1
|
Kingsley SF, Seo Y, Wood A, Wani KA, Gonzalez X, Irazoqui J, Finkel SE, Tissenbaum HA. Glucose-fed microbiota alters C. elegans intestinal epithelium and increases susceptibility to multiple bacterial pathogens. Sci Rep 2024; 14:13177. [PMID: 38849503 PMCID: PMC11161463 DOI: 10.1038/s41598-024-63514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Overconsumption of dietary sugar can lead to many negative health effects including the development of Type 2 diabetes, metabolic syndrome, cardiovascular disease, and neurodegenerative disorders. Recently, the human intestinal microbiota, strongly associated with our overall health, has also been known to be affected by diet. However, mechanistic insight into the importance of the human intestinal microbiota and the effects of chronic sugar ingestion has not been possible largely due to the complexity of the human microbiome which contains hundreds of types of organisms. Here, we use an interspecies C. elegans/E. coli system, where E. coli are subjected to high sugar, then consumed by the bacterivore host C. elegans to become the microbiota. This glucose-fed microbiota results in a significant lifespan reduction accompanied by reduced healthspan (locomotion), reduced stress resistance, and changes in behavior and feeding. Lifespan reduction is also accompanied by two potential major contributors: increased intestinal bacterial density and increased concentration of reactive oxygen species. The glucose-fed microbiota accelerated the age-related development of intestinal cell permeability, intestinal distention, and dysregulation of immune effectors. Ultimately, the changes in the intestinal epithelium due to aging with the glucose-fed microbiota results in increased susceptibility to multiple bacterial pathogens. Taken together, our data reveal that chronic ingestion of sugar, such as a Western diet, has profound health effects on the host due to changes in the microbiota and may contribute to the current increased incidence of ailments including inflammatory bowel diseases as well as multiple age-related diseases.
Collapse
Affiliation(s)
- Samuel F Kingsley
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Yonghak Seo
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Alicia Wood
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Khursheed A Wani
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Xavier Gonzalez
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Javier Irazoqui
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Steven E Finkel
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-2910, USA
| | - Heidi A Tissenbaum
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA.
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
2
|
Bouasker S, Nodland S, Millette M. The Probiotic Strain Lactobacillus acidophilus CL1285 Reduces Fat Deposition and Oxidative Stress and Increases Lifespan in Caenorhabditis elegans. Microorganisms 2024; 12:1036. [PMID: 38930418 PMCID: PMC11205358 DOI: 10.3390/microorganisms12061036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Caenorhabditis elegans was recently shown to be a powerful model for studying and identifying probiotics with specific functions. Lactobacillus acidophilus CL1285, Lacticaseibacillus casei LBC80R, and Lacticaseibacillus rhamnosus CLR2, which are three bacteria that were marketed by Bio-K+, were evaluated using the nematode C. elegans to study fat accumulation, lifespan, and resistance to oxidative stress. Although the general effects of probiotics in terms of protection against oxidative stress were highlighted, the CL1285 strain had an interesting and specific feature, namely its ability to prevent fat accumulation in nematodes; this effect was verified by both the Oil Red and Nile Red methods. This observed phenotype requires daf-16 and is affected by glucose levels. In addition, in a daf-16- and glucose-dependent manner, CL1285 extended the lifespan of C. elegans; this effect was unique to CL1285 and not found in the other L. acidophilus subtypes in this study. Our findings indicate that L. acidophilus CL1285 impacts fat/glucose metabolism in C. elegans and provides a basis to further study this probiotic, which could have potential health benefits in humans and/or in mammals.
Collapse
Affiliation(s)
- Samir Bouasker
- Bio-K+, a Kerry Company, 495 Boulevard Armand-Frappier, Laval, QC H7V 4B3, Canada;
| | | | - Mathieu Millette
- Bio-K+, a Kerry Company, 495 Boulevard Armand-Frappier, Laval, QC H7V 4B3, Canada;
| |
Collapse
|
3
|
Saito T, Kikuchi K, Ishikawa T. Glucose stockpile in the intestinal apical brush border in C. elegans. Biochem Biophys Res Commun 2024; 706:149762. [PMID: 38484572 DOI: 10.1016/j.bbrc.2024.149762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
Revealing the mechanisms of glucose transport is crucial for studying pathological diseases caused by glucose toxicities. Numerous studies have revealed molecular functions involved in glucose transport in the nematode Caenorhabditis elegans, a commonly used model organism. However, the behavior of glucose in the intestinal lumen-to-cell remains elusive. To address that, we evaluated the diffusion coefficient of glucose in the intestinal apical brush border of C. elegans by using fluorescent glucose and fluorescence recovery after photobleaching. Fluorescent glucose taken in the intestine of worms accumulates in the apical brush border, and its diffusion coefficient of ∼10-8 cm2/s is two orders of magnitude slower than that in bulk. This result indicates that the intestinal brush border is a viscous layer. ERM-1 point mutations at the phosphorylation site, which shorten the microvilli length, did not significantly affect the diffusion coefficient of fluorescent glucose in the brush border. Our findings imply that glucose enrichment is dominantly maintained by the viscous layer composed of the glycocalyx and molecular complexes on the apical surface.
