1
|
Choi ES, Hnath B, Sha CM, Dokholyan NV. Unveiling the double-edged sword: SOD1 trimers possess tissue-selective toxicity and bind septin-7 in motor neuron-like cells. Structure 2024; 32:1776-1792.e5. [PMID: 39208794 PMCID: PMC11455619 DOI: 10.1016/j.str.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Misfolded species of superoxide dismutase 1 (SOD1) are associated with increased death in amyotrophic lateral sclerosis (ALS) models compared to insoluble protein aggregates. The mechanism by which structurally independent SOD1 trimers cause cellular toxicity is unknown but may drive disease pathology. Here, we uncovered the SOD1 trimer interactome-a map of potential tissue-selective protein-binding partners in the brain, spinal cord, and skeletal muscle. We identified binding partners and key pathways associated with SOD1 trimers and found that trimers may affect normal cellular functions such as dendritic spine morphogenesis and synaptic function in the central nervous system and cellular metabolism in skeletal muscle. We discovered SOD1 trimer-selective enrichment of genes. We performed detailed computational and biochemical characterization of SOD1 trimer protein binding for septin-7. Our investigation highlights key proteins and pathways within distinct tissues, revealing a plausible intersection of genetic and pathophysiological mechanisms in ALS through interactions involving SOD1 trimers.
Collapse
Affiliation(s)
- Esther Sue Choi
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Brianna Hnath
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Penn State University, University Park, PA, USA
| | - Congzhou Mike Sha
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Penn State University, University Park, PA, USA; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA; Department of Chemistry, Penn State University, University Park, PA, USA.
| |
Collapse
|
2
|
Zhu Y, Hui Q, Zhang Z, Fu H, Qin Y, Zhao Q, Li Q, Zhang J, Guo L, He W, Han C. Advancements in the study of synaptic plasticity and mitochondrial autophagy relationship. J Neurosci Res 2024; 102:e25309. [PMID: 38400573 DOI: 10.1002/jnr.25309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Synapses serve as the points of communication between neurons, consisting primarily of three components: the presynaptic membrane, synaptic cleft, and postsynaptic membrane. They transmit signals through the release and reception of neurotransmitters. Synaptic plasticity, the ability of synapses to undergo structural and functional changes, is influenced by proteins such as growth-associated proteins, synaptic vesicle proteins, postsynaptic density proteins, and neurotrophic growth factors. Furthermore, maintaining synaptic plasticity consumes more than half of the brain's energy, with a significant portion of this energy originating from ATP generated through mitochondrial energy metabolism. Consequently, the quantity, distribution, transport, and function of mitochondria impact the stability of brain energy metabolism, thereby participating in the regulation of fundamental processes in synaptic plasticity, including neuronal differentiation, neurite outgrowth, synapse formation, and neurotransmitter release. This article provides a comprehensive overview of the proteins associated with presynaptic plasticity, postsynaptic plasticity, and common factors between the two, as well as the relationship between mitochondrial energy metabolism and synaptic plasticity.
Collapse
Affiliation(s)
- Yousong Zhu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qinlong Hui
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zheng Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Hao Fu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yali Qin
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qiong Zhao
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qinqing Li
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Junlong Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Lei Guo
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Wenbin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Cheng Han
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
3
|
de Geus MB, Leslie SN, Lam T, Wang W, Kivisakk P, Nairn AC, Arnold SE, Carlyle BC. Mass Spectrometry in Cerebrospinal Fluid Uncovers Association of Glycolysis Biomarkers with Alzheimer's Disease in a Large Clinical Sample. RESEARCH SQUARE 2023:rs.3.rs-3073597. [PMID: 37461556 PMCID: PMC10350182 DOI: 10.21203/rs.3.rs-3073597/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Background Alzheimer's disease (AD) is a complex heterogenous neurodegenerative disorder, characterized by multiple pathophysiologies, including disruptions in brain metabolism. Defining markers for patient stratification across these pathophysiologies is an important step towards personalized treatment of AD. Efficient brain glucose metabolism is essential to sustain neuronal activity, but hypometabolism is consistently observed in AD. The molecular changes underlying these observations remain unclear. Recent studies have indicated dysregulation of several glycolysis markers in AD cerebrospinal fluid and tissue. Methods In this study, unbiased mass spectrometry was used to perform a deep proteomic survey of cerebrospinal fluid (CSF) from a large-scale clinically complex cohort to uncover changes related to impaired glucose metabolism. Results Two glycolytic enzymes, Pyruvate kinase (PKM) and Aldolase A (ALDOA) were found to be specifically upregulated in AD CSF compared to other non-AD groups. Presence of full-length protein of these enzymes in CSF was confirmed through immunoblotting. Levels of tryptic peptides of these enzymes correlated significantly with CSF glucose and CSF lactate in matching CSF samples. Conclusions The results presented here indicate a general dysregulation of glucose metabolism in the brain in AD. We highlight two markers ALDOA and PKM that may act as potential functionally-relevant biomarkers of glucose metabolism dysregulation in AD.
