1
|
Chatzinikolaou PN, Margaritelis NV, Paschalis V, Theodorou AA, Vrabas IS, Kyparos A, D'Alessandro A, Nikolaidis MG. Erythrocyte metabolism. Acta Physiol (Oxf) 2024; 240:e14081. [PMID: 38270467 DOI: 10.1111/apha.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
Our aim is to present an updated overview of the erythrocyte metabolism highlighting its richness and complexity. We have manually collected and connected the available biochemical pathways and integrated them into a functional metabolic map. The focus of this map is on the main biochemical pathways consisting of glycolysis, the pentose phosphate pathway, redox metabolism, oxygen metabolism, purine/nucleoside metabolism, and membrane transport. Other recently emerging pathways are also curated, like the methionine salvage pathway, the glyoxalase system, carnitine metabolism, and the lands cycle, as well as remnants of the carboxylic acid metabolism. An additional goal of this review is to present the dynamics of erythrocyte metabolism, providing key numbers used to perform basic quantitative analyses. By synthesizing experimental and computational data, we conclude that glycolysis, pentose phosphate pathway, and redox metabolism are the foundations of erythrocyte metabolism. Additionally, the erythrocyte can sense oxygen levels and oxidative stress adjusting its mechanics, metabolism, and function. In conclusion, fine-tuning of erythrocyte metabolism controls one of the most important biological processes, that is, oxygen loading, transport, and delivery.
Collapse
Affiliation(s)
- Panagiotis N Chatzinikolaou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Ioannis S Vrabas
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
2
|
Xia K, Chen X, Wang W, Liu Q, Zhao M, Ma J, Jia H. Roles of mechanosensitive ion channels in immune cells. Heliyon 2024; 10:e23318. [PMID: 38148826 PMCID: PMC10750075 DOI: 10.1016/j.heliyon.2023.e23318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
Mechanosensitive ion channels are a class of membrane-integrated proteins that convert externalmechanical forces, including stretching, pressure, gravity, and osmotic pressure changes, some of which can be caused by pathogen invasion, into electrical and chemical signals transmitted to the cytoplasm. In recent years, with the identification of many of these channels, their roles in the initiation and progression of many diseases have been gradually revealed. Multiple studies have shown that mechanosensitive ion channels regulate the proliferation, activation, and inflammatory responses of immune cells by being expressed on the surface of immune cells and further responding to mechanical forces. Nonetheless, further clarification is required regarding the signaling pathways of immune-cell pattern-recognition receptors and on the impact of microenvironmental changes and mechanical forces on immune cells. This review summarizes the roles of mechanosensitive ion channels in immune cells.
Collapse
Affiliation(s)
- Kexin Xia
- Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xiaolin Chen
- Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Wenyan Wang
- Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Qianwen Liu
- Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Mai Zhao
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Road 100, Shanghai, 200080, China
| | - Jiacheng Ma
- The Department of Information Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Hao Jia
- Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
3
|
Evtugina NG, Peshkova AD, Khabirova AI, Andrianova IA, Abdullayeva S, Ayombil F, Shepeliuk T, Grishchuk EL, Ataullakhanov FI, Litvinov RI, Weisel JW. Activation of Piezo1 channels in compressed red blood cells augments platelet-driven contraction of blood clots. J Thromb Haemost 2023; 21:2418-2429. [PMID: 37268065 PMCID: PMC10949619 DOI: 10.1016/j.jtha.2023.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Piezo1 is a mechanosensitive cationic channel that boosts intracellular [Ca2+]i. Compression of red blood cells (RBCs) during platelet-driven contraction of blood clots may cause the activation of Piezo1. OBJECTIVES To establish relationships between Piezo1 activity and blood clot contraction. METHODS Effects of a Piezo1 agonist, Yoda1, and antagonist, GsMTx-4, on clot contraction in vitro were studied in human blood containing physiological [Ca2+]. Clot contraction was induced by exogenous thrombin. Activation of Piezo1 was assessed by Ca2+ influx in RBCs and with other functional and morphologic features. RESULTS Piezo1 channels in compressed RBCs are activated naturally during blood clot contraction and induce an upsurge in the intracellular [Ca2+]i, followed by phosphatidylserine exposure. Adding the Piezo1 agonist Yoda1 to whole blood increased the extent of clot contraction due to Ca2+-dependent volumetric shrinkage of RBCs and increased platelet contractility due to their hyperactivation by the enhanced generation of endogenous thrombin on activated RBCs. Addition of rivaroxaban, the inhibitor of thrombin formation, or elimination of Ca2+ from the extracellular space abrogated the stimulating effect of Yoda1 on clot contraction. The Piezo1 antagonist, GsMTx-4, caused a decrease in the extent of clot contraction relative to the control both in whole blood and in platelet-rich plasma. Activated Piezo1 in compressed and deformed RBCs amplified the platelet contractility as a positive feedback mechanism during clot contraction. CONCLUSION The results obtained demonstrate that the Piezo1 channel expressed on RBCs comprises a mechanochemical modulator of blood clotting that may be considered a potential therapeutic target to correct hemostatic disorders.
