1
|
Yang Y, Tang N, Liu Y, Choi W, Kim JH, Kim HG, Yu T, Cho JY. PP2 suppresses proliferation and migration of C6 Glioma and MDA-MB-231 cells by targeting both fibroblast growth factor receptor 1 and Src. Chem Biol Interact 2024; 403:111252. [PMID: 39341487 DOI: 10.1016/j.cbi.2024.111252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Fibroblast growth factor (FGF) is involved in the progression of glioma, a most common type of brain tumor, and breast tumors. In this study, we aim to evaluate the effects of the inhibitor PP2 on cell proliferation and migration in glioma and breast tumor cells, and to characterize the molecular mechanisms involved in these processes. The inhibitory effect of PP2 on the tumorigenic potential of C6 glioma and MDA-MB-231 cells was examined by proliferation, migration, and invasion assays, and apoptotic analysis. The molecular mechanism behind the anti-glioma activity of PP2 was investigated by immunoblotting, immunoprecipitation, phosphoprotein assay, cellular thermal shift assay (CETSA), and molecular docking modeling. PP2 suppressed the proliferation and migration of C6 glioma and MDA-MB-231 cells via FGF2. Moreover, PP2 directly blocked the enzyme activity of FGF receptor 1 (FGFR1) and Src, subsequently affecting the nuclear factor-κB and activator protein-1 signaling pathways. CETSA analysis and the docking model indicated that the TK1 domains (Val 492 ad Glu 486) of FGFR2 could be binding sites of PP2. Collectively, therefore, our findings suggest that PP2 mediates antitumor effects by targeting both FGFR1 and Src and may have applications as a therapeutic inhibitor for the treatment of glioma.
Collapse
Affiliation(s)
- Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, 16 Jiangsu Road, Qingdao, 266071, PR China.
| | - Ningning Tang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, 266021, PR China.
| | - Yan Liu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, PR China.
| | - Wooram Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, 266021, PR China.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Kumagai K, Kamba K, Suzuki T, Sekikawa Y, Yuki C, Hamada M, Nagata K, Takaori-Kondo A, Wan L, Katahira M, Nagata T, Sakamoto T. Selection and characterization of aptamers targeting the Vif-CBFβ-ELOB-ELOC-CUL5 complex. J Biochem 2024; 176:205-215. [PMID: 38740386 DOI: 10.1093/jb/mvae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024] Open
Abstract
The viral infectivity factor (Vif) of human immunodeficiency virus 1 forms a complex with host proteins, designated as Vif-CBFβ-ELOB-ELOC-CUL5 (VβBCC), initiating the ubiquitination and subsequent proteasomal degradation of the human antiviral protein APOBEC3G (A3G), thereby negating its antiviral function. Whilst recent cryo-electron microscopy (cryo-EM) studies have implicated RNA molecules in the Vif-A3G interaction that leads to A3G ubiquitination, our findings indicated that the VβBCC complex can also directly impede A3G-mediated DNA deamination, bypassing the proteasomal degradation pathway. Employing the Systematic Evolution of Ligands by EXponential enrichment (SELEX) method, we have identified RNA aptamers with high affinity for the VβBCC complex. These aptamers not only bind to the VβBCC complex but also reinstate A3G's DNA deamination activity by inhibiting the complex's function. Moreover, we delineated the sequences and secondary structures of these aptamers, providing insights into the mechanistic aspects of A3G inhibition by the VβBCC complex. Analysis using selected aptamers will enhance our understanding of the inhibition of A3G by the VβBCC complex, offering potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Kazuyuki Kumagai
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Keisuke Kamba
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takuya Suzuki
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Yuto Sekikawa
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Chisato Yuki
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku,Tokyo 169-8555, Japan
| | - Michiaki Hamada
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku,Tokyo 169-8555, Japan
| | - Kayoko Nagata
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Li Wan
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Taiichi Sakamoto
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| |
Collapse
|
3
|
Carrion EA, Moses MM, Behringer RR. FGF5. Differentiation 2024; 139:100736. [PMID: 37957094 DOI: 10.1016/j.diff.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
FGF5 functions as a negative regulator of the hair cycle in mammals. It is expressed in the outer root sheath of hair follicles during the late anagen phase of the hair cycle. It functions as a signaling molecule, mediating the transition of the anagen growth phase to catagen regression phase of the hair cycle. Spontaneous and engineered FGF5 mutations in mammalian animal models result in long hair phenotypes. In humans, inherited FGF5 mutations result in trichomegaly (long eyelashes). Knockdown of fgf5 in zebrafish embryos results in inner ear alterations. Alterations in FGF5 expression are also associated with various human pathologies.
