1
|
Meng Y, Xian T, Kang G, Wang H, Feng T. Effects of dietary l-carnosine supplementation on the growth, intestinal microbiota, and serum metabolome of fattening lambs. Front Vet Sci 2025; 11:1525783. [PMID: 39911489 PMCID: PMC11795826 DOI: 10.3389/fvets.2024.1525783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025] Open
Abstract
Dietary l-carnosine supplementation has been shown to enhance animal performance and improve meat quality. However, the mechanisms underlying the effects of l-carnosine on the physiological functions of animals have not been fully elucidated. We investigated the effects of dietary l-carnosine supplementation on growth performance, intestinal microbiota diversity, and the serum metabolome in fattening lambs to reveal the molecular mechanism underlying the effect of l-carnosine on the growth performance of sheep. Sixty 3-month-old male crossbred lambs (Dorper ♂ × Small Tail Han ♀) with an average body weight of 30 ± 5 kg were randomly divided into two groups: a control group (group C) fed a basal diet, and an experimental group (group L) fed a basal diet supplemented with 400 mg/kg of l-carnosine. At the end of the 60-day experiment, all sheep were weighed, and fecal and blood samples were collected from 12 random sheep. The fecal microbiota was analyzed using 16S rRNA sequencing, and serum metabolites were analyzed using liquid chromatography-tandem mass spectrometry. Spearman correlation analysis was employed to assess the associations between intestinal microbiota and serum metabolite biomarkers. The results showed that weight gain and daily weight gain were significantly increased in group L compared to group C (p < 0.01). The dominant phyla in the intestinal microbiota (Firmicutes and Bacteroidetes) did not significantly differ between the two groups (p > 0.05). At the genus level, the abundances of Syntrophococcus (p < 0.01) and Butyricimonas (p < 0.001) were higher, whereas those of Escherichia-Shigella and Candidatus Saccharimonas were significantly lower in group L than in group C (p < 0.05). Non-targeted metabolomics identified 68 differentially abundant biomarkers (VIP > 1, p < 0.05). The content of pyridine N-oxide glucuronide was significantly downregulated (p < 0.01), whereas those of l-histidinol, d-apiose, and isodomedin were significantly upregulated in group L versus group C (p < 0.001). Holdemania and Butyricimonas were positively correlated with l-histidine, d-apiose, and l-erythrulose (p < 0.001), whereas Butyricimonas was negatively correlated with pyridine N-oxide glucuronide (p < 0.001). This study provided new insights into the effects of l-carnosine on the intestinal microbiota and nutrient metabolism in fattening sheep that will be helpful for the future application of l-carnosine in ruminants.
Collapse
Affiliation(s)
- Yaxuan Meng
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
- Joint Laboratory of Animal Science Between IAHVM of BAAFS, Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing, China
| | - Tingting Xian
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Joint Laboratory of Animal Science Between IAHVM of BAAFS, Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing, China
| | - Guolei Kang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Hongna Wang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Tao Feng
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
- Joint Laboratory of Animal Science Between IAHVM of BAAFS, Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing, China
| |
Collapse
|
2
|
Yu Y, Fu R, Jin C, Han L, Gao H, Fu B, Qi M, Li Q, Leng J. Multi-Omics Insights into Rumen Microbiota and Metabolite Interactions Regulating Milk Fat Synthesis in Buffaloes. Animals (Basel) 2025; 15:248. [PMID: 39858248 PMCID: PMC11758634 DOI: 10.3390/ani15020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The present study was conducted to analyze the correlation between the milk fat content of Binglangjiang buffaloes and their microbial and host metabolites. The 10 buffaloes with the highest milk fat content (HF, 5.60 ± 0.61%) and the 10 with the lowest milk fat content (LF, 1.49 ± 0.13%) were selected. Their rumen fluid and plasma were collected for rumen microbiota and metabolome analysis. The results showed that the rumen bacteria abundance of Synergistota, Quinella, Selenomonas, and Fretibacterium was significantly higher in the HF buffaloes. The abundance of 14 rumen fungi, including Candida, Talaromyces, Cyrenella, and Stilbella, was significantly higher in the HF buffaloes. The analysis of the metabolites in the rumen and plasma showed that several metabolites differed between the HF and LF buffaloes. A total of 68 and 42 differential metabolites were identified in the rumen and plasma, respectively. By clustering these differential metabolites, most of those clustered in the HF group were lipid and lipid-like molecules such as secoeremopetasitolide B, lucidenic acid J LysoPE (0:0/18:2 (9Z, 12Z)), and 5-tetradecenoic acid. Spearman's rank correlations showed that Quinella, Fretibacterium, Selenomonas, Cyrenella, and Stilbella were significantly positively correlated with the metabolites of the lipids and lipid-like molecules in the rumen and plasma. The results suggest that rumen microbiota such as Quinella, Fretibacterium, Selenomonas, and Cyrenella may regulate milk fat synthesis by influencing the lipid metabolites in the rumen and plasma. In addition, the combined analysis of the rumen microbiota and host metabolites may provide a fundamental understanding of the role of the microbiota and host in regulating milk fat synthesis.