Collapse
|
4
|
Cappuccio G, Khalil SM, Osenberg S, Li F, Maletic-Savatic M. Mass spectrometry imaging as an emerging tool for studying metabolism in human brain organoids. Front Mol Biosci 2023; 10:1181965. [PMID: 37304070 PMCID: PMC10251497 DOI: 10.3389/fmolb.2023.1181965] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Human brain organoids are emerging models to study human brain development and pathology as they recapitulate the development and characteristics of major neural cell types, and enable manipulation through an in vitro system. Over the past decade, with the advent of spatial technologies, mass spectrometry imaging (MSI) has become a prominent tool for metabolic microscopy, providing label-free, non-targeted molecular and spatial distribution information of the metabolites within tissue, including lipids. This technology has never been used for studies of brain organoids and here, we set out to develop a standardized protocol for preparation and mass spectrometry imaging of human brain organoids. We present an optimized and validated sample preparation protocol, including sample fixation, optimal embedding solution, homogenous deposition of matrices, data acquisition and processing to maximize the molecular information derived from mass spectrometry imaging. We focus on lipids in organoids, as they play critical roles during cellular and brain development. Using high spatial and mass resolution in positive- and negative-ion modes, we detected 260 lipids in the organoids. Seven of them were uniquely localized within the neurogenic niches or rosettes as confirmed by histology, suggesting their importance for neuroprogenitor proliferation. We observed a particularly striking distribution of ceramide-phosphoethanolamine CerPE 36:1; O2 which was restricted within rosettes and of phosphatidyl-ethanolamine PE 38:3, which was distributed throughout the organoid tissue but not in rosettes. This suggests that ceramide in this particular lipid species might be important for neuroprogenitor biology, while its removal may be important for terminal differentiation of their progeny. Overall, our study establishes the first optimized experimental pipeline and data processing strategy for mass spectrometry imaging of human brain organoids, allowing direct comparison of lipid signal intensities and distributions in these tissues. Further, our data shed new light on the complex processes that govern brain development by identifying specific lipid signatures that may play a role in cell fate trajectories. Mass spectrometry imaging thus has great potential in advancing our understanding of early brain development as well as disease modeling and drug discovery.
Collapse
Affiliation(s)
- Gerarda Cappuccio
- Department of Pediatrics–Neurology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Saleh M. Khalil
- Department of Pediatrics–Neurology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Sivan Osenberg
- Department of Pediatrics–Neurology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Feng Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
| | - Mirjana Maletic-Savatic
- Department of Pediatrics–Neurology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
5
|
Foley HB, Howe CG, Eckel SP, Chavez T, Gevorkian L, Reyes EG, Kapanke B, Martinez D, Xue S, Suglia SF, Bastain TM, Marsit C, Breton CV. Depression, perceived stress, and distress during pregnancy and EV-associated miRNA profiles in MADRES. J Affect Disord 2023; 323:799-808. [PMID: 36563790 PMCID: PMC9844263 DOI: 10.1016/j.jad.2022.12.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/17/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND MicroRNA (miRNA) circulating in plasma has been proposed as biomarkers for a variety of diseases and stress measures, including depression, stress, and trauma. However, few studies have examined the relationship between stress and miRNA during pregnancy. METHODS In this study, we examined associations between measures of stress and depression during pregnancy with miRNA in early and late pregnancy from the MADRES cohort of primarily low-income Hispanic women based in Los Angeles, California. Extracellular-vesicle- (EV-) associated miRNA were isolated from maternal plasma and quantified using the Nanostring nCounter platform. Correlations for stress-associated miRNA were also calculated for 89 matching cord blood samples. RESULTS Fifty miRNA were nominally associated with depression, perceived stress, and prenatal distress (raw p < 0.05) with 17 miRNA shared between two or more stress measures. Two miRNA (miR-150-5p and miR-148b-3p) remained marginally significant after FDR adjustment (p < 0.10). Fifteen PANTHER pathways were enriched for predicted gene targets of the 50 miRNA associated with stress. Clusters of maternal and neonate miRNA expression suggest a link between maternal and child profiles. LIMITATIONS The study evaluated 142 miRNA and was not an exhaustive analysis of all discovered miRNA. Evaluations for stress, depression and trauma were based on self-reported instruments, rather than diagnostic tools. CONCLUSIONS Depression and stress during pregnancy are associated with some circulating EV miRNA. Given that EV miRNA play important roles in maternal-fetal communication, this may have downstream consequences for maternal and child health, and underscore the importance of addressing mental health during pregnancy, especially in health disparities populations.