Collapse
Affiliation(s)
- Evelyn A Carrion
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Malcolm M Moses
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States.
| |
Collapse
|
4
|
Ma Z, Chen Q, Liu Z, Li X, Zhang H, Feng X. Genetically predicted inflammatory proteins and the risk of atrial fibrillation: a bidirectional Mendelian randomization study. Front Cardiovasc Med 2024; 11:1375750. [PMID: 38988665 PMCID: PMC11234858 DOI: 10.3389/fcvm.2024.1375750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/28/2024] [Indexed: 07/12/2024] Open
Abstract
Purpose The causal associations between inflammatory factors and atrial fibrillation (AF) remained unclear. We aimed to investigate whether genetically predicted inflammatory proteins are related to the risk of AF, and vice versa. Methods A bidirectional two-sample Mendelian randomization study was performed. The genetic variation of 91 inflammatory proteins were derived from genome-wide association study (GWAS) data of European ancestry (n = 14,824). Summary statistics for AF were obtained from a published meta-analysis study (n = 1,030,836) and the FinnGen study (n = 261,395). Results Genetically predicted fibroblast growth factor 5 (FGF5) was significantly positively associated with risk of AF [[odds ratio (OR): 1.07; 95% CI: 1.04-1.10; P < 0.01], and CD40l receptor was significantly negatively associated with risk of AF (OR: 0.95; 95% CI: 0.92-0.98; P = 0.02) in the meta-analysis study. In the FinnGen study, similar results were observed in FGF5 (OR: 1.11; 95% CI: 1.06-1.16; P < 0.01) and CD40l receptor (OR: 0.93; 95% CI: 0.89-0.97; P = 0.03) for AF. In the FinnGen study, TNF-beta was significantly positively associated with risk of AF (OR: 1.05; 95% CI: 1.02-1.09; P = 0.03) and leukemia inhibitory factor receptor was significantly negatively associated with risk of AF (OR: 0.86; 95% CI: 0.80-0.91; P = 0.001). The causal effect of AF on inflammatory proteins was not observed. Conclusion Our study suggested that FGF5 and CD40l receptor have a potential causal association with AF, and targeting these factors may help in the treatment of AF.
Collapse
Affiliation(s)
| | | | | | | | - Huaming Zhang
- Division of Cardiology, Departments of Internal Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Feng
- Division of Cardiology, Departments of Internal Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Stangis MM, Colah AN, McLean DT, Halberg RB, Collier LS, Ricke WA. Potential roles of FGF5 as a candidate therapeutic target in prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:452-466. [PMID: 38148937 PMCID: PMC10749387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/13/2023] [Indexed: 12/28/2023]
Abstract
Fibroblast growth factor (FGF) is a secreted ligand that is widely expressed in embryonic tissues but its expression decreases with age. In the developing prostate, FGF5 has been proposed to interact with the Hedgehog (Hh) signaling pathway to guide mitogenic processes. In the adult prostate, the FGF/FGFR signaling axis has been implicated in prostate carcinogenesis, but focused studies on FGF5 functions in the prostate are limited. Functional studies completed in other cancer models point towards FGF5 overexpression as an oncogenic driver associated with stemness, metastatic potential, proliferative capacity, and increased tumor grade. In this review, we explore the significance of FGF5 as a therapeutic target in prostate cancer (PCa) and other malignancies; and we introduce a potential route of investigation to link FGF5 to benign prostatic hyperplasia (BPH). PCa and BPH are two primary contributors to the disease burden of the aging male population and have severe implications on quality of life, psychological wellbeing, and survival. The development of new FGF5 inhibitors could potentially alleviate the health burden of PCa and BPH in the aging male population.
