1
|
Romani L, Del Chierico F, Pane S, Ristori MV, Pirona I, Guarrasi V, Cotugno N, Bernardi S, Lancella L, Perno CF, Rossi P, Villani A, Campana A, Palma P, Putignani L. Exploring nasopharyngeal microbiota profile in children affected by SARS-CoV-2 infection. Microbiol Spectr 2024; 12:e0300923. [PMID: 38289047 PMCID: PMC10913489 DOI: 10.1128/spectrum.03009-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/12/2023] [Indexed: 03/06/2024] Open
Abstract
The relationship between COVID-19 and nasopharyngeal (NP) microbiota has been investigated mainly in the adult population. We explored the NP profile of children affected by COVID-19, compared to healthy controls (CTRLs). NP swabs of children with COVID-19, collected between March and September 2020, were investigated at the admission (T0), 72 h to 7 days (T1), and at the discharge (T2) of the patients. NP microbiota was analyzed by 16S rRNA targeted-metagenomics. Data from sequencing were investigated by QIIME 2.0 and PICRUSt 2. Multiple machine learning (ML) models were exploited to classify patients compared to CTRLs. The NP microbiota of COVID-19 patients (N = 71) was characterized by reduction of α-diversity compared to CTRLs (N = 59). The NP microbiota of COVID-19 cohort appeared significantly enriched in Streptococcus, Haemophilus, Staphylococcus, Veillonella, Enterococcus, Neisseria, Moraxella, Enterobacteriaceae, Gemella, Bacillus, and reduced in Faecalibacterium, Akkermansia, Blautia, Bifidobacterium, Ruminococcus, and Bacteroides, compared to CTRLs (FDR < 0.001). Exploiting ML models, Enterococcus, Pseudomonas, Streptococcus, Capnocytopagha, Tepidiphilus, Porphyromonas, Staphylococcus, and Veillonella resulted as NP microbiota biomarkers, in COVID-19 patients. No statistically significant differences were found comparing the NP microbiota profile of COVID-19 patients during the time-points or grouping patients on the basis of high, medium, and low viral load (VL). This evidence provides specific pathobiont signatures of the NP microbiota in pediatric COVID-19 patients, and the reduction of anaerobic protective commensals. Our data suggest that the NP microbiota may have a specific disease-related signature since infection onset without changes during disease progression, regardless of the SARS-CoV-2 VL. IMPORTANCE Since the beginning of pandemic, we know that children are less susceptible to severe COVID-19 disease. A potential role of the nasopharyngeal (NP) microbiota has been hypothesized but to date, most of the studies have been focused on adults. We studied the NP microbiota modifications in children affected by SARS-CoV-2 infection showing a specific NP microbiome profile, mainly composed by pathobionts and almost missing protective anaerobic commensals. Moreover, in our study, specific microbial signatures appear since the first days of infection independently from SARS-CoV-2 viral load.
Collapse
Affiliation(s)
- L. Romani
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - F. Del Chierico
- Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - S. Pane
- Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - M. V. Ristori
- Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - I. Pirona
- GenomeUp SRL, Viale Pasteur, Rome, Italy
| | | | - N. Cotugno
- Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
| | - S. Bernardi
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - L. Lancella
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - C. F. Perno
- Unit of Microbiology and Diagnostic Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - P. Rossi
- Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
- Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - A. Villani
- Pediatric Emergency Department and General Pediatrics, Bambino Gesù Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - A. Campana
- Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - P. Palma
- Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
| | - L. Putignani
- Unit of Microbiomics and Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - the CACTUS Study TeamCarducciFrancesca CalòCancriniCaterinaChiurchiùSaradegli AttiMarta CiofiCursiLauraCutreraRenatoD’AmoreCarmenD’ArgenioPatriziaDe IorisMaria A.De LucaMaiaFinocchiAndreaMannoEmma ConcettaMorrocchiElenaPansaPaolaSessaLiberaZangariPaola
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- GenomeUp SRL, Viale Pasteur, Rome, Italy
- Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
- Unit of Microbiology and Diagnostic Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Pediatric Emergency Department and General Pediatrics, Bambino Gesù Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
- Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Unit of Microbiomics and Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
2
|
Patel P, Bhattacharjee M. Microbiome and the COVID-19 pandemic. MICROBES, MICROBIAL METABOLISM, AND MUCOSAL IMMUNITY 2024:287-348. [DOI: 10.1016/b978-0-323-90144-4.00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Bellato M, Cappellato M, Longhin F, Del Vecchio C, Brancaccio G, Cattelan AM, Brun P, Salaris C, Castagliuolo I, Di Camillo B. Uncover a microbiota signature of upper respiratory tract in patients with SARS-CoV-2 + . Sci Rep 2023; 13:16867. [PMID: 37803040 PMCID: PMC10558486 DOI: 10.1038/s41598-023-43040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023] Open
Abstract
The outbreak of Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, forced us to face a pandemic with unprecedented social, economic, and public health consequences. Several nations have launched campaigns to immunize millions of people using various vaccines to prevent infections. Meanwhile, therapeutic approaches and discoveries continuously arise; however, identifying infected patients that are going to experience the more severe outcomes of COVID-19 is still a major need, to focus therapeutic efforts, reducing hospitalization and mitigating drug adverse effects. Microbial communities colonizing the respiratory tract exert significant effects on host immune responses, influencing the susceptibility to infectious agents. Through 16S rDNAseq we characterized the upper airways' microbiota of 192 subjects with nasopharyngeal swab positive for SARS-CoV-2. Patients were divided into groups based on the presence of symptoms, pneumonia severity, and need for oxygen therapy or intubation. Indeed, unlike most of the literature, our study focuses on identifying microbial signatures predictive of disease progression rather than on the probability of infection itself, for which a consensus is lacking. Diversity, differential abundance, and network analysis at different taxonomic levels were synergistically adopted, in a robust bioinformatic pipeline, highlighting novel possible taxa correlated with patients' disease progression to intubation.
Collapse
Affiliation(s)
- Massimo Bellato
- Department