1
|
Warren AEL, Raguž M, Friedrich H, Schaper FLWVJ, Tasserie J, Snider SB, Li J, Chua MMJ, Butenko K, Friedrich MU, Jha R, Iglesias JE, Carney PW, Fischer D, Fox MD, Boes AD, Edlow BL, Horn A, Chudy D, Rolston JD. A human brain network linked to restoration of consciousness after deep brain stimulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.17.24314458. [PMID: 39484242 PMCID: PMC11527079 DOI: 10.1101/2024.10.17.24314458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Disorders of consciousness (DoC) are states of impaired arousal or awareness. Deep brain stimulation (DBS) is a potential treatment, but outcomes vary, possibly due to differences in patient characteristics, electrode placement, or stimulation of specific brain networks. We studied 40 patients with DoC who underwent DBS targeting the thalamic centromedian-parafascicular complex. Better-preserved gray matter, especially in the striatum, correlated with consciousness improvement. Stimulation was most effective when electric fields extended into parafascicular and subparafascicular nuclei-ventral to the centromedian nucleus, near the midbrain- and when it engaged projection pathways of the ascending arousal network, including the hypothalamus, brainstem, and frontal lobe. Moreover, effective DBS sites were connected to networks similar to those underlying impaired consciousness due to generalized absence seizures and acquired lesions. These findings support the therapeutic potential of DBS for DoC, emphasizing the importance of precise targeting and revealing a broader link between effective DoC treatment and mechanisms underlying other conscciousness-impairing conditions.
Collapse
|
2
|
O’Sullivan KP, Orazem ME, Otto KJ, Butson CR, Baker JL. Electrical rejuvenation of chronically implanted macroelectrodes in nonhuman primates. J Neural Eng 2024; 21:10.1088/1741-2552/ad5703. [PMID: 38862007 PMCID: PMC11302379 DOI: 10.1088/1741-2552/ad5703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Objective.Electrodes chronically implanted in the brain undergo complex changes over time that can lower the signal to noise ratio (SNR) of recorded signals and reduce the amount of energy delivered to the tissue during therapeutic stimulation, both of which are relevant for the development of robust, closed-loop control systems. Several factors have been identified that link changes in the electrode-tissue interface (ETI) to increased impedance and degraded performance in micro- and macro-electrodes. Previous studies have demonstrated that brief pulses applied every few days can restore SNR to near baseline levels during microelectrode recordings in rodents, a process referred to as electrical rejuvenation. However, electrical rejuvenation has not been tested in clinically relevant macroelectrode designs in large animal models, which could serve as preliminary data for translation of this technique. Here, several variations of this approach were tested to characterize parameters for optimization.Approach. Alternating-current (AC) and direct-current (DC) electrical rejuvenation methods were explored in three electrode types, chronically implanted in two adult male nonhuman primates (NHP) (Macaca mulatta), which included epidural electrocorticography (ECoG) electrodes and penetrating deep-brain stimulation (DBS) electrodes. Electrochemical impedance spectroscopy (EIS) was performed before and after each rejuvenation paradigm as a gold standard measure of impedance, as well as at subsequent intervals to longitudinally track the evolution of the ETI. Stochastic error modeling was performed to assess the standard deviation of the impedance data, and consistency with the Kramers-Kronig relations was assessed to evaluate the stationarity of EIS measurement.Main results. AC and DC rejuvenation were found to quickly reduce impedance and minimize the tissue component of the ETI on all three electrode types, with DC and low-frequency AC producing the largest impedance drops and reduction of the tissue component in Nyquist plots. The effects of a single rejuvenation session were found to last from several days to over 1 week, and all rejuvenation pulses induced no observable changes to the animals' behavior.Significance. These results demonstrate the effectiveness of electrical rejuvenation for diminishing the impact of chronic ETI changes in NHP with clinically relevant macroelectrode designs.