Collapse
Affiliation(s)
- Natalia G Evtugina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Alina D Peshkova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation; Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alina I Khabirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Izabella A Andrianova
- Department of Internal Medicine, Division of Hematology and Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Shahnoza Abdullayeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Francis Ayombil
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Taisia Shepeliuk
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ekaterina L Grishchuk
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Fazoil I Ataullakhanov
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
4
|
Fenton PC, Turner CJ, Hogstrand C, Bury NR. Fluid shear stress affects the metabolic and toxicological response of the rainbow trout gill cell line RTgill-W1. Toxicol In Vitro 2023; 90:105590. [PMID: 36997009 DOI: 10.1016/j.tiv.2023.105590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/20/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
The Rainbow trout gill cell-line (RTgill-W1) has been accepted by the Organisation for Economic Co-operation and Development (OECD TG249) as a replacement for fish in acute toxicity tests. In these tests cells are exposed under static conditions. In contrast, in vivo, water moves over fish gills generating fluid shear stress (FSS) that alters cell physiology and response to toxicants. The current study uses a specialised 3D printed chamber designed to house inserts and allows for the flow (0.2 dynes cm2) of water over the cells. This system was used to assess RTgill-W1 cell responses to FSS in the absence and presence of copper (Cu) over 24 h. FSS caused increased gene expression of mechanosensitive channel peizo1 and the Cu-transporter atp7a, elevated reactive oxygen species generation and increased expression of superoxidase dismutase. Cell metabolism was unaffected by Cu (0.163 μM to 2.6 μM Cu) under static conditions but significantly reduced by FSS + Cu above 1.3 μM. Differential expression of metallothionein (mt) a and b was observed with increased expression of mta under static conditions and mtb under FSS on exposure to Cu. These findings highlight toxicologically relevant mechanosensory responses by RTgill-W1 to FSS that may influence toxicological responses.
Collapse
|
5
|
Li F, Liao S, Zhao Y, Li X, Wang Z, Liao C, Sun D, Zhang Q, Lu Q. Soil exposure is the major fluoride exposure pathways for residents from the high-fluoride karst region in Southwest China. CHEMOSPHERE 2023; 310:136831. [PMID: 36241100 DOI: 10.1016/j.chemosphere.2022.136831] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
In the karst areas of southwest China, soil fluoride levels are higher than in China (478 mg kg-1) and world (200 mg kg-1). High levels of F in the environment might pose a health risk to humans. The comprehensive exposure risk must be studied in this area. Herein, samples of crops and soil were collected from Bijie City, a typical karst area in southwest China, to investigate the pollution level and evaluate the comprehensive F exposure risk. The single-factor index (PFw) and the geological accumulation index (Igeo) were used. The hazard index (HI) was applied to assess exposure risk from multiple exposure routes. The results revealed that there is considerable F contamination in soil and crops in the study area. Average soil total fluorine (Ft) was 1139.13 mg kg-1, and soil water soluble F (Fw) was 3.792 mg kg-1. In corn, rice, wheat, and potatoes, F contents were 1.167-9.585, 1.222-6.698, 1.587-9.976, and 1.797-9.143 mg kg-1, respectively. The mean values of HI were 4.45 and 2.42 for children and adults, respectively, > 1, showing potential health risk exists. Youngsters are at a greater exposure risk than adults. From the results of contribution ratios of different exposure routes for health risk, the major exposure risk was determined to be from soil exposure. Based on this, we suggest that risk managers mainly strive to control the soil fluoride level and implement the risk education and communication.
