1
|
Abdel-Mohsen M, Deeks S, Giron L, Hong KY, Goldman A, Zhang L, Huang SSY, Verrill D, Guo S, Selzer L, de Vries CR, Vendrame E, SenGupta D, Wallin JJ, Cai Y. Circulating immune and plasma biomarkers of time to HIV rebound in HIV controllers treated with vesatolimod. Front Immunol 2024; 15:1405348. [PMID: 38979421 PMCID: PMC11229794 DOI: 10.3389/fimmu.2024.1405348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Background Antiretroviral therapy (ART) for HIV-1 treatment has improved lifespan but requires lifelong adherence for people living with HIV (PLWH), highlighting the need for a cure. Evaluation of potential cure strategies requires analytic treatment interruption (ATI) with close monitoring of viral rebound. Predictive biomarkers for HIV-1 rebound and/or duration of control during ATI will facilitate these HIV cure trials while minimizing risks. Available evidence suggests that host immune, glycomic, lipid, and metabolic markers of inflammation may be associated with HIV-1 persistence in PLWH who are treated during chronic HIV-1 infection. Methods We conducted post-hoc analysis of HIV controllers who could maintain low levels of plasma HIV-1 without ART in a phase 1b vesatolimod trial. Baseline and pre-ATI levels of immune, glycomic, lipidomic, and metabolomic markers were tested for association with ATI outcomes (time of HIV-1 rebound to 200 copies/mL and 1,000 copies/mL, duration of HIV-1 RNA ≤400 copies/mL and change in intact proviral HIV-1 DNA during ATI) using Spearman's correlation and Cox proportional hazards model. Results Higher levels of CD69+CD8+ T-cells were consistently associated with shorter time to HIV-1 rebound at baseline and pre-ATI. With few exceptions, baseline fucosylated, non-galactosylated, non-sialylated, bisecting IgG N-glycans were associated with shorter time to HIV rebound and duration of control as with previous studies. Baseline plasma MPA and HPA binding glycans and non-galactosylated/non-sialylated glycans were associated with longer time to HIV rebound, while baseline multiply-galactosylated glycans and sialylated glycans, GNA-binding glycans, NPA-binding glycans, WGA-binding glycans, and bisecting GlcNAc glycans were associated with shorter time to HIV rebound and duration of control. Fourteen bioactive lipids had significant baseline associations with longer time to rebound and duration of control, and larger intact proviral HIV-1 DNA changes; additionally, three baseline bioactive lipids were associated with shorter time to first rebound and duration of control. Conclusion Consistent with studies in HIV non-controllers, proinflammatory glycans, lipids, and metabolites were generally associated with shorter duration of HIV-1 control. Notable differences were observed between HIV controllers vs. non-controllers in some specific markers. For the first time, exploratory biomarkers of ATI viral outcomes in HIV-controllers were investigated but require further validation.