Collapse
Affiliation(s)
- Takumi Saito
- Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan; Department of Molecular Biophysics and Biochemistry, New Haven, Yale University, CT, USA; Nanobiology Institute, Yale University, West Haven, CT, USA.
| | - Kenji Kikuchi
- Graduate School of Engineering, Department of Finemechanics, Tohoku University, Miyagi, Japan; Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan.
| | - Takuji Ishikawa
- Graduate School of Engineering, Department of Finemechanics, Tohoku University, Miyagi, Japan; Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan
| |
Collapse
|
4
|
Vieira AFC, Xatse MA, Murray SY, Olsen CP. Oleic Acid Metabolism in Response to Glucose in C. elegans. Metabolites 2023; 13:1185. [PMID: 38132867 PMCID: PMC10744850 DOI: 10.3390/metabo13121185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
A key response to glucose stress is an increased production of unsaturated fatty acids to balance the increase in saturated fatty acids in the membrane. The C. elegans homolog of stearoyl-CoA desaturase, FAT-7, introduces the first double bond into saturated C18 fatty acids yielding oleic acid, and is a critical regulatory point for surviving cold and glucose stress. Here, we incorporated 13C stable isotopes into the diet of nematodes and quantified the 13C-labelled fatty acid using GC-MS and HPLC/MS-MS to track its metabolic response to various concentrations of glucose. Previous work has analyzed the membrane composition of C. elegans when responding to mild glucose stress and showed few alterations in the overall fatty acid composition in the membrane. Here, in nematodes exposed to higher concentrations of glucose, a specific reduction in oleic acid and linoleic acid was observed. Using time courses and stable isotope tracing, the response of fatty acid metabolism to increasing levels of glucose stress is characterized, revealing the funneling of monounsaturated fatty acids to preserve the abundance of polyunsaturated fatty acids. Taken together, higher levels of glucose unveil a specific reduction in oleic and linolenic acid in the metabolic rewiring required to survive glucose stress.
Collapse
Affiliation(s)
| | | | | | - Carissa Perez Olsen
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (A.F.C.V.); (M.A.X.)
| |
Collapse
|
5
|
Łupkowska A, Monem S, Dębski J, Stojowska-Swędrzyńska K, Kuczyńska-Wiśnik D, Laskowska E. Protein aggregation and glycation in Escherichia coli exposed to desiccation-rehydration stress. Microbiol Res 2023; 270:127335. [PMID: 36841129 DOI: 10.1016/j.micres.2023.127335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
In natural environments, bacteria often enter a state of anhydrobiosis due to water loss. Multiple studies have demonstrated that desiccation may lead to protein aggregation and glycation both in vivo and in vitro. However, the exact effects of water-loss-induced proteotoxic stress and the interplay between protein glycation and aggregation in bacteria remain elusive. Our studies revealed that protein aggregates formation in Escherichia coli started during desiccation and continued during the rehydration stage. The aggregates were enriched in proteins prone to liquid-liquid phase separation. Although it is known that glycation may induce protein aggregation in vitro, the aggregates formed in E. coli contained low levels of glycation products compared to the soluble protein fraction. Carnosine, glycine betaine and trehalose diminished the formation of protein aggregates and glycation products, resulting in increased E. coli viability. Notably, although high concentrations of glycine-betaine and trehalose significantly enhanced protein aggregation, glycation was still inhibited and E. coli cells survived desiccation better than bacteria grown without osmolytes. Taken together, our results suggest that the aggregates might play protective functions during early desiccation-rehydration stress. Moreover, it seems glycation rather than protein aggregation is the main cause of E. coli death upon desiccation-rehydration stress.