Collapse
Affiliation(s)
- Ye Yu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (L.H.); (H.G.); (B.F.); (M.Q.); (Q.L.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Runqi Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (L.H.); (H.G.); (B.F.); (M.Q.); (Q.L.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Chunjia Jin
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (L.H.); (H.G.); (B.F.); (M.Q.); (Q.L.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Lin Han
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (L.H.); (H.G.); (B.F.); (M.Q.); (Q.L.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Huan Gao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (L.H.); (H.G.); (B.F.); (M.Q.); (Q.L.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Binlong Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (L.H.); (H.G.); (B.F.); (M.Q.); (Q.L.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Min Qi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (L.H.); (H.G.); (B.F.); (M.Q.); (Q.L.)
- Yunnan Animal Husbandry Station, Kunming 650224, China
| | - Qian Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (L.H.); (H.G.); (B.F.); (M.Q.); (Q.L.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Leng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (L.H.); (H.G.); (B.F.); (M.Q.); (Q.L.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Yu Y, Fu R, Jin C, Gao H, Han L, Fu B, Qi M, Li Q, Suo Z, Leng J. Regulation of Milk Fat Synthesis: Key Genes and Microbial Functions. Microorganisms 2024; 12:2302. [PMID: 39597692 PMCID: PMC11596427 DOI: 10.3390/microorganisms12112302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Milk is rich in a variety of essential nutrients, including fats, proteins, and trace elements that are important for human health. In particular, milk fat has an alleviating effect on diseases such as heart disease and diabetes. Fatty acids, the basic units of milk fat, play an important role in many biological reactions in the body, including the involvement of glycerophospholipids and sphingolipids in the formation of cell membranes. However, milk fat synthesis is a complex biological process involving multiple organs and tissues, and how to improve milk fat of dairy cows has been a hot research issue in the industry. There exists a close relationship between milk fat synthesis, genes, and microbial functions, as a result of the organic integration between the different tissues of the cow's organism and the external environment. This review paper aims (1) to highlight the synthesis and regulation of milk fat by the first and second genomes (gastrointestinal microbial genome) and (2) to discuss the effects of ruminal microorganisms and host metabolites on milk fat synthesis. Through exploring the interactions between the first and second genomes, and discovering the relationship between microbial and host metabolite in the milk fat synthesis pathway, it may become a new direction for future research on the mechanism of milk fat synthesis in dairy cows.
Collapse
Affiliation(s)
- Ye Yu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Runqi Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Chunjia Jin
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Huan Gao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Lin Han
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Binlong Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Min Qi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
| | - Qian Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Zhuo Suo
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Leng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Xu G, Huang J, Chen W, Zhao A, Pan J, Yu F. The Influence of Increasing Roughage Content in the Diet on the Growth Performance and Intestinal Flora of Jinwu and Duroc × Landrace × Yorkshire Pigs. Animals (Basel) 2024; 14:1913. [PMID: 38998025 PMCID: PMC11240776 DOI: 10.3390/ani14131913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
The Jinwu pig (JW) is a hybrid breed originating from the Chinese indigenous Jinhua pig and Duroc pig, boasting excellent meat quality and fast growth rates. This study aimed to verify the tolerance of JW to roughage, similar to most Chinese indigenous pigs. In this research, two types of feed were provided to JW and Duroc × Landrace × Yorkshire pigs (DLY): a basal diet and a roughage diet (increasing the rice bran and wheat bran content in the basal diet from 23% to 40%) for a 65-day experimental period. The roughage diet showed an increasing trend in the feed conversion ratio (F/G), with a 17.61% increase in feed consumption per unit weight gain for DLY, while the increase for JW was only 4.26%. A 16S rRNA sequencing analysis revealed that the roughage diet increased the relative abundance of beneficial bacteria, such as Lactobacillus and Clostridium, while reducing the relative abundance of some potential pathogens, thus improving the gut microbiota environment. After being fed with the roughage diet, the abundance of bacterial genera, such as Treponema, Terrisporobacter, Coprococcus, and Ruminococcaceae, which aid in the digestion and utilization of dietary fiber, were significantly higher in Jinwu compared to DLY, indicating that these bacterial genera confer Jinwu with a higher tolerance to roughage than DLY.