Collapse
Affiliation(s)
- Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Steven Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Leila Giron
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Kai Ying Hong
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Aaron Goldman
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, United States
| | - Liao Zhang
- Clinical Bioinformatics and Exploratory Analytics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Susie S. Y. Huang
- Clinical Bioinformatics and Exploratory Analytics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Donovan Verrill
- Statistical Programming, Gilead Sciences, Inc., Foster City, CA, United States
| | - Susan Guo
- Biostatistics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Lisa Selzer
- Clinical Virology, Gilead Sciences, Inc., Foster City, CA, United States
| | | | - Elena Vendrame
- Clinical Development, Gilead Sciences, Inc., Foster City, CA, United States
| | - Devi SenGupta
- Clinical Development, Gilead Sciences, Inc., Foster City, CA, United States
| | - Jeffrey J. Wallin
- Biomarker Sciences and Diagnostics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Yanhui Cai
- Biomarker Sciences and Diagnostics, Gilead Sciences, Inc., Foster City, CA, United States
| |
Collapse
|
2
|
Vianello E, Ambrogi F, Kalousová M, Badalyan J, Dozio E, Tacchini L, Schmitz G, Zima T, Tsongalis GJ, Corsi-Romanelli MM. Circulating perturbation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is associated to cardiac remodeling and NLRP3 inflammasome in cardiovascular patients with insulin resistance risk. Exp Mol Pathol 2024; 137:104895. [PMID: 38703553 DOI: 10.1016/j.yexmp.2024.104895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
Lipidome perturbation occurring during meta-inflammation is associated to left ventricle (LV) remodeling though the activation of the NLRP3 inflammasome, a key regulator of chronic inflammation in obesity-related disorders. Little is known about phosphatidylcholine (PC) and phosphatidylethanolamine (PE) as DAMP-induced NLRP3 inflammasome. Our study is aimed to evaluate if a systemic reduction of PC/PE molar ratio can affect NLRP3 plasma levels in cardiovascular disease (CVD) patients with insulin resistance (IR) risk. Forty patients from IRCCS Policlinico San Donato were enrolled, and their blood samples were drawn before heart surgery. LV geometry measurements were evaluated by echocardiography and clinical data associated to IR risk were collected. PC and PE were quantified by ESI-MS/MS. Circulating NLRP3 was quantified by an ELISA assay. Our results have shown that CVD patients with IR risk presented systemic lipid impairment of PC and PE species and their ratio in plasma was inversely associated to NLRP3 levels. Interestingly, CVD patients with IR risk presented LV changes directly associated to increased levels of NLRP3 and a decrease in PC/PE ratio in plasma, highlighting the systemic effect of meta-inflammation in cardiac response. In summary, PC and PE can be considered bioactive mediators associated to both the NLRP3 and LV changes in CVD patients with IR risk.
Collapse
Affiliation(s)
- Elena Vianello
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; Experimental Laboratory for Research on Organ Damage Biomarkers, IRCCS Istituto Auxologico Italiano, Italy.
| | - Federico Ambrogi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Marta Kalousová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and Prague General University Hospital, Prague, Czech Republic
| | - Julietta Badalyan
- Scuola di Specializzazione in Statistica Sanitaria e Biometria, Università Degli Studi Di Milano, Milan, Italy
| | - Elena Dozio
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; Experimental Laboratory for Research on Organ Damage Biomarkers, IRCCS Istituto Auxologico Italiano, Italy
| | - Lorenza Tacchini
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; Experimental Laboratory for Research on Organ Damage Biomarkers, IRCCS Istituto Auxologico Italiano, Italy
| | - Gerd Schmitz
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Tomáš Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and Prague General University Hospital, Prague, Czech Republic
| | - Gregory J Tsongalis
- Dartmouth-Hitchcock Medical Center, Department of Pathology and Laboratory Medicine, Lebanon, NH, USA
| | - Massimiliano M Corsi-Romanelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; Department of Experimental and Clinical Pathology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
3
|
Morita SY. Phospholipid biomarkers of coronary heart disease. J Pharm Health Care Sci 2024; 10:23. [PMID: 38734675 PMCID: PMC11088770 DOI: 10.1186/s40780-024-00344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
Coronary heart disease, also known as ischemic heart disease, is induced by atherosclerosis, which is initiated by subendothelial retention of lipoproteins. Plasma lipoproteins, including high density lipoprotein, low density lipoprotein (LDL), very low density lipoprotein, and chylomicron, are composed of a surface monolayer containing phospholipids and cholesterol and a hydrophobic core containing triglycerides and cholesteryl esters. Phospholipids play a crucial role in the binding of apolipoproteins and enzymes to lipoprotein surfaces, thereby regulating lipoprotein metabolism. High LDL-cholesterol is a well-known risk factor for coronary heart disease, and statins reduce the risk of coronary heart disease by lowering LDL-cholesterol levels. In contrast, the relationships of phospholipids in plasma lipoproteins with coronary heart disease have not yet been established. To further clarify the physiological and pathological roles of phospholipids, we have developed the simple high-throughput assays for quantifying all major phospholipid classes, namely phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidic acid, phosphatidylinositol, phosphatidylglycerol + cardiolipin, and sphingomyelin, using combinations of specific enzymes and a fluorogenic probe. These enzymatic fluorometric assays will be helpful in elucidating the associations between phospholipid classes in plasma lipoproteins and coronary heart disease and in identifying phospholipid biomarkers. This review describes recent progress in the identification of phospholipid biomarkers of coronary heart disease.