Collapse
Affiliation(s)
- Mary M Stangis
- Department of Urology, University of Wisconsin-MadisonMadison, WI, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public HealthMadison, WI, USA
| | - Avan N Colah
- Department of Urology, University of Wisconsin-MadisonMadison, WI, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-MadisonMadison, WI, USA
| | - Dalton T McLean
- Department of Urology, University of Wisconsin-MadisonMadison, WI, USA
| | - Richard B Halberg
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public HealthMadison, WI, USA
- Carbone Cancer Center, University of Wisconsin-MadisonMadison, WI, USA
| | - Lara S Collier
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-MadisonMadison, WI, USA
| | - William A Ricke
- Department of Urology, University of Wisconsin-MadisonMadison, WI, USA
- Carbone Cancer Center, University of Wisconsin-MadisonMadison, WI, USA
| |
Collapse
|
6
|
Kumagai K, Okubo H, Amano R, Kozu T, Ochiai M, Horiuchi M, Sakamoto T. Selection of aptamers using β-1,3-glucan recognition protein-tagged proteins and curdlan beads. J Biochem 2023; 174:433-440. [PMID: 37500079 DOI: 10.1093/jb/mvad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023] Open
Abstract
RNA aptamersare nucleic acids that are obtained using the systematic evolution of ligands by exponential enrichment (SELEX) method. When using conventional selection methods to immobilize target proteins on matrix beads using protein tags, sequences are obtained that bind not only to the target proteins but also to the protein tags and matrix beads. In this study, we performed SELEX using β-1,3-glucan recognition protein (GRP)-tags and curdlan beads to immobilize the acute myeloid leukaemia 1 (AML1) Runt domain (RD) and analysed the enrichment of aptamers using high-throughput sequencing. Comparison of aptamer enrichment using the GRP-tag and His-tag suggested that aptamers were enriched using the GRP-tag as well as using the His-tag. Furthermore, surface plasmon resonance analysis revealed that the aptamer did not bind to the GRP-tag and that the conjugation of the GRP-tag to RD weakened the interaction between the aptamer and RD. The GRP-tag could have acted as a competitor to reduce weakly bound RNAs. Therefore, the affinity system of the GRP-tagged proteins and curdlan beads is suitable for obtaining specific aptamers using SELEX.
Collapse
Key Words
- SELEX.Abbreviations:
AML1, acute myeloid leukaemia 1; βGRP, β-1,3-glucan recognition protein; GST, glutathione S-transferase; His-tag, poly histidine tag; HTS, high-throughput sequencing; MBP, maltose-binding protein; RD, Runt domain; RUNX1, RUNX family transcription factor 1; SELEX, systematic evolution of ligands by exponential enrichment; SPR, surface plasmon resonance
- aptamer
- curdlan
- βGRP
Collapse
Affiliation(s)
- Kazuyuki Kumagai
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Hiroki Okubo
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Ryo Amano
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Tomoko Kozu
- Research Institute for Clinical Oncology, Saitama Cancer Center, 780 Komuro, Ina, Kitaadachi, Saitama 362-0806, Japan
| | - Masanori Ochiai
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Masataka Horiuchi
- Faculty of Pharmaceutical Science, Health Sciences University of Hokkaido, 1757 Kanazawa, Toubetsu, Ishikari, Hokkaido 061-0293, Japan
| | - Taiichi Sakamoto
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| |
Collapse
|
7
|
Cannon-Albright LA, Teerlink CC, Stevens J, Facelli JC, Carr SR, Allen-Brady K, Puri S, Bailey-Wilson JE, Musolf AM, Akerley W. A rare FGF5 candidate variant (rs112475347) for predisposition to nonsquamous, nonsmall-cell lung cancer. Int J Cancer 2023; 153:364-372. [PMID: 36916144 PMCID: PMC10182245 DOI: 10.1002/ijc.34510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/16/2023]
Abstract