Collapse
Affiliation(s)
- Fumin Li
- School of Public Health, The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Shengmei Liao
- School of Public Health, The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Yifang Zhao
- School of Public Health, The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xiangxiang Li
- School of Public Health, The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Zelan Wang
- School of Public Health, The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Chaoxuan Liao
- Guizhou Academy of Testing and Analysis, Guizhou, Guiyang, 550014, China
| | - Dali Sun
- School of Public Health, The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Qinghai Zhang
- School of Public Health, The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Qinhui Lu
- School of Public Health, The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
6
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Wang H, Obeidy P, Wang Z, Zhao Y, Wang Y, Su QP, Cox CD, Ju LA. Fluorescence-coupled micropipette aspiration assay to examine calcium mobilization caused by red blood cell mechanosensing. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:135-146. [PMID: 35286429 PMCID: PMC8964638 DOI: 10.1007/s00249-022-01595-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/16/2022]
Abstract
Mechanical stimuli such as tension, compression, and shear stress play critical roles in the physiological functions of red blood cells (RBCs) and their homeostasis, ATP release, and rheological properties. Intracellular calcium (Ca2+) mobilization reflects RBC mechanosensing as they transverse the complex vasculature. Emerging studies have demonstrated the presence of mechanosensitive Ca2+ permeable ion channels and their function has been implicated in the regulation of RBC volume and deformability. However, how these mechanoreceptors trigger Ca2+ influx and subsequent cellular responses are still unclear. Here, we introduce a fluorescence-coupled micropipette aspiration assay to examine RBC mechanosensing at the single-cell level. To achieve a wide range of cell aspirations, we implemented and compared two negative pressure adjusting apparatuses: a homemade water manometer (- 2.94 to 0 mmH2O) and a pneumatic high-speed pressure clamp (- 25 to 0 mmHg). To visualize Ca2+ influx, RBCs were pre-loaded with an intensiometric probe Cal-520 AM, then imaged under a confocal microscope with concurrent bright-field and fluorescent imaging at acquisition rates of 10 frames per second. Remarkably, we observed the related changes in intracellular Ca2+ levels immediately after aspirating individual RBCs in a pressure-dependent manner. The RBC aspirated by the water manometer only displayed 1.1-fold increase in fluorescence intensity, whereas the RBC aspirated by the pneumatic clamp showed up to threefold increase. These results demonstrated the water manometer as a gentle tool for cell manipulation with minimal pre-activation, while the high-speed pneumatic clamp as a much stronger pressure actuator to examine cell mechanosensing directly. Together, this multimodal platform enables us to precisely control aspiration and membrane tension, and subsequently correlate this with intracellular calcium concentration dynamics in a robust and reproducible manner.
Collapse
Affiliation(s)
- Haoqing Wang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, 2008, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.,Heart Research Institute, Newtown, NSW, 2042, Australia
| | - Peyman Obeidy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Zihao Wang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, 2008, Australia.,School of Aerospace, Mechanical and Mechatronic Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Yunduo Zhao
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, 2008, Australia.,Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | - Yao Wang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, 2008, Australia.,Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Qian Peter Su
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.,Heart Research Institute, Newtown, NSW, 2042, Australia.,School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2010, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, 2008, Australia. .,Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia. .,Heart Research Institute, Newtown, NSW, 2042, Australia.
| |
Collapse
|
8
|
|
9
|
Romanenko K, Elliott SJ, Shubin AA, Kuchel PW. Identification of beryllium fluoride complexes in mechanically distorted gels using quadrupolar split 9Be NMR spectra resolved with solution-state selective cross-polarization. Phys Chem Chem Phys 2021; 23:16932-16941. [PMID: 34337629 DOI: 10.1039/d1cp02515e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The uniformly anisotropic media afforded by hydrogels are being increasingly exploited in analytical (structure elucidation) nuclear magnetic resonance (NMR) spectroscopy, and in studies of mechanosensitive biophysical and biochemical properties of living cells. The 9Be NMR parameters of beryllium fluoride complexes formed in aqueous solutions are sensitive markers of the anisotropic molecular environments produced by gelatin gels. The electric quadrupole moment of the 9Be nucleus (spin I = 3/2) interacts with the electric field gradient tensor in a stretched (or compressed) gel, giving rise to the splitting of peaks in 9Be NMR spectra. These are in addition to those produced by scalar coupling to the 19F nuclei. Thus, an equilibrium mixture of beryllofluoride complexes (BeF2, BeF3-, and BeF42-) in mechanically distorted gels generates an envelope of overlapping 9Be NMR multiplets. In the present work, the multiplets were dissected apart by using selective excitation of 9Be-19F cross-polarization; and the spectral components were quantified with multi-parameter line-shape decomposition, coupled with SpinDynamica simulations. The effects of gel density and Bloom number (a measure of gelatin-gel rigidity under standard conditions of sample preparation) on residual quadrupolar splittings were examined. Cross-polarization experiments revealed a bimodal distribution of residual quadrupolar coupling constants (RQC) of the BeF3- complexes. The average RQC of the dominant BeF3- population was ∼3 times larger than that of BeF42-. The secondary BeF3- population existed in a tetrahedral configuration. It was attributed to BeF3- complexes associated with negatively charged -COO- groups of the denatured collagen matrix.