Collapse
Affiliation(s)
- Shin-Ya Morita
- Department of Pharmacotherapeutics, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.
| |
Collapse
|
4
|
Couch CA, Ament Z, Patki A, Kijpaisalratana N, Bhave V, Jones AC, Armstrong ND, Cushman M, Kimberly WT, Irvin MR. Sex-Associated Metabolites and Incident Stroke, Incident Coronary Heart Disease, Hypertension, and Chronic Kidney Disease in the REGARDS Cohort. J Am Heart Assoc 2024; 13:e032643. [PMID: 38686877 PMCID: PMC11179891 DOI: 10.1161/jaha.123.032643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Sex disparities exist in cardiometabolic diseases. Metabolomic profiling offers insight into disease mechanisms, as the metabolome is influenced by environmental and genetic factors. We identified metabolites associated with sex and determined if sex-associated metabolites are associated with incident stoke, incident coronary heart disease, prevalent hypertension, and prevalent chronic kidney disease. METHODS AND RESULTS Targeted metabolomics was conducted for 357 metabolites in the REGARDS (Reasons for Geographic and Racial Differences in Stroke) case-cohort substudy for incident stroke. Weighted logistic regression models were used to identify metabolites associated with sex in REGARDS. Sex-associated metabolites were replicated in the HyperGEN (Hypertension Genetic Epidemiology Network) and using the literature. Weighted Cox proportional hazard models were used to evaluate associations between metabolites and incident stroke. Cox proportional hazard models were used to evaluate associations between metabolites and incident coronary heart disease. Weighted logistic regression models were used to evaluate associations between metabolites and hypertension and chronic kidney disease. Fifty-one replicated metabolites were associated with sex. Higher levels of 6 phosphatidylethanolamines were associated with incident stroke. No metabolites were associated with incident coronary heart disease. Higher levels of uric acid and leucine and lower levels of a lysophosphatidylcholine were associated with hypertension. Higher levels of indole-3-lactic acid, 7 phosphatidylethanolamines, and uric acid, and lower levels of betaine and bilirubin were associated with chronic kidney disease. CONCLUSIONS These findings suggest that the sexual dimorphism of the metabolome may contribute to sex differences in stroke, hypertension, and chronic kidney disease.
