiosis of Mv9kr1ph1b_K × Aegilops biuncialis F1 hybrids, predominantly with the Mb-genome chromosomes of Aegilops relative to those of the Ub genome. High frequency of wheat-Aegilops chromosome interactions resulted in rearranged chromosomes identified in the new Mv9kr1ph1b × Ae. Biuncialis amphiploids, making these lines valuable sources for alien introgressions. The new Mv9kr1ph1b mutant genotype is a unique resource to support alien introgression breeding of hexaploid wheat.
Collapse
Affiliation(s)
- Edina Türkösi
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - László Ivanizs
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - András Farkas
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - Eszter Gaál
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - Klaudia Kruppa
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - Péter Kovács
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
- Institute of Genetics and Biotechnology, Szent István Campus, MATE, Gödöllő, Hungary
| | - Éva Szakács
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - Kitti Szőke-Pázsi
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - Mahmoud Said
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute for Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Field Crops Research Institute, Agricultural Research Centre, Giza, Egypt
| | - Petr Cápal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute for Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | | | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute for Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - István Molnár
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| |
Collapse
|
16
|
Blasio F, Prieto P, Pradillo M, Naranjo T. Genomic and Meiotic Changes Accompanying Polyploidization. PLANTS (BASEL, SWITZERLAND) 2022; 11:125. [PMID: 35009128 PMCID: PMC8747196 DOI: 10.3390/plants11010125] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 05/04/2023]
Abstract
Hybridization and polyploidy have been considered as significant evolutionary forces in adaptation and speciation, especially among plants. Interspecific gene flow generates novel genetic variants adaptable to different environments, but it is also a gene introgression mechanism in crops to increase their agronomical yield. An estimate of 9% of interspecific hybridization has been reported although the frequency varies among taxa. Homoploid hybrid speciation is rare compared to allopolyploidy. Chromosome doubling after hybridization is the result of cellular defects produced mainly during meiosis. Unreduced gametes, which are formed at an average frequency of 2.52% across species, are the result of altered spindle organization or orientation, disturbed kinetochore functioning, abnormal cytokinesis, or loss of any meiotic division. Meiotic changes and their genetic basis, leading to the cytological diploidization of allopolyploids, are just beginning to be understood especially in wheat. However, the nature and mode of action of homoeologous recombination suppressor genes are poorly understood in other allopolyploids. The merger of two independent genomes causes a deep modification of their architecture, gene expression, and molecular interactions leading to the phenotype. We provide an overview of genomic changes and transcriptomic modifications that particularly occur at the early stages of allopolyploid formation.
Collapse
Affiliation(s)
- Francesco Blasio
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4048, 14080 Cordova, Spain;
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Tomás Naranjo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| |
Collapse
|