Collapse
Affiliation(s)
- Adrianna Łupkowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Soroosh Monem
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Janusz Dębski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Karolina Stojowska-Swędrzyńska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Dorota Kuczyńska-Wiśnik
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| |
Collapse
|
6
|
Pasteurized Akkermansia muciniphila Reduces Fat Accumulation via nhr-49-Mediated Nuclear Hormone Signaling Pathway in Caenorhabditis elegans. Molecules 2022; 27:molecules27196159. [PMID: 36234692 PMCID: PMC9572206 DOI: 10.3390/molecules27196159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/03/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Pasteurized Akkermansia muciniphila (p-AKK) is related to lipid metabolism and helps control obesity. The main goal of this study was to investigate the role and mechanism of p-AKK in lipid metabolism using Caenorhabditis elegans. The results showed that p-AKK increased the healthy lifespan of nematodes and helped maintain exercise ability in aging, suggesting a potential increase in energy expenditure. The overall fat deposition and triglyceride level were significantly decreased and the p-AKK anti-oxidative stress helped to regulate fatty acid composition. Additionally, the transcriptome results showed that p-AKK increased the expression of lipo-hydrolase and fatty acid β-oxidation-related genes, including lipl-4, nhr-49, acs-2 and acdh-8, while it decreased the expression of fat synthesis-related genes, including fat-7, elo-2 and men-1. These results partially explain the mechanisms underlying the fact that p-AKK decreases fat accumulation of C. elegans via nhr-49/acs-2-mediated signaling involved in fatty acid β-oxidation and synthesis.
Collapse
|
7
|
Advanced Glycation End Products in Health and Disease. Microorganisms 2022; 10:microorganisms10091848. [PMID: 36144449 PMCID: PMC9501837 DOI: 10.3390/microorganisms10091848] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Advanced glycation end products (AGEs), formed through the nonenzymatic reaction of reducing sugars with the side-chain amino groups of lysine or arginine of proteins, followed by further glycoxidation reactions under oxidative stress conditions, are involved in the onset and exacerbation of a variety of diseases, including diabetes, atherosclerosis, and Alzheimer’s disease (AD) as well as in the secondary stages of traumatic brain injury (TBI). AGEs, in the form of intra- and interprotein crosslinks, deactivate various enzymes, exacerbating disease progression. The interactions of AGEs with the receptors for the AGEs (RAGE) also result in further downstream inflammatory cascade events. The overexpression of RAGE and the AGE-RAGE interactions are especially involved in cases of Alzheimer’s disease and other neurodegenerative diseases, including TBI and amyotrophic lateral sclerosis (ALS). Maillard reactions are also observed in the gut bacterial species. The protein aggregates found in the bacterial species resemble those of AD and Parkinson’s disease (PD), and AGE inhibitors increase the life span of the bacteria. Dietary AGEs alter the gut microbiota composition and elevate plasma glycosylation, thereby leading to systemic proinflammatory effects and endothelial dysfunction. There is emerging interest in developing AGE inhibitor and AGE breaker compounds to treat AGE-mediated pathologies, including diabetes and neurodegenerative diseases. Gut-microbiota-derived enzymes may also function as AGE-breaker biocatalysts. Thus, AGEs have a prominent role in the pathogenesis of various diseases, and the AGE inhibitor and AGE breaker approach may lead to novel therapeutic candidates.
Collapse
|
8
|
Abstract
Due to its recalcitrant and carcinogenic nature, the presence of methyl orange (MO) in the environment is a serious threat to human and animal life and is also toxic to plants. MO being recalcitrant cannot be effectively reclaimed from industrial effluents through physical and chemical approaches. Biological methods on the other hand have the potential to degrade such dyes because of their compatibility with nature and low chances of adverse effects on the environment. Bacteria, due to their fast growth rate and capability of surviving in extreme environments can effectively be used for this purpose. In the current research study, Pseudomonas aeruginosa was isolated and characterized using 16rRNA from textile wastewater. In the preliminary tests it was found that Pseudomonas aeruginosa has the ability to degrade and mineralize methyl orange effectively. The physicochemical conditions were then optimized, in order to get maximum degradation of MO which was achieved at 37 °C, a pH of 7, a low salt concentration of 0.1 g/15 mL, a high carbon source of 0.6 g/15 mL, and 72 h experimental time. In a single set of experiments where all these optimum conditions were combined, 88.23% decolorization of the selected dye was achieved. At the end of the experimental cycle, the aliquots were homogenized and filtered. The filtrates were subjected to FTIR and GC-MS analysis where azo linkage breaking was confirmed from the FTIR spectra. The filtrates were then extracted with ethyl acetate and then passed through a silica gel column. On the basis of Rf value (TLC plates used) similar fraction were combined which were then subjected to NMR analysis. The compounds detected through GC-MS, peaks were not observed in proton and C-13 NMR. Instead, solvent and some impurity peaks were present, showing that complete mineralization of the dye had occurred due to the action of different bacterial enzymes such as azoreductase, peroxidases, and classes on MO. The prosed mechanism of complete mineralization is based on spectral data that needs to be verified by trapping the individual step products through the use of appropriate inhibitors of individual enzymes.