Collapse
Affiliation(s)
- Catharine A. Couch
- Department of Epidemiology, School of Public HealthUniversity of Alabama at BirminghamBirminghamALUSA
| | - Zsuzsanna Ament
- Department of NeurologyMassachusetts General HospitalBostonMAUSA
- Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Amit Patki
- Department of Biostatistics, School of Public HealthUniversity of Alabama at BirminghamBirminghamALUSA
| | - Naruchorn Kijpaisalratana
- Department of NeurologyMassachusetts General HospitalBostonMAUSA
- Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
- Division of Neurology, Department of Medicine and Division of Academic Affairs, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | | | - Alana C. Jones
- Department of Epidemiology, School of Public HealthUniversity of Alabama at BirminghamBirminghamALUSA
| | - Nicole D. Armstrong
- Department of Epidemiology, School of Public HealthUniversity of Alabama at BirminghamBirminghamALUSA
| | - Mary Cushman
- Department of MedicineLarner College of Medicine at the University of VermontBurlingtonVTUSA
| | - W. Taylor Kimberly
- Department of NeurologyMassachusetts General HospitalBostonMAUSA
- Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
| | - M. Ryan Irvin
- Department of Epidemiology, School of Public HealthUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
5
|
Ren J, Rodriguez L, Johnson T, Henning A, Dhaher YY. 17β-Estradiol Effects in Skeletal Muscle: A 31P MR Spectroscopic Imaging (MRSI) Study of Young Females during Early Follicular (EF) and Peri-Ovulation (PO) Phases. Diagnostics (Basel) 2024; 14:235. [PMID: 38337751 PMCID: PMC10854839 DOI: 10.3390/diagnostics14030235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
The natural variation in estrogen secretion throughout the female menstrual cycle impacts various organs, including estrogen receptor (ER)-expressed skeletal muscle. Many women commonly experience increased fatigue or reduced energy levels in the days leading up to and during menstruation, when blood estrogen levels decline. Yet, it remains unclear whether endogenous 17β-estradiol, a major estrogen component, directly affects the energy metabolism in skeletal muscle due to the intricate and fluctuating nature of female hormones. In this study, we employed 2D 31P FID-MRSI at 7T to investigate phosphoryl metabolites in the soleus muscle of a cohort of young females (average age: 28 ± 6 years, n = 7) during the early follicular (EF) and peri-ovulation (PO) phases, when their blood 17β-estradiol levels differ significantly (EF: 28 ± 18 pg/mL vs. PO: 71 ± 30 pg/mL, p < 0.05), while the levels of other potentially interfering hormones remain relatively invariant. Our findings reveal a reduction in ATP-referenced phosphocreatine (PCr) levels in the EF phase compared to the PO phase for all participants (5.4 ± 4.3%). Furthermore, we observe a linear correlation between muscle PCr levels and blood 17β-estradiol concentrations (r = 0.64, p = 0.014). Conversely, inorganic phosphate Pi and phospholipid metabolite GPC levels remain independent of 17β-estradiol but display a high correlation between the EF and PO phases (p = 0.015 for Pi and p = 0.0008 for GPC). The robust association we have identified between ATP-referenced PCr and 17β-estradiol suggests that 17β-estradiol plays a modulatory role in the energy metabolism of skeletal muscle.
Collapse
Affiliation(s)
- Jimin Ren
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luis Rodriguez
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA;
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Talon Johnson
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Anke Henning
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yasin Y. Dhaher
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA;
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Shoghli M, Lokki AI, Lääperi M, Sinisalo J, Lokki ML, Hilvo M, Jylhä A, Tuomilehto J, Laaksonen R. The Novel Ceramide- and Phosphatidylcholine-Based Risk Score for the Prediction of New-Onset of Hypertension. J Clin Med 2023; 12:7524. [PMID: 38137595 PMCID: PMC10743541 DOI: 10.3390/jcm12247524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Ceramides and other sphingolipids are implicated in vascular dysfunction and inflammation. They have been suggested as potential biomarkers for hypertension. However, their specific association with hypertension prevalence and onset requires further investigation. This study aimed to identify specific ceramide and phosphatidylcholine species associated with hypertension prevalence and onset. The 2002 FINRISK (Finnish non-communicable risk factor survey) study investigated the association between coronary event risk scores (CERT1 and CERT2) and hypertension using prevalent and new-onset hypertension groups, both consisting of 7722 participants, over a span of 10 years. Ceramide and phosphatidylcholine levels were measured using tandem liquid chromatography-mass spectrometry. Ceramide and phosphatidylcholine ratios, including ceramide (d18:1/18:0), ceramide (d18:1/24:1), phosphatidylcholine (16:0/16:0), and the ratio of ceramide (d18:1/18:0)/(d18:1/16:0), are consistently associated with both prevalence and new-onset hypertension. Ceramide (d18:1/24:0) was also linked to both hypertension measures. Adjusting for covariates, CERT1 and CERT2 showed no-longer-significant associations with hypertension prevalence, but only CERT2 predicted new-onset hypertension. Plasma ceramides and phosphatidylcholines are crucial biomarkers for hypertension, with imbalances potentially contributing to its development. Further research is needed to understand the underlying mechanisms by which ceramides will contribute to the development of hypertension.