Collapse
Affiliation(s)
- Gaili Xu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, 666 Wu Su Street, Hangzhou 311300, China
| | - Jing Huang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Wenduo Chen
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, 666 Wu Su Street, Hangzhou 311300, China
| | - Ayong Zhao
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, 666 Wu Su Street, Hangzhou 311300, China
| | - Jianzhi Pan
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Fuxian Yu
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| |
Collapse
|
5
|
Zhang J, Shi B, Lu S, Wang S, Ren X, Liu R, Dong H, Li K, Fouad D, Ataya FS, Mansoor MK, Qamar H, Wu Q. Metagenomic analysis for exploring the potential of Lactobacillus yoelii FYL1 to mitigate bacterial diarrhea and changes in the gut microbiota of juvenile yaks. Microb Pathog 2024; 186:106496. [PMID: 38072228 DOI: 10.1016/j.micpath.2023.106496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/02/2024]
Abstract
Diarrhea in calves is a common disease that results in poor nutrient absorption, poor growth and early death which leads to productivity and economic losses. Therefore, it is important to explore the methods to reduce diarrhea in yak's calves. Efficacy of lactic acid bacteria (LAB) for improvement of bacterial diarrhea is well recognized. For this purpose, two different doses (107 CFU, 1011 CFU) of Lactobacillus yoelii FYL1 isolated from yaks were fed to juvenile yaks exposed to E. coli O78. After a trial period of ten days fresh feces and intestinal contents of the experimental yaks were collected and metagenomics sequencing was performed. It was found that feeding a high dose of Lactobacillus yoelii FYL1 decreased abundance of phylum Firmicutes in the E. coli O78 infected group whereas, it was high in animals fed low dose of Lactobacillu yoelii FYL1. Results also revealed that counts of bacteria from the family Oscillospiraceae, genus Synergistes and Megasphaera were higher in control group whereas, order Bifidobacteriales and family Bifidobacteriaceae were higher in infected group. It was observed that bacterial counts for Pseudoruminococcus were significantly (P < 0.05) higher in animals of group that were given high dose of Lactobacillus yoelii FYL1 (HLAB). Compared to infected group multiple beneficial bacterial genera such as Deinococus and Clostridium were found higher in the animals that were given a low dose of Lactobacillus yoelii FYL1 (LLAB). The abundance of pathogenic bacterial genera that included Parascardovia, Bacteroides and Methanobrevibacter was decreased (P < 0.05) in the lower dose treated group. The results of functional analysis revealed that animals of LLAB had a higher metabolism of terpenoids and polyketides compared to animals of infected group. Virus annotation also presented a significant inhibitory effect of LLAB on some viruses (P < 0.05). It was concluded that L. yoelii FYL1 had an improved effect on gut microbiota of young yaks infected with E. coli O78. This experiment contributes to establish the positive effects of LAB supplementation while treating diarrhea.
Collapse
Affiliation(s)
- Jingbo Zhang
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Bin Shi
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China; Institute of Animal Husbandry and Veterinary Medicine, Tibet Autonomous Region Academy of Agriculture and Animal Science, Lhasa, 850009, China
| | - Sijia Lu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuo Wang
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Xiaoli Ren
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Ruidong Liu
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Hailong Dong
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, Riyadh, 11495, Saudi Arabia
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Khalid Mansoor
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Hammad Qamar
- Institute of Animal Sciences, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Qingxia Wu
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China.
| |
Collapse
|
6
|
Liu L, Wu P, Guo A, Yang Y, Chen F, Zhang Q. Research progress on the regulation of production traits by gastrointestinal microbiota in dairy cows. Front Vet Sci 2023; 10:1206346. [PMID: 37592942 PMCID: PMC10427726 DOI: 10.3389/fvets.2023.1206346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
The composition and abundance of microorganisms in the gastrointestinal tract of cows are complex and extensive, and they play a crucial role in regulating nutrient digestion, absorption, maintaining digestive tract stability, and promoting the production and health of the host. The fermentation carried out by these microorganisms in the gastrointestinal tract is fundamental to the health and productivity of cows. Rumen microorganisms produce the majority of enzymes required to break down feed substrates, such as cellulose, protein, lipids, and other plant materials, through fermentation. This process provides energy metabolism substrates that satisfy approximately 70% of the host's energy requirements for physiological activities. Gut microorganisms primarily decompose cellulose that is difficult to digest in the rumen, thereby providing heat and energy to the hosts. Additionally, they have an impact on host health and productivity through their role in immune function. Understanding the composition and function of the cow gut microbiota can help regulate dairy cattle breeding traits and improve their health status. As a result, it has become a popular research topic in dairy cattle breeding. This article provides a review of the composition, structure, physiological characteristics, and physiological effects of the cow gut microbiota, serving as a theoretical foundation for future studies that aim to utilize the gut microbiota for dairy cattle breeding or improving production traits. It may also serve as a reference for research on gut microbiota of other ruminants.