Collapse
Affiliation(s)
- Konstantin Romanenko
- School of Life and Environmental Sciences, University of Sydney, Building G08, Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
10
|
Kuchel PW, Cox CD, Daners D, Shishmarev D, Galvosas P. Surface model of the human red blood cell simulating changes in membrane curvature under strain. Sci Rep 2021; 11:13712. [PMID: 34211012 PMCID: PMC8249411 DOI: 10.1038/s41598-021-92699-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
We present mathematical simulations of shapes of red blood cells (RBCs) and their cytoskeleton when they are subjected to linear strain. The cell surface is described by a previously reported quartic equation in three dimensional (3D) Cartesian space. Using recently available functions in Mathematica to triangularize the surfaces we computed four types of curvature of the membrane. We also mapped changes in mesh-triangle area and curvatures as the RBCs were distorted. The highly deformable red blood cell (erythrocyte; RBC) responds to mechanically imposed shape changes with enhanced glycolytic flux and cation transport. Such morphological changes are produced experimentally by suspending the cells in a gelatin gel, which is then elongated or compressed in a custom apparatus inside an NMR spectrometer. A key observation is the extent to which the maximum and minimum Principal Curvatures are localized symmetrically in patches at the poles or equators and distributed in rings around the main axis of the strained RBC. Changes on the nanometre to micro-meter scale of curvature, suggest activation of only a subset of the intrinsic mechanosensitive cation channels, Piezo1, during experiments carried out with controlled distortions, which persist for many hours. This finding is relevant to a proposal for non-uniform distribution of Piezo1 molecules around the RBC membrane. However, if the curvature that gates Piezo1 is at a very fine length scale, then membrane tension will determine local curvature; so, curvatures as computed here (in contrast to much finer surface irregularities) may not influence Piezo1 activity. Nevertheless, our analytical methods can be extended address these new mechanistic proposals. The geometrical reorganization of the simulated cytoskeleton informs ideas about the mechanism of concerted metabolic and cation-flux responses of the RBC to mechanically imposed shape changes.
Collapse
Affiliation(s)
- Philip W Kuchel
- School of Life and Environmental Sciences, University of Sydney, Building G08, Sydney, NSW, 2006, Australia.
| | - Charles D Cox
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Daniel Daners
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - Dmitry Shishmarev
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Petrik Galvosas
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University Wellington, Wellington, New Zealand
| |
Collapse
|
11
|
Guo J, Gu D, Zhao T, Zhao Z, Xiong Y, Sun M, Xin C, Zhang Y, Pei L, Sun J. Trends in Piezo Channel Research Over the Past Decade: A Bibliometric Analysis. Front Pharmacol 2021; 12:668714. [PMID: 33935792 PMCID: PMC8082452 DOI: 10.3389/fphar.2021.668714] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose: We used bibliometric methods to evaluate the global scientific output of research on Piezo channels and explore the current status and trends in this field over the past decade. Methods: Piezo channel-related studies published in 2010-2020 were retrieved from Web of Science. The R bibliometrix package was used for quantitative and qualitative analyses of publication outputs and author contributions. VOSviewer was used to construct networks based on co-authorship of countries/institutions/authors, co-citation analysis of journals/references, citation analysis of documents, and co-occurrence of keywords. Results: In total, 556 related articles and reviews were included in the final analysis. The number of publications has increased substantially with time. The country and institution contributing the most to this field was the United States and Scripps Research Institute, respectively. Ardem Patapoutian was the most productive author and ranked first among the cited authors, h-index, and m-index. The top cited reference was the article published by Coste B et al. in Science (2010) that identified Piezo1/2 in mammalian cells. The top journals in terms of the number of selected articles and citations were Nature Communications and Nature, respectively. The co-occurrence analysis revealed that Piezo channels are involved a variety of cell types (Merkel cells, neurons, endothelial cells, red blood cells), physiological processes (touch sensation, blood pressure, proprioception, vascular development), related ion channels (transient receptor potential, Gardos), and diseases (pain, distal arthrogryposis, dehydrated hereditary stomatocytosis, cancer), and pharmacology (Yoda1, GsMTx-4). Conclusion: Our bibliometric analysis shows that Piezo channel research continues to be a hotspot. The focus has evolved from Piezo identification to architecture, activation mechanism, roles in diseases, and pharmacology.
Collapse
Affiliation(s)
- Jing Guo
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongmei Gu
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Zhao
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhanhao Zhao
- Department of Massage, Danyang Hospital of Traditional Chinese Medicine, Danyang, China
| | - Yajun Xiong
- School of Internet of Things Engineering, Jiangnan University, Wuxi, China
| | - Mengzhu Sun
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chen Xin
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yujie Zhang
- Acupuncture and Massage College, Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lixia Pei
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Acupuncture and Moxibustion Disease Project Group of China Evidence-Based Medicine Center of Traditional Chinese Medicine, Nanjing, China
| | - Jianhua Sun
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Acupuncture and Moxibustion Disease Project Group of China Evidence-Based Medicine Center of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|