A unique approach with rare resources was used to identify candidate variants predisposing to familial nonsquamous nonsmall-cell lung cancers (NSNSCLC). We analyzed sequence data from NSNSCLC-affected cousin pairs belonging to high-risk lung cancer pedigrees identified in a genealogy of Utah linked to statewide cancer records to identify rare, shared candidate predisposition variants. Variants were tested for association with lung cancer risk in UK Biobank. Evidence for linkage with lung cancer was also reviewed in families from the Genetic Epidemiology of Lung Cancer Consortium. Protein prediction modeling compared the mutation with reference. We sequenced NSNSCLC-affected cousin pairs from eight high-risk lung cancer pedigrees and identified 66 rare candidate variants shared in the cousin pairs. One variant in the FGF5 gene also showed significant association with lung cancer in UKBiobank. This variant was observed in 3/163 additional sampled Utah lung cancer cases, 2 of whom were related in another independent pedigree. Modeling of the predicted protein predicted a second binding site for SO4 that may indicate binding differences. This unique study identified multiple candidate predisposition variants for NSNSCLC, including a rare variant in FGF5 that was significantly associated with lung cancer risk and that segregated with lung cancer in the two pedigrees in which it was observed. FGF5 is an oncogenic factor in several human cancers, and the mutation found here (W81C) changes the binding ability of heparan sulfate to FGF5, which might lead to its deregulation. These results support FGF5 as a potential NSNSCLC predisposition gene and present additional candidate predisposition variants.
Collapse
Affiliation(s)
- Lisa A Cannon-Albright
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Craig C Teerlink
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Jeff Stevens
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Julio C Facelli
- Department of BioMedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Clinical and Translational Science Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Shamus R Carr
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristina Allen-Brady
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Sonam Puri
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Medical Oncology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Joan E Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, USA
| | - Anthony M Musolf
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, USA
| | - Wallace Akerley
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Medical Oncology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
8
|
Chen C, Liu X, Chang CY, Wang HY, Wang RF. The Interplay between T Cells and Cancer: The Basis of Immunotherapy. Genes (Basel) 2023; 14:genes14051008. [PMID: 37239368 DOI: 10.3390/genes14051008] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past decade, immunotherapy has emerged as one of the most promising approaches to cancer treatment. The use of immune checkpoint inhibitors has resulted in impressive and durable clinical responses in the treatment of various cancers. Additionally, immunotherapy utilizing chimeric antigen receptor (CAR)-engineered T cells has produced robust responses in blood cancers, and T cell receptor (TCR)-engineered T cells are showing promising results in the treatment of solid cancers. Despite these noteworthy advancements in cancer immunotherapy, numerous challenges remain. Some patient populations are unresponsive to immune checkpoint inhibitor therapy, and CAR T cell therapy has yet to show efficacy against solid cancers. In this review, we first discuss the significant role that T cells play in the body's defense against cancer. We then delve into the mechanisms behind the current challenges facing immunotherapy, starting with T cell exhaustion due to immune checkpoint upregulation and changes in the transcriptional and epigenetic landscapes of dysfunctional T cells. We then discuss cancer-cell-intrinsic characteristics, including molecular alterations in cancer cells and the immunosuppressive nature of the tumor microenvironment (TME), which collectively facilitate tumor cell proliferation, survival, metastasis, and immune evasion. Finally, we examine recent advancements in cancer immunotherapy, with a specific emphasis on T-cell-based treatments.