Collapse
Affiliation(s)
- Helen Bermudez Foley
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America.
| | - Caitlin G Howe
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America; Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States of America
| | - Sandrah P Eckel
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Thomas Chavez
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Lili Gevorkian
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America; Interface Team, Fulgent Genetics, Inc., Temple City, CA, United States of America
| | - Eileen Granada Reyes
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Bethany Kapanke
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Danilo Martinez
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Shanyan Xue
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Shakira F Suglia
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Theresa M Bastain
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Carmen Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Carrie V Breton
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
6
|
Spruill ML, Maletic-Savatic M, Martin H, Li F, Liu X. Spatial analysis of drug absorption, distribution, metabolism, and toxicology using mass spectrometry imaging. Biochem Pharmacol 2022; 201:115080. [PMID: 35561842 PMCID: PMC9744413 DOI: 10.1016/j.bcp.2022.115080] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
Mass spectrometry imaging (MSI) is emerging as a powerful analytical tool for detection, quantification, and simultaneous spatial molecular imaging of endogenous and exogenous molecules via in situ mass spectrometry analysis of thin tissue sections without the requirement of chemical labeling. The MSI generates chemically specific and spatially resolved ion distribution information for administered drugs and metabolites, which allows numerous applications for studies involving various stages of drug absorption, distribution, metabolism, excretion, and toxicity (ADMET). MSI-based pharmacokinetic imaging analysis provides a histological context and cellular environment regarding dynamic drug distribution and metabolism processes, and facilitates the understanding of the spatial pharmacokinetics and pharmacodynamic properties of drugs. Herein, we discuss the MSI's current technological developments that offer qualitative, quantitative, and spatial location information of small molecule drugs, antibody, and oligonucleotides macromolecule drugs, and their metabolites in preclinical and clinical tissue specimens. We highlight the macro and micro drug-distribution in the whole-body, brain, lung, liver, kidney, stomach, intestine tissue sections, organoids, and the latest applications of MSI in pharmaceutical ADMET studies.
Collapse
Affiliation(s)
- Michelle L Spruill
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Feng Li
- Center for Drug Discovery and Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
7
|
Mac Donald K, Iulianella A. The actin-cytoskeleton associating protein BASP1 regulates neural progenitor localization in the neural tube. Genesis 2021; 60:e23464. [PMID: 34897971 DOI: 10.1002/dvg.23464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022]
Abstract
Brain acid soluble protein 1 (BASP1; previously NAP22 or CAP23) is an actin-associating protein that is highly expressed in the nervous system throughout development. While its roles at the neuromuscular junction and in certain non-neuronal tissues have been previously characterized, its function in the early neural tube is unclear. Using in ovo electroporation in the chicken (Gallus gallus) embryonic neural tube, we show that BASP1 overexpression resulted in the appearance of ectopic neural progenitor cells within the marginal zone of the neural tube. BASP1 knockdown did not affect the position of neural progenitors but did alter the complexity of axons developing from differentiated neurons. This suggests a role for BASP1 in regulating the apical polarity of progenitor cells and axon trajectories from developing neurons.
Collapse
Affiliation(s)
- Kaitlin Mac Donald
- Department of Medical Neuroscience, and Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Science Research Institute, Halifax, Nova Scotia, Canada
| | - Angelo Iulianella
- Department of Medical Neuroscience, and Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Science Research Institute, Halifax, Nova Scotia, Canada
| |
Collapse
|