Collapse
Affiliation(s)
- Mohammadreza Shoghli
- Department of Population Health, University of Helsinki, 00014 Helsinki, Finland;
| | - A. Inkeri Lokki
- Heart and Lung Center, Helsinki University Hospital, 00014 Helsinki, Finland; (A.I.L.); (J.S.)
- Department of Bacteriology and Immunology and Translational Immunology Research Program, University of Helsinki, 00014 Helsinki, Finland
- Department of Pathology, University of Helsinki, 00290 Helsinki, Finland;
| | - Mitja Lääperi
- Lääperi Statistical Consulting, 02770 Espoo, Finland
| | - Juha Sinisalo
- Heart and Lung Center, Helsinki University Hospital, 00014 Helsinki, Finland; (A.I.L.); (J.S.)
| | - Marja-Liisa Lokki
- Department of Pathology, University of Helsinki, 00290 Helsinki, Finland;
| | - Mika Hilvo
- VTT Technical Research Centre of Finland, 02044 Espoo, Finland;
| | - Antti Jylhä
- Zora Biosciences Oy, 02620 Espoo, Finland (R.L.)
| | - Jaakko Tuomilehto
- Population Health Unit, Finnish Institute for Health and Welfare, 00271 Helsinki, Finland
- Department of Public Health, University of Helsinki, 00014 Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of International Health, National School of Public Health, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Reijo Laaksonen
- Zora Biosciences Oy, 02620 Espoo, Finland (R.L.)
- Finnish Cardiovascular Research Center, Tampere University Hospital, University of Tampere, 33521 Tampere, Finland
| |
Collapse
|
7
|
Chen M, Miao G, Zhang Y, Umans JG, Lee ET, Howard BV, Fiehn O, Zhao J. Longitudinal Lipidomic Profile of Hypertension in American Indians: Findings From the Strong Heart Family Study. Hypertension 2023; 80:1771-1783. [PMID: 37334699 PMCID: PMC10526703 DOI: 10.1161/hypertensionaha.123.21144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Dyslipidemia is an important risk factor for hypertension and cardiovascular disease. Standard lipid panel cannot reflect the complexity of blood lipidome. The associations of individual lipid species with hypertension remain to be determined in large-scale epidemiological studies, especially in a longitudinal setting. METHODS Using liquid chromatography-mass spectrometry, we repeatedly measured 1542 lipid species in 3699 fasting plasma samples at 2 visits (1905 at baseline, 1794 at follow-up, ~5.5 years apart) from 1905 unique American Indians in the Strong Heart Family Study. We first identified baseline lipids associated with prevalent and incident hypertension, followed by replication of top hits in Europeans. We then conducted repeated measurement analysis to examine the associations of changes in lipid species with changes in systolic blood pressure, diastolic blood pressure, and mean arterial pressure. Network analysis was performed to identify lipid networks associated with the risk of hypertension. RESULTS Baseline levels of multiple lipid species, for example, glycerophospholipids, cholesterol esters, sphingomyelins, glycerolipids, and fatty acids, were significantly associated with both prevalent and incident hypertension in American Indians. Some lipids were confirmed in Europeans. Longitudinal changes in multiple lipid species, for example, acylcarnitines, phosphatidylcholines, fatty acids, and triacylglycerols, were significantly associated with changes in blood pressure measurements. Network analysis identified distinct lipidomic patterns associated with the risk of hypertension. CONCLUSIONS Baseline plasma lipid species and their longitudinal changes are significantly associated with hypertension development in American Indians. Our findings shed light on the role of dyslipidemia in hypertension and may offer potential opportunities for risk stratification and early prediction of hypertension.