Collapse
Affiliation(s)
- Christina Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xin Liu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Che-Yu Chang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Helen Y Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
9
|
Sun D, Sun M, Zhang J, Lin X, Zhang Y, Lin F, Zhang P, Yang C, Song J. Computational tools for aptamer identification and optimization. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Development and classification of RNA aptamers for therapeutic purposes: an updated review with emphasis on cancer. Mol Cell Biochem 2022; 478:1573-1598. [DOI: 10.1007/s11010-022-04614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022]
|
11
|
Li Y, Cui S, Wu B, Gao J, Li M, Zhang F, Xia H. FGF5 alleviated acute lung injury via AKT signal pathway in endothelial cells. Biochem Biophys Res Commun 2022; 634:152-158. [PMID: 36244113 PMCID: PMC9527228 DOI: 10.1016/j.bbrc.2022.09.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022]
Abstract
Acute lung injury (ALI), with high morbidity and mortality, is mainly resulted by infectious or non-infectious inflammatory stimulators, and it will further evolve into acute respiratory distress syndrome if not controlled. Fibroblast growth factors (FGFs) consist of more than 23 kinds of members, which are involved in various pathophysiological processes of body. However, the effect of FGF5, one member of FGFs, is still not certain in lipopolysaccharide (LPS)-induced ALI. In this study, we explored the possible impacts of FGF5 in LPS-induced ALI and primarily focused on endothelial cell, which was one of the most vulnerable cells in septic ALI. In the mouse group of FGF5 overexpression, LPS-induced lung injuries were mitigated, as well as the pyroptosis levels of pulmonary vascular endothelial cells. Additionally, in vitro human umbilical vein endothelial cells (HUVECs), our results showed that the level of cell pyroptosis was ameliorated with FGF5 overexpression, and AKT signal was activated with the overexpression of FGF5, whereas after administration of MK2206, an inhibitor of AKT signal, the protection of FGF5 was inhibited. Therefore, these results suggested that FGF5 exerted protective effects in endothelial cells exposed to LPS, and this protection of FGF5 could be attributed to activated AKT signal.
Collapse
Affiliation(s)
- Yuhua Li
- Intensive Care Unit, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jixian Gao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ming Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Furong Zhang
- Intensive Care Unit, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
12
|
Mirón-Barroso S, Correia JS, Frampton AE, Lythgoe MP, Clark J, Tookman L, Ottaviani S, Castellano L, Porter AE, Georgiou TK, Krell J. Polymeric Carriers for Delivery of RNA Cancer Therapeutics. Noncoding RNA 2022; 8:ncrna8040058. [PMID: 36005826 PMCID: PMC9412371 DOI: 10.3390/ncrna8040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
As research uncovers the underpinnings of cancer biology, new targeted therapies have been developed. Many of these therapies are small molecules, such as kinase inhibitors, that target specific proteins; however, only 1% of the genome encodes for proteins and only a subset of these proteins has ‘druggable’ active binding sites. In recent decades, RNA therapeutics have gained popularity due to their ability to affect targets that small molecules cannot. Additionally, they can be manufactured more rapidly and cost-effectively than small molecules or recombinant proteins. RNA therapeutics can be synthesised chemically and altered quickly, which can enable a more personalised approach to cancer treatment. Even though a wide range of RNA therapeutics are being developed for various indications in the oncology setting, none has reached the clinic to date. One of the main reasons for this is attributed to the lack of safe and effective delivery systems for this type of therapeutic. This review focuses on current strategies to overcome these challenges and enable the clinical utility of these novel therapeutic agents in the cancer clinic.
Collapse
Affiliation(s)
- Sofía Mirón-Barroso
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
- Correspondence:
| | - Joana S. Correia
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (J.S.C.); (A.E.P.); (T.K.G.)
| | - Adam E. Frampton
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Mark P. Lythgoe
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| | - James Clark
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| | - Laura Tookman
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| | - Silvia Ottaviani
- Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK;
| | | | - Alexandra E. Porter
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (J.S.C.); (A.E.P.); (T.K.G.)
| | - Theoni K. Georgiou
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (J.S.C.); (A.E.P.); (T.K.G.)