Collapse
Affiliation(s)
- KP O’Sullivan
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112
| | - ME Orazem
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, 1030 Center Drive P.O. Box 116005 Gainesville, FL 32611
| | - KJ Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, 1275 Center Drive, NEB 363, P.O. Box 116131, Gainesville, FL 32611
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Department of Neurology, University of Florida, Gainesville, FL, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, United States
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States
| | - CR Butson
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, 1275 Center Drive, NEB 363, P.O. Box 116131, Gainesville, FL 32611
- Norman Fixel Institute for Neurological Diseases, University of Florida, 3009 Williston Road, Gainesville, FL 32608
| | - JL Baker
- Brain and Mind Research Institute, Weil Cornell Medical College, 407 E 61 St, New York, NY 10065
| |
Collapse
|
3
|
Cao T, He S, Wang L, Chai X, He Q, Liu D, Wang D, Wang N, He J, Wang S, Yang Y, Zhao J, Tan H. Clinical neuromodulatory effects of deep brain stimulation in disorder of consciousness: A literature review. CNS Neurosci Ther 2024; 30:e14559. [PMID: 38115730 PMCID: PMC11163193 DOI: 10.1111/cns.14559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/11/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND The management of patients with disorders of consciousness (DOC) presents substantial challenges in clinical practice. Deep brain stimulation (DBS) has emerged as a potential therapeutic approach, but the lack of standardized regulatory parameters for DBS in DOC hinders definitive conclusions. OBJECTIVE This comprehensive review aims to provide a detailed summary of the current issues concerning patient selection, target setting, and modulation parameters in clinical studies investigating the application of DBS for DOC patients. METHODS A meticulous systematic analysis of the literatures was conducted, encompassing articles published from 1968 to April 2023, retrieved from reputable databases (PubMed, Embase, Medline, and Web of Science). RESULTS The systematic analysis of 21 eligible articles, involving 146 patients with DOC resulting from acquired brain injury or other disorders, revealed significant insights. The most frequently targeted regions were the Centromedian-parafascicular complex (CM-pf) nuclei and central thalamus (CT), both recognized for their role in regulating consciousness. However, other targets have also been explored in different studies. The stimulation frequency was predominantly set at 25 or 100 Hz, with pulse width of 120 μs, and voltages ranged from 0 to 4 V. These parameters were customized based on individual patient responses and evaluations. The overall clinical efficacy rate in all included studies was 39.7%, indicating a positive effect of DBS in a subset of DOC patients. Nonetheless, the assessment methods, follow-up durations, and outcome measures varied across studies, potentially contributing to the variability in reported efficacy rates. CONCLUSION Despite the challenges arising from the lack of standardized parameters, DBS shows promising potential as a therapeutic option for patients with DOC. However, there still remains the need for standardized protocols and assessment methods, which are crucial to deepen the understanding and optimizing the therapeutic potential of DBS in this specific patient population.
Collapse
Affiliation(s)
- Tianqing Cao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shenghong He
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Luchen Wang
- School of Information Science and TechnologyFudan UniversityShanghaiChina
| | - Xiaoke Chai
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Dongsheng Liu
- Department of NeurosurgeryAviation General HospitalBeijingChina
| | - Dong Wang
- Department of NeurosurgeryGanzhou People's HospitalGanzhouJiangxi ProvinceChina
| | - Nan Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Shouyang Wang
- School of Information Science and TechnologyFudan UniversityShanghaiChina
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Chinese Institute for Brain ResearchBeijingChina
- Beijing Institute of Brain DisordersBeijingChina
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| |
Collapse
|
4
|
Schiff ND. Toward an interventional science of recovery after coma. Neuron 2024; 112:1595-1610. [PMID: 38754372 DOI: 10.1016/j.neuron.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Recovery of consciousness after coma remains one of the most challenging areas for accurate diagnosis and effective therapeutic engagement in the clinical neurosciences. Recovery depends on preservation of neuronal integrity and evolving changes in network function that re-establish environmental responsiveness. It typically occurs in defined steps: it begins with eye opening and unresponsiveness in a vegetative state, then limited recovery of responsiveness characterizes the minimally conscious state, and this is followed by recovery of reliable communication. This review considers several points for novel interventions, for example, in persons with cognitive motor dissociation in whom a hidden cognitive reserve is revealed. Circuit mechanisms underlying restoration of behavioral responsiveness and communication are discussed. An emerging theme is the possibility to rescue latent capacities in partially damaged human networks across time. These opportunities should be exploited for therapeutic engagement to achieve individualized solutions for restoration of communication and environmental interaction across varying levels of recovery.
Collapse
Affiliation(s)
- Nicholas D Schiff
- Jerold B. Katz Professor of Neurology and Neuroscience, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Martínez-Molina N, Sanz-Perl Y, Escrichs A, Kringelbach ML, Deco G. Turbulent dynamics and whole-brain modeling: toward new clinical applications for traumatic brain injury. Front Neuroinform 2024; 18:1382372. [PMID: 38590709 PMCID: PMC10999628 DOI: 10.3389/fninf.2024.1382372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/01/2024] [Indexed: 04/10/2024] Open
Abstract
Traumatic Brain Injury (TBI) is a prevalent disorder mostly characterized by persistent impairments in cognitive function that poses a substantial burden on caregivers and the healthcare system worldwide. Crucially, severity classification is primarily based on clinical evaluations, which are non-specific and poorly predictive of long-term disability. In this Mini Review, we first provide a description of our model-free and model-based approaches within the turbulent dynamics framework as well as our vision on how they can potentially contribute to provide new neuroimaging biomarkers for TBI. In addition, we report the main findings of our recent study examining longitudinal changes in moderate-severe TBI (msTBI) patients during a one year spontaneous recovery by applying the turbulent dynamics framework (model-free approach) and the Hopf whole-brain computational model (model-based approach) combined with in silico perturbations. Given the neuroinflammatory response and heightened risk for neurodegeneration after TBI, we also offer future directions to explore the association with genomic information. Moreover, we discuss how whole-brain computational modeling may advance our understanding of the impact of structural disconnection on whole-brain dynamics after msTBI in light of our recent findings. Lastly, we suggest future avenues whereby whole-brain computational modeling may assist the identification of optimal brain targets for deep brain stimulation to promote TBI recovery.
Collapse
Affiliation(s)
- Noelia Martínez-Molina
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Yonatan Sanz-Perl
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
6
|
Arnts H, Tewarie P, van Erp W, Schuurman R, Boon LI, Pennartz CMA, Stam CJ, Hillebrand A, van den Munckhof P. Deep brain stimulation of the central thalamus restores arousal and motivation in a zolpidem-responsive patient with akinetic mutism after severe brain injury. Sci Rep 2024; 14:2950. [PMID: 38316863 PMCID: PMC10844373 DOI: 10.1038/s41598-024-52267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
After severe brain injury, zolpidem is known to cause spectacular, often short-lived, restorations of brain functions in a small subgroup of patients. Previously, we showed that these zolpidem-induced neurological recoveries can be paralleled by significant changes in functional connectivity throughout the brain. Deep brain stimulation (DBS) is a neurosurgical intervention known to modulate functional connectivity in a wide variety of neurological disorders. In this study, we used DBS to restore arousal and motivation in a zolpidem-responsive patient with severe brain injury and a concomitant disorder of diminished motivation, more than 10 years after surviving hypoxic ischemia. We found that DBS of the central thalamus, targeted at the centromedian-parafascicular complex, immediately restored arousal and was able to transition the patient from a state of deep sleep to full wakefulness. Moreover, DBS was associated with temporary restoration of communication and ability to walk and eat in an otherwise wheelchair-bound and mute patient. With the use of magnetoencephalography (MEG), we revealed that DBS was generally associated with a marked decrease in aberrantly high levels of functional connectivity throughout the brain, mimicking the effects of zolpidem. These results imply that 'pathological hyperconnectivity' after severe brain injury can be associated with reduced arousal and behavioral performance and that DBS is able to modulate connectivity towards a 'healthier baseline' with lower synchronization, and, can restore functional brain networks long after severe brain injury. The presence of hyperconnectivity after brain injury may be a possible future marker for a patient's responsiveness for restorative interventions, such as DBS, and suggests that lower degrees of overall brain synchronization may be conducive to cognition and behavioral responsiveness.
Collapse
Affiliation(s)
- Hisse Arnts
- Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Prejaas Tewarie
- Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The Netherlands
| | - Willemijn van Erp
- Department of Primary and Community Care, Centre for Family Medicine, Geriatric Care and Public Health, Radboud University Medical Centre, Nijmegen, The Netherlands
- Accolade Zorg, Bosch en Duin, The Netherlands
- Libra Rehabilitation & Audiology, Tilburg, The Netherlands
| | - Rick Schuurman
- Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Lennard I Boon
- Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The Netherlands
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The Netherlands
| | - Pepijn van den Munckhof
- Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Mukherjee A, Halassa MM. The Associative Thalamus: A Switchboard for Cortical Operations and a Promising Target for Schizophrenia. Neuroscientist 2024; 30:132-147. [PMID: 38279699 PMCID: PMC10822032 DOI: 10.1177/10738584221112861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Schizophrenia is a brain disorder that profoundly perturbs cognitive processing. Despite the success in treating many of its symptoms, the field lacks effective methods to measure and address its impact on reasoning, inference, and decision making. Prefrontal cortical abnormalities have been well documented in schizophrenia, but additional dysfunction in the interactions between the prefrontal cortex and thalamus have recently been described. This dysfunction may be interpreted in light of parallel advances in neural circuit research based on nonhuman animals, which show critical thalamic roles in maintaining and switching prefrontal activity patterns in various cognitive tasks. Here, we review this basic literature and connect it to emerging innovations in clinical research. We highlight the value of focusing on associative thalamic structures not only to better understand the very nature of cognitive processing but also to leverage these circuits for diagnostic and therapeutic development in schizophrenia. We suggest that the time is right for building close bridges between basic thalamic research and its clinical translation, particularly in the domain of cognition and schizophrenia.
Collapse
Affiliation(s)
- Arghya Mukherjee
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael M Halassa
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
8
|
Schiff ND, Giacino JT, Butson CR, Choi EY, Baker JL, O'Sullivan KP, Janson AP, Bergin M, Bronte-Stewart HM, Chua J, DeGeorge L, Dikmen S, Fogarty A, Gerber LM, Krel M, Maldonado J, Radovan M, Shah SA, Su J, Temkin N, Tourdias T, Victor JD, Waters A, Kolakowsky-Hayner SA, Fins JJ, Machado AG, Rutt BK, Henderson JM. Thalamic deep brain stimulation in traumatic brain injury: a phase 1, randomized feasibility study. Nat Med 2023; 29:3162-3174. [PMID: 38049620 PMCID: PMC11087147 DOI: 10.1038/s41591-023-02638-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 12/06/2023]
Abstract
Converging evidence indicates that impairments in executive function and information-processing speed limit quality of life and social reentry after moderate-to-severe traumatic brain injury (msTBI). These deficits reflect dysfunction of frontostriatal networks for which the central lateral (CL) nucleus of the thalamus is a critical node. The primary objective of this feasibility study was to test the safety and efficacy of deep brain stimulation within the CL and the associated medial dorsal tegmental (CL/DTTm) tract.Six participants with msTBI, who were between 3 and 18 years post-injury, underwent surgery with electrode placement guided by imaging and subject-specific biophysical modeling to predict activation of the CL/DTTm tract. The primary efficacy measure was improvement in executive control indexed by processing speed on part B of the trail-making test.All six participants were safely implanted. Five participants completed the study and one was withdrawn for protocol non-compliance. Processing speed on part B of the trail-making test improved 15% to 52% from baseline, exceeding the 10% benchmark for improvement in all five cases.CL/DTTm deep brain stimulation can be safely applied and may improve executive control in patients with msTBI who are in the chronic phase of recovery.ClinicalTrials.gov identifier: NCT02881151 .
Collapse
Affiliation(s)
- Nicholas D Schiff
- Feil Family Brain Mind Institute, Weill Cornell Medicine, New York, NY, USA.
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA.
| | - Joseph T Giacino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Christopher R Butson
- Scientific Computing and Imaging Institute Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
- Norman Fixel Institute for Neurological Diseases Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Eun Young Choi
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Jonathan L Baker
- Feil Family Brain Mind Institute, Weill Cornell Medicine, New York, NY, USA
| | - Kyle P O'Sullivan
- Scientific Computing and Imaging Institute Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Andrew P Janson
- Scientific Computing and Imaging Institute Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
- Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Michael Bergin
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | | | - Jason Chua
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Laurel DeGeorge
- Feil Family Brain Mind Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sureyya Dikmen
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Adam Fogarty
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Linda M Gerber
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mark Krel
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Jose Maldonado
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - Matthew Radovan
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Sudhin A Shah
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Jason Su
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Nancy Temkin
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Thomas Tourdias
- Department of Neuroimaging, University of Bordeaux, Nouvelle-Aquitaine, France
| | - Jonathan D Victor
- Feil Family Brain Mind Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Abigail Waters
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | | | - Joseph J Fins
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andre G Machado
- Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Brian K Rutt
- Department of Radiology, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Bio-X Program, Stanford University, Stanford, CA, USA
| | - Jaimie M Henderson
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Bio-X Program, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Morais PLAG, Rubio-Garrido P, de Lima RM, Córdoba-Claros A, de Nascimento ES, Cavalcante JS, Clascá F. The Arousal-Related "Central Thalamus" Stimulation Site Simultaneously Innervates Multiple High-Level Frontal and Parietal Areas. J Neurosci 2023; 43:7812-7821. [PMID: 37758474 PMCID: PMC10648518 DOI: 10.1523/jneurosci.1216-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
In human and nonhuman primates, deep brain stimulation applied at or near the internal medullary lamina of the thalamus [a region referred to as "central thalamus," (CT)], but not at nearby thalamic sites, elicits major changes in the level of consciousness, even in some minimally conscious brain-damaged patients. The mechanisms behind these effects remain mysterious, as the connections of CT had not been specifically mapped in primates. In marmoset monkeys (Callithrix jacchus) of both sexes, we labeled the axons originating from each of the various CT neuronal populations and analyzed their arborization patterns in the cerebral cortex and striatum. We report that, together, these CT populations innervate an array of high-level frontal, posterior parietal, and cingulate cortical areas. Some populations simultaneously target the frontal, parietal, and cingulate cortices, while others predominantly target the dorsal striatum. Our data indicate that CT stimulation can simultaneously engage a heterogeneous set of projection systems that, together, target the key nodes of the attention, executive control, and working-memory networks of the brain. Increased functional connectivity in these networks has been previously described as a signature of consciousness.SIGNIFICANCE STATEMENT In human and nonhuman primates, deep brain stimulation at a specific site near the internal medullary lamina of the thalamus ["central thalamus," (CT)] had been shown to restore arousal and awareness in anesthetized animals, as well as in some brain-damaged patients. The mechanisms behind these effects remain mysterious, as CT connections remain poorly defined in primates. In marmoset monkeys, we mapped with sensitive axon-labeling methods the pathways originated from CT. Our data indicate that stimulation applied in CT can simultaneously engage a heterogeneous set of projection systems that, together, target several key nodes of the attention, executive control, and working-memory networks of the brain. Increased functional connectivity in these networks has been previously described as a signature of consciousness.
Collapse
Affiliation(s)
- Paulo L A G Morais
- Federal University of Rio Grande do Norte, RN CEP 59078-900, Natal, Brazil
- Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Chudy D, Deletis V, Paradžik V, Dubroja I, Marčinković P, Orešković D, Chudy H, Raguž M. Deep brain stimulation in disorders of consciousness: 10 years of a single center experience. Sci Rep 2023; 13:19491. [PMID: 37945710 PMCID: PMC10636144 DOI: 10.1038/s41598-023-46300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Disorders of consciousness (DoC), namely unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS), represent severe conditions with significant consequences for patients and their families. Several studies have reported the regaining of consciousness in such patients using deep brain stimulation (DBS) of subcortical structures or brainstem nuclei. Our study aims to present the 10 years' experience of a single center using DBS as a therapy on a cohort of patients with DoC. Eighty Three consecutive patients were evaluated between 2011 and 2022; entry criteria consisted of neurophysiological and neurological evaluations and neuroimaging examinations. Out of 83, 36 patients were considered candidates for DBS implantation, and 32 patients were implanted: 27 patients had UWS, and five had MCS. The stimulation target was the centromedian-parafascicular complex in the left hemisphere in hypoxic brain lesion or the one better preserved in patients with traumatic brain injury. The level of consciousness was improved in seven patients. Three out of five MCS patients emerged to full awareness, with the ability to interact and communicate. Two of them can live largely independently. Four out of 27 UWS patients showed consciousness improvement with two patients emerging to full awareness, and the other two reaching MCS. In patients with DoC lasting longer than 12 months following traumatic brain injury or 6 months following anoxic-ischemic brain lesion, spontaneous recovery is rare. Thus, DBS of certain thalamic nuclei could be recommended as a treatment option for patients who meet neurological, neurophysiological and neuroimaging criteria, especially in earlier phases, before occurrence of irreversible musculoskeletal changes. Furthermore, we emphasize the importance of cooperation between centers worldwide in studies on the potentials of DBS in treating patients with DoC.
Collapse
Affiliation(s)
- Darko Chudy
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia.
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Vedran Deletis
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
- Albert Einstein College of Medicine, New York, USA
| | - Veronika Paradžik
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
| | - Ivan Dubroja
- Brain Trauma Unit, Specialty Hospital for Medical Rehabilitation, Krapinske Toplice, Croatia
| | - Petar Marčinković
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
| | - Darko Orešković
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
| | - Hana Chudy
- Department of Neurology, Dubrava University Hospital, Zagreb, Croatia
| | - Marina Raguž
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
| |
Collapse
|
11
|
Schiff ND. Mesocircuit mechanisms in the diagnosis and treatment of disorders of consciousness. Presse Med 2023; 52:104161. [PMID: 36563999 DOI: 10.1016/j.lpm.2022.104161] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The 'mesocircuit hypothesis' proposes mechanisms underlying the recovery of consciousness following severe brain injuries. The model builds up from a single premise that multifocal brain injuries resulting in coma and subsequent disorders of consciousness produce widespread neuronal death and dysfunction. Considering the general properties of cortical, thalamic, and striatal neurons, a lawful and specific circuit-level mechanism is constructed based on these known anatomical and physiological specializations of neuronal subtypes. The mesocircuit model generates many testable predictions at the mesocircuit, local circuit, and cellular level across multiple cerebral structures to correlate diagnostic measurements and interpret therapeutic interventions. The anterior forebrain mesocircuit is integrally related to the frontal-parietal network, another network demonstrated to show strong correlation with levels of recovery in disorders of consciousness. A further extension known as the "ABCD" model has been used to examine interaction of these models in recovery of consciousness using electrophysiological data types. Many studies have examined predictions of the mesocircuit model; here we first present the model and review the accumulated evidence for several predictions of model across multiple stages of recovery function in human subjects. Recent studies linking the mesocircuit model, the ABCD model, and interactions with the frontoparietal network are reviewed. Finally, theoretical implications of the mesocircuit model at the neuronal level are considered to interpret recent studies of deep brain stimulation in the central lateral thalamus in patients recovering from coma and in new experimental models in the context of emerging understanding of neuronal and local circuit mechanisms underlying conscious brain states.
Collapse
Affiliation(s)
- Nicholas D Schiff
- Jerold B. Katz Professor of Neurology and Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, United States.
| |
Collapse
|
12
|
Baker JL, Toth R, Deli A, Zamora M, Fleming JE, Benjaber M, Goerzen D, Ryou JW, Purpura KP, Schiff ND, Denison T. Regulation of arousal and performance of a healthy non-human primate using closed-loop central thalamic deep brain stimulation. INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING : [PROCEEDINGS]. INTERNATIONAL IEEE EMBS CONFERENCE ON NEURAL ENGINEERING 2023; 2023:10123754. [PMID: 37228786 PMCID: PMC7614571 DOI: 10.1109/ner52421.2023.10123754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Application of closed-loop approaches in systems neuroscience and brain-computer interfaces holds great promise for revolutionizing our understanding of the brain and for developing novel neuromodulation strategies to restore lost function. The anterior forebrain mesocircuit (AFM) of the mammalian brain is hypothesized to underlie arousal regulation of the cortex and striatum, and support cognitive functions during wakefulness. Dysfunction of arousal regulation is hypothesized to contribute to cognitive dysfunctions in various neurological disorders, and most prominently in patients following traumatic brain injury (TBI). Several clinical studies have explored the use of daily central thalamic deep brain stimulation (CT-DBS) within the AFM to restore consciousness and executive attention in TBI patients. In this study, we explored the use of closed-loop CT-DBS in order to episodically regulate arousal of the AFM of a healthy non-human primate (NHP) with the goal of restoring behavioral performance. We used pupillometry and near real-time analysis of ECoG signals to episodically initiate closed-loop CT-DBS and here we report on our ability to enhance arousal and restore the animal's performance. The initial computer based approach was then experimentally validated using a customized clinical-grade DBS device, the DyNeuMo-X, a bi-directional research platform used for rapidly testing closed-loop DBS. The successful implementation of the DyNeuMo-X in a healthy NHP supports ongoing clinical trials employing the internal DyNeuMo system (NCT05437393, NCT05197816) and our goal of developing and accelerating the deployment of novel neuromodulation approaches to treat cognitive dysfunction in patients with structural brain injuries and other etiologies.
Collapse
Affiliation(s)
- Jonathan L. Baker
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Robert Toth
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, OX1 3TH, UK
| | - Alceste Deli
- Department of Neurosurgery, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Mayela Zamora
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - John E. Fleming
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Moaad Benjaber
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Dana Goerzen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jae-Wook Ryou
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Keith P. Purpura
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nicholas D. Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Timothy Denison
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, OX1 3TH, UK
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
13
|
Vertes RP, Linley SB, Rojas AKP. Structural and functional organization of the midline and intralaminar nuclei of the thalamus. Front Behav Neurosci 2022; 16:964644. [PMID: 36082310 PMCID: PMC9445584 DOI: 10.3389/fnbeh.2022.964644] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022] Open
Abstract
The midline and intralaminar nuclei of the thalamus form a major part of the "limbic thalamus;" that is, thalamic structures anatomically and functionally linked with the limbic forebrain. The midline nuclei consist of the paraventricular (PV) and paratenial nuclei, dorsally and the rhomboid and nucleus reuniens (RE), ventrally. The rostral intralaminar nuclei (ILt) consist of the central medial (CM), paracentral (PC) and central lateral (CL) nuclei. We presently concentrate on RE, PV, CM and CL nuclei of the thalamus. The nucleus reuniens receives a diverse array of input from limbic-related sites, and predominantly projects to the hippocampus and to "limbic" cortices. The RE participates in various cognitive functions including spatial working memory, executive functions (attention, behavioral flexibility) and affect/fear behavior. The PV receives significant limbic-related afferents, particularly the hypothalamus, and mainly distributes to "affective" structures of the forebrain including the bed nucleus of stria terminalis, nucleus accumbens and the amygdala. Accordingly, PV serves a critical role in "motivated behaviors" such as arousal, feeding/consummatory behavior and drug addiction. The rostral ILt receives both limbic and sensorimotor-related input and distributes widely over limbic and motor regions of the frontal cortex-and throughout the dorsal striatum. The intralaminar thalamus is critical for maintaining consciousness and directly participates in various sensorimotor functions (visuospatial or reaction time tasks) and cognitive tasks involving striatal-cortical interactions. As discussed herein, while each of the midline and intralaminar nuclei are anatomically and functionally distinct, they collectively serve a vital role in several affective, cognitive and executive behaviors - as major components of a brainstem-diencephalic-thalamocortical circuitry.
Collapse
Affiliation(s)
- Robert P. Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
| | - Stephanie B. Linley
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychological Science, University of North Georgia, Dahlonega, GA, United States
| | - Amanda K. P. Rojas
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
14
|
Arnts H, Tewarie P, van Erp WS, Overbeek BU, Stam CJ, Lavrijsen JCM, Booij J, Vandertop WP, Schuurman R, Hillebrand A, van den Munckhof P. Clinical and neurophysiological effects of central thalamic deep brain stimulation in the minimally conscious state after severe brain injury. Sci Rep 2022; 12:12932. [PMID: 35902627 PMCID: PMC9334292 DOI: 10.1038/s41598-022-16470-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022] Open
Abstract
Deep brain stimulation (DBS) of the central thalamus is an experimental treatment for restoration of impaired consciousness in patients with severe acquired brain injury. Previous results of experimental DBS are heterogeneous, but significant improvements in consciousness have been reported. However, the mechanism of action of DBS remains unknown. We used magnetoencephalography to study the direct effects of DBS of the central thalamus on oscillatory activity and functional connectivity throughout the brain in a patient with a prolonged minimally conscious state. Different DBS settings were used to improve consciousness, including two different stimulation frequencies (50 Hz and 130 Hz) with different effective volumes of tissue activation within the central thalamus. While both types of DBS resulted in a direct increase in arousal, we found that DBS with a lower frequency (50 Hz) and larger volume of tissue activation was associated with a stronger increase in functional connectivity and neural variability throughout the brain. Moreover, this form of DBS was associated with improvements in visual pursuit, a reduction in spasticity, and improvement of swallowing, eight years after loss of consciousness. However, after DBS, all neurophysiological markers remained significantly lower than in healthy controls and objective increases in consciousness remained limited. Our findings provide new insights on the mechanistic understanding of neuromodulatory effects of DBS of the central thalamus in humans and suggest that DBS can re-activate dormant functional brain networks, but that the severely injured stimulated brain still lacks the ability to serve cognitive demands.
Collapse
Affiliation(s)
- Hisse Arnts
- Department of Neurosurgery, Amsterdam Neurosciences, Systems & Network Neurosciences, Amsterdam UMC (Location AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Prejaas Tewarie
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Willemijn S van Erp
- Department of Primary and Community Care, Center for Family Medicine, Geriatric Care and Public Health, Radboud University Medical Center, Nijmegen, The Netherlands
- Accolade Zorg, Bosch en Duin, The Netherlands
- Libra Rehabilitation & Audiology, Tilburg, The Netherlands
| | - Berno U Overbeek
- Department of Primary and Community Care, Center for Family Medicine, Geriatric Care and Public Health, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jan C M Lavrijsen
- Department of Primary and Community Care, Center for Family Medicine, Geriatric Care and Public Health, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - William P Vandertop
- Department of Neurosurgery, Amsterdam Neurosciences, Systems & Network Neurosciences, Amsterdam UMC (Location AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Rick Schuurman
- Department of Neurosurgery, Amsterdam Neurosciences, Systems & Network Neurosciences, Amsterdam UMC (Location AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pepijn van den Munckhof
- Department of Neurosurgery, Amsterdam Neurosciences, Systems & Network Neurosciences, Amsterdam UMC (Location AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|