Collapse
Affiliation(s)
- Mingjing Chen
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL
| | - Guanhong Miao
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL
| | - Ying Zhang
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Jason G. Umans
- MedStar Health Research Institute, Hyattsville, MD
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC
| | - Elisa T. Lee
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Barbara V. Howard
- MedStar Health Research Institute, Hyattsville, MD
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California-Davis, CA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
8
|
Akash MSH, Yaqoob A, Rehman K, Imran M, Assiri MA, Al-Rashed F, Al-Mulla F, Ahmad R, Sindhu S. Metabolomics: a promising tool for deciphering metabolic impairment in heavy metal toxicities. Front Mol Biosci 2023; 10:1218497. [PMID: 37484533 PMCID: PMC10357477 DOI: 10.3389/fmolb.2023.1218497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Heavy metals are the metal compounds found in earth's crust and have densities higher than that of water. Common heavy metals include the lead, arsenic, mercury, cadmium, copper, manganese, chromium, nickel, and aluminum. Their environmental levels are consistently rising above the permissible limits and they are highly toxic as enter living systems via inhalation, ingestion, or inoculation. Prolonged exposures cause the disruption of metabolism, altered gene and/or protein expression, and dysregulated metabolite profiles. Metabolomics is a state of the art analytical tool widely used for pathomolecular inv22estigations, biomarkers, drug discovery and validation of biotransformation pathways in the fields of biomedicine, nutrition, agriculture, and industry. Here, we overview studies using metabolomics as a dynamic tool to decipher the mechanisms of metabolic impairment related to heavy metal toxicities caused by the environmental or experimental exposures in different living systems. These investigations highlight the key role of metabolomics in identifying perturbations in pathways of lipid and amino acid metabolism, with a critical role of oxidative stress in metabolic impairment. We present the conclusions with future perspectives on metabolomics applications in meeting emerging needs.
Collapse
Affiliation(s)
| | - Azka Yaqoob
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A. Assiri
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Fatema Al-Rashed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Research Division, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
9
|
Liu Z, Wang L, Gao S, Xue Q, Tan F, Li Z, Gao Y. Plasma metabolomics study in screening and differential diagnosis of multiple primary lung cancer. Int J Surg 2023; 109:297-312. [PMID: 36928390 PMCID: PMC10389222 DOI: 10.1097/js9.0000000000000006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/28/2022] [Indexed: 03/18/2023]
Abstract
BACKGROUND Multiple primary lung cancer (MPLC) is becoming increasingly common in clinical practice. Imaging examination is sometimes difficult to differentiate from intrapulmonary metastasis (IM) or single primary lung cancer (SPLC) before surgery. There is a lack of effective blood biomarkers as an auxiliary diagnostic method. PARTICIPANTS AND METHODS A total of 179 patients who were hospitalized and operated in our department from January to June 2019 were collected, and they were divided into SPLC with 136 patients, MPLC with 24 patients, and IM with 19 patients. In total, 96 healthy people without lung cancer were enrolled. Medical history, imaging, and pathology data were assembled from all participants. Plasma metabolomics analysis was performed by quadrupole time-of-flight tandem mass spectrometry, and data were analyzed using SPSS19.0/Simca 14.1/MetaboAnalyst5.0 software. Significant metabolites were selected by variable importance in projection, P value, and fold change. The area under the receiver operating characteristic curve was used to evaluate their diagnostic ability. RESULTS There were significant differences in plasma metabolite profiles between IM and MPLC. Seven metabolites were screened out. Two metabolites had higher levels in IM, and five metabolites had higher levels in MPLC. All had favorable discriminating capacity. Phosphatidyl ethanolamine (38:5) showed the highest sensitivity (0.95) and specificity (0.92). It was followed by l -histidine with sensitivity 0.92 and specificity 0.84. l -tyrosine can be used to identify SPLC and MPLC. The panel composed of related metabolites exhibited higher diagnostic ability. Eight principal metabolites caused remarkable differences between healthy people and MPLC, and five of them had area under the curves greater than 0.85, showing good discriminating power. CONCLUSION Through the study of plasma metabolomics, it was found that there were obvious differences in the metabolite profiles of MPLC, IM, SPLC, and the healthy population. Some discovered metabolites possessed excellent diagnostic competence with high sensitivity and specificity. They had the potential to act as biomarkers for the screening and differential diagnosis of MPLCs.
Collapse
Affiliation(s)
- Zixu Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Langfang, People’s Republic of China
| | - Ling Wang
- Department of Hematology, Beijing Chuiyangliu Hospital, Beijing
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Langfang, People’s Republic of China
| |
Collapse
|
10
|
Zeng W, Beyene HB, Kuokkanen M, Miao G, Magliano DJ, Umans JG, Franceschini N, Cole SA, Michailidis G, Lee ET, Howard BV, Fiehn O, Curran JE, Blangero J, Meikle PJ, Zhao J. Lipidomic profiling in the Strong Heart Study identified American Indians at risk of chronic kidney disease. Kidney Int 2022; 102:1154-1166. [PMID: 35853479 PMCID: PMC10753995 DOI: 10.1016/j.kint.2022.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022]
Abstract
Dyslipidemia associates with and usually precedes the onset of chronic kidney disease (CKD), but a comprehensive assessment of molecular lipid species associated with risk of CKD is lacking. Here, we sought to identify fasting plasma lipids associated with risk of CKD among American Indians in the Strong Heart Family Study, a large-scale community-dwelling of individuals, followed by replication in Mexican Americans from the San Antonio Family Heart Study and Caucasians from the Australian Diabetes, Obesity and Lifestyle Study. We also performed repeated measurement analysis to examine the temporal relationship between the change in the lipidome and change in kidney function between baseline and follow-up of about five years apart. Network analysis was conducted to identify differential lipid classes associated with risk of CKD. In the discovery cohort, we found that higher baseline level of multiple lipid species, including glycerophospholipids, glycerolipids and sphingolipids, was significantly associated with increased risk of CKD, independent of age, sex, body mass index, diabetes and hypertension. Many lipid species were replicated in at least one external cohort at the individual lipid species and/or the class level. Longitudinal change in the plasma lipidome was significantly associated with change in the estimated glomerular filtration rate after adjusting for covariates, baseline lipids and the baseline rate. Network analysis identified distinct lipidomic signatures differentiating high from low-risk groups. Thus, our results demonstrated that disturbed lipid metabolism precedes the onset of CKD. These findings shed light on the mechanisms linking dyslipidemia to CKD and provide potential novel biomarkers for identifying individuals with early impaired kidney function at preclinical stages.
Collapse
Affiliation(s)
- Wenjie Zeng
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Habtamu B Beyene
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Mikko Kuokkanen
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, USA
| | - Guanhong Miao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, Maryland, USA; Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, District of Columbia, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - George Michailidis
- Department of Statistics, University of Florida, Gainesville, Florida, USA
| | - Elisa T Lee
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Barbara V Howard
- MedStar Health Research Institute, Hyattsville, Maryland, USA; Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, District of Columbia, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California-Davis, Davis, California, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, USA
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
11
|
Hathaway QA, Yanamala N, Sengupta PP. Multimodal data for systolic and diastolic blood pressure prediction: The hypertension conscious artificial intelligence. EBioMedicine 2022; 84:104261. [PMID: 36113186 PMCID: PMC9483570 DOI: 10.1016/j.ebiom.2022.104261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Quincy A Hathaway
- Heart and Vascular Institute, West Virginia University School of Medicine, Morgantown, WV, USA.
| | - Naveena Yanamala
- Division of Cardiovascular Diseases, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Partho P Sengupta
- Division of Cardiovascular Diseases, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|