| | - Jonathan Krell
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| |
Collapse
|
13
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
14
|
Yuhan J, Zhu L, Zhu L, Huang K, He X, Xu W. Cell-specific aptamers as potential drugs in therapeutic applications: A review of current progress. J Control Release 2022; 346:405-420. [PMID: 35489545 DOI: 10.1016/j.jconrel.2022.04.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 12/23/2022]
Abstract
Cell-specific aptamers are a promising emerging player in the field of disease therapy. This paper reviews the multidimensional research progress made in terms of their classification, modification, and application. Based on the target location of cell-specific aptamers, it is defined and classified cell-specific aptamers into three groups including aptamers for cell surface markers, aptamers for intracellular components, and aptamers for extracellular components. Moreover, the modification methods of aptamers to achieve improved stability and affinity are concluded. In addition, recent advances in the application of cell-specific aptamers are discussed, mainly focusing on the increasing research attraction of cell state improving helpers and cell recruitment mediators in the improvement of cellular microenvironments to achieve successful disease therapy. This review also highlights 11 types of clinical aptamer drugs. Finally, the challenges and future directions of potential clinical applications are presented. In summary, we believe that cell-specific aptamers are promising drugs in disease therapy.
Collapse
Affiliation(s)
- Jieyu Yuhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
15
|
Expanding horizons of achondroplasia treatment: current options and future developments. Osteoarthritis Cartilage 2022; 30:535-544. [PMID: 34864168 DOI: 10.1016/j.joca.2021.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 02/02/2023]
Abstract
Activating mutations in the FGFR3 receptor tyrosine kinase lead to most prevalent form of genetic dwarfism in humans, the achondroplasia. Many features of the complex function of FGFR3 in growing skeleton were characterized, which facilitated identification of therapy targets, and drove progress toward treatment. In August 2021, the vosoritide was approved for treatment of achondroplasia, which is based on a stable variant of the C-natriuretic peptide. Other drugs may soon follow, as several conceptually different inhibitors of FGFR3 signaling progress through clinical trials. Here, we review the current achondroplasia therapeutics, describe their mechanisms, and illuminate motivations leading to their development. We also discuss perspectives of curing achondroplasia, and options for repurposing achondroplasia drugs for dwarfing conditions unrelated to FGFR3.
Collapse
|
16
|
Mansour MA, Caputo VS, Aleem E. Highlights on selected growth factors and their receptors as promising anticancer drug targets. Int J Biochem Cell Biol 2021; 140:106087. [PMID: 34563698 DOI: 10.1016/j.biocel.2021.106087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Growth factor receptors (GFRs) and receptor tyrosine kinases (RTK) are groups of proteins mediating a plethora of physiological processes, including cell growth, proliferation, survival, differentiation and migration. Under certain circumstances, expression of GFRs and subsequently their downstream kinase signaling are deregulated by genetic, epigenetic, and somatic changes leading to uncontrolled cell division in many human diseases, most notably cancer. Cancer cells rely on growth factors to sustain the increasing need to cell division and metabolic reprogramming through cancer-associated activating mutations of their receptors (i.e., GFRs). In this review, we highlight the recent advances of selected GFRs and their ligands (growth factors) in cancer with emphasis on structural and functional differences. We also interrogate how overexpression and/or hyperactivation of GFRs contribute to cancer initiation, development, progression, and resistance to conventional chemo- and radiotherapies. Novel approaches are being developed as anticancer agents to target growth factor receptors and their signaling pathways in different cancers. Here, we illustrate how the current knowledge of GFRs biology, and their ligands lead to development of targeted therapies to inhibit and/or block the activity of growth factors, GFRs and downstream kinases to treat diseases such as cancer.
Collapse
Affiliation(s)
- Mohammed A Mansour
- Cancer Biology and Therapy Lab, Division of Human Sciences, School of Applied Sciences, London South Bank University, London, UK; Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Valentina S Caputo
- Cancer Biology and Therapy Lab, Division of Human Sciences, School of Applied Sciences, London South Bank University, London, UK
| | - Eiman Aleem
- Cancer Biology and Therapy Lab, Division of Human Sciences, School of Applied Sciences, London South Bank University, London, UK.
| |
Collapse
|