Collapse
Affiliation(s)
- Lily Liu
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Peifu Wu
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Aiwei Guo
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Yajin Yang
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Fenfen Chen
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Qin Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
7
|
Abdugheni R, Li L, Yang ZN, Huang Y, Fang BZ, Shurigin V, Mohamad OAA, Liu YH, Li WJ. Microbial Risks Caused by Livestock Excrement: Current Research Status and Prospects. Microorganisms 2023; 11:1897. [PMID: 37630456 PMCID: PMC10456746 DOI: 10.3390/microorganisms11081897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Livestock excrement is a major pollutant yielded from husbandry and it has been constantly imported into various related environments. Livestock excrement comprises a variety of microorganisms including certain units with health risks and these microorganisms are transferred synchronically during the management and utilization processes of livestock excrement. The livestock excrement microbiome is extensively affecting the microbiome of humans and the relevant environments and it could be altered by related environmental factors as well. The zoonotic microorganisms, extremely zoonotic pathogens, and antibiotic-resistant microorganisms are posing threats to human health and environmental safety. In this review, we highlight the main feature of the microbiome of livestock excrement and elucidate the composition and structure of the repertoire of microbes, how these microbes transfer from different spots, and they then affect the microbiomes of related habitants as a whole. Overall, the environmental problems caused by the microbiome of livestock excrement and the potential risks it may cause are summarized from the microbial perspective and the strategies for prediction, prevention, and management are discussed so as to provide a reference for further studies regarding potential microbial risks of livestock excrement microbes.
Collapse
Affiliation(s)
- Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Ni Yang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Vyacheslav Shurigin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Cholewińska P, Szeligowska N, Wojnarowski K, Nazar P, Greguła-Kania M, Junkuszew A, Rant W, Radzik-Rant A, Marcinkowska A, Bodkowski R. Selected bacteria in sheep stool depending on breed and physiology state. Sci Rep 2023; 13:11739. [PMID: 37474553 PMCID: PMC10359392 DOI: 10.1038/s41598-023-38785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
One of the important factors influencing the microbial community of ruminants, besides environment or diet, are breed and physiology. Therefore, the purpose of this study was to assess these changes in the levels of basic microbial phyla and families. For this study, qPCR analysis was performed to determine the level of bacteria (Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria clusters and Clostridiaceae, Lactobacillaceae families) in the feces of ewes of three native Polish sheep breeds (Polish Lowland Sheep (PON), Świniarka Sheep (SW), and synthetic line BCP) at different physiological periods (conception, early pregnancy, lambing, end of lactation). The animals were kept in the same environment and were at the same age (2-years). The results showed a significant effect of both breed (p = 0.038) and physiological period (p < 0.05, p < 0.01) on the levels of bacteria analyzed. The breed showed differences across physiological periods. The influence of the race factor was noted primarily between the BCP synthetic line and the other two breeds (differences in terms of all analyzed clusters and families except Actinobacteria phyla). In the case of SW and PON, however, the observed differences were only at the level of Proteobacteria cluster and Clostridiaceae family. On the other hand, the early pregnant and lambing periods were the most microbiologically diverse in terms of the analyzed clusters and families of bacteria.
Collapse
Affiliation(s)
- Paulina Cholewińska
- Chair for Fish Diseases and Fisheries Biology, Ludwig-Maximilians-University of Munich, 80539, Munich, Germany
| | - Natalia Szeligowska
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126, Naples, Italy
| | - Konrad Wojnarowski
- Chair for Fish Diseases and Fisheries Biology, Ludwig-Maximilians-University of Munich, 80539, Munich, Germany
| | - Paulina Nazar
- Department of Animal Breeding and Agriculture Advisory, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - Monika Greguła-Kania
- Department of Animal Breeding and Agriculture Advisory, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - Andrzej Junkuszew
- Department of Animal Breeding and Agriculture Advisory, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - Witold Rant
- Institute of Animal Breeding, Warsaw University of Life Sciences-SGGW, 02-786, Warsaw, Poland
| | - Aurelia Radzik-Rant
- Institute of Animal Breeding, Warsaw University of Life Sciences-SGGW, 02-786, Warsaw, Poland
| | - Anna Marcinkowska
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland
| | - Robert Bodkowski
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland.