Collapse
|
9
|
Kamphuis JBJ, Reber LL, Eutamène H, Theodorou V. Increased fermentable carbohydrate intake alters colonic mucus barrier function through glycation processes and increased mast cell counts. FASEB J 2022; 36:e22297. [PMID: 35394686 DOI: 10.1096/fj.202100494rrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 12/19/2022]
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder for which dietary interventions can be a useful treatment. In recent years, the low-FODMAP approach is gaining traction in this regard. The fermentation of these non-absorbed carbohydrates by the gut microbiota can generate toxic glycating metabolites, such as methylglyoxal. These metabolites can have harmful effects by their role in the generation of advanced glycation end products (AGEs), which activates Receptor for AGEs (AGER). Mast cells can be stimulated by AGEs and play a role in IBS. We have treated mice with lactose or fructo-oligosaccharides (FOS), with or without co-administration of pyridoxamine and investigated the colonic mucus barrier. We have found that an increased intake of lactose and fructo-oligosaccharides induces a dysregulation of the colonic mucus barrier, increasing mucus discharge in empty colon, while increasing variability and decreasing average thickness mucus layer covering the fecal pellet. Changes were correlated with increased mast cell counts, pointing to a role for the crosstalk between these and goblet cells. Additionally, AGE levels in colonic epithelium were increased by treatment with the selected fermentable carbohydrates. Observed effects were prevented by co-treatment with anti-glycation agent pyridoxamine, implicating glycation processes in the negative impact of fermentable carbohydrate ingestion. This study shows that excessive intake of fermentable carbohydrates can cause colonic mucus barrier dysregulation in mice, by a process that involves glycating agents and increased mucosal mast cell counts.
Collapse
Affiliation(s)
- J B J Kamphuis
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE) Toxicologie alimentaire (Toxalim), UMR1331, INRAE/INP/Université de Toulouse III, Toulouse, France.,Institut national de la santé et de la recherche médicale (INSERM), Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 - CNRS UMR5051 - Université de Toulouse III, Toulouse, France
| | - L L Reber
- Institut national de la santé et de la recherche médicale (INSERM), Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 - CNRS UMR5051 - Université de Toulouse III, Toulouse, France
| | - H Eutamène
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE) Toxicologie alimentaire (Toxalim), UMR1331, INRAE/INP/Université de Toulouse III, Toulouse, France
| | - V Theodorou
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE) Toxicologie alimentaire (Toxalim), UMR1331, INRAE/INP/Université de Toulouse III, Toulouse, France
| |
Collapse
|
10
|
Lysine-glucose Maillard reaction products promote longevity and stress tolerance in Caenorhabditis elegans via the insulin/IGF-1 signaling pathway. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
p21-Activated kinase 1 (PAK1) in aging and longevity: An overview. Ageing Res Rev 2021; 71:101443. [PMID: 34390849 DOI: 10.1016/j.arr.2021.101443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
The p21-activated kinases (PAKs) belong to serine/threonine kinases family, regulated by ∼21 kDa small signaling G proteins RAC1 and CDC42. The mammalian PAK family comprises six members (PAK1-6) that are classified into two groups (I and II) based on their domain architecture and regulatory mechanisms. PAKs are implicated in a wide range of cellular functions. PAK1 has recently attracted increasing attention owing to its involvement in oncogenesis, tumor progression, and metastasis as well as several life-limiting diseases and pathological conditions. In Caenorhabditis elegans, PAK1 functions limit the lifespan under basal conditions by inhibiting forkhead transcription factor DAF-16. Interestingly, PAK depletion extended longevity and attenuated the onset of age-related phenotypes in a premature-aging mouse model and delayed senescence in mammalian fibroblasts. These observations implicate PAKs as not only oncogenic but also aging kinases. Therefore, PAK-targeting genetic and/or pharmacological interventions, particularly PAK1-targeting, could be a viable strategy for developing cancer therapies with relatively no side effects and promoting healthy longevity. This review describes PAK family proteins, their biological functions, and their role in regulating aging and longevity using C. elegans. Moreover, we discuss the effect of small-molecule PAK1 inhibitors on the lifespan and healthspan of C. elegans.
Collapse
|