| |
Collapse
|
9
|
Zhang T, Ren Y, Yang C, Gebeyew K, Gao M, He Z, Tan Z. An integrated transcriptome and microbial community analysis reveals potential mechanisms for increased immune responses when replacing silybum marianum meal with soybean meal in growing lambs. Front Microbiol 2023; 14:1093129. [PMID: 36937266 PMCID: PMC10018209 DOI: 10.3389/fmicb.2023.1093129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Silybum marianum meal is a by-product that remains silymarin complex and is perceived as a potential-protein source. The potential and its mechanism of silybum marianum meal as a protein supplement in ruminants were evaluated by testing the growth performance, biochemical parameters, cytokine levels, gut transcriptome and microbial community profiles. Forty-two male Hulunbeier growing lambs (aged about 3-month-old; averaged body weight of 21.55 kg) were randomly divided into the CON (with 10% soybean meal) and SIL groups (with 10% silybum marianum meal). There was no significant difference in growth performance, feed intakes, or serum biochemical parameters between CON and SIL. The serum levels of IL-1β, TNF-α, TGF-β, HGF, and VEGF were all increased (p < 0.05) in the SIL group as compared with the CON group. Transcriptome gene set enrichment analysis (GSEA) revealed that the core genes in the rumen from SIL group were enriched with fructose and mannose metabolism, while the core genes in the ileum were enriched for three biological process, including digestive tract development, positive regulation of MAPK cascade, and regulation of I-kappaB kinase/NF-kappaB signaling. The 16S rDNA results showed that the relative abundance of Bacteroidetes, Firmicutes, Synergistetes, and Verrucomicrobia in the rumen from SIL group was significantly higher than that in CON group (p < 0.05), whereas Proteobacteria was significantly lower than that in CON group (p < 0.05). The LEfSe analysis showed that the genera Pyramidobacter, Saccharofermentans, Anaerovibrio, Oscillibacter and Barnesiella were enriched in the rumen from SIL group, whereas Sharpea was enriched in the CON group (LDA > 2). In the ileum, there were no significant differences in the phylum-level classification of microbes observed. At the genus level, the relative abundances of Bifidobacterium and Ruminococcus in the ileum from SIL group were significantly higher than that in the CON group (p < 0.05), whereas the relative abundance of Clostridium_XI was lower (p < 0.05). Correlation analysis showed that Clostridium_XI was negatively correlated with VEGF, TGF-β, TNF-α and HGF (p < 0.05). Core genes BMP4 and CD4 were negatively correlated with Clostridium_XI (p < 0.05). Our results indicated that supplementing silybum marianum meal as a replacement for soybean meal resulted in increased cytokines production without affecting growth performance in growing lambs, and the enrichment of immune-related genes and altered microbial community in the ileum were contributed to the increased immune responses.
Collapse
Affiliation(s)
- Tianxi Zhang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Science, Beijing, China
| | - Yanbo Ren
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- School of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Chao Yang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Science, Beijing, China
| | - Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Science, Beijing, China
| | - Min Gao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Science, Beijing, China
- *Correspondence: Zhixiong He,
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Science, Beijing, China
| |
Collapse
|
10
|
Kaur H, Ali SA, Yan F. Interactions between the gut microbiota-derived functional factors and intestinal epithelial cells - implication in the microbiota-host mutualism. Front Immunol 2022; 13:1006081. [PMID: 36159834 PMCID: PMC9492984 DOI: 10.3389/fimmu.2022.1006081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022] Open
Abstract
Mutual interactions between the gut microbiota and the host play essential roles in maintaining human health and providing a nutrient-rich environment for the gut microbial community. Intestinal epithelial cells (IECs) provide the frontline responses to the gut microbiota for maintaining intestinal homeostasis. Emerging evidence points to commensal bacterium-derived components as functional factors for the action of commensal bacteria, including protecting intestinal integrity and mitigating susceptibility of intestinal inflammation. Furthermore, IECs have been found to communicate with the gut commensal bacteria to shape the composition and function of the microbial community. This review will discuss the current understanding of the beneficial effects of functional factors secreted by commensal bacteria on IECs, with focus on soluble proteins, metabolites, and surface layer components, and highlight the impact of IECs on the commensal microbial profile. This knowledge provides a proof-of-concept model for understanding of mechanisms underlying the microbiota-host mutualism.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Syed Azmal Ali
- German Cancer Research Center, Division of Proteomics of Stem Cell and Cancer, Heidelberg, Germany
| | - Fang Yan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States,*Correspondence: Fang Yan,
| |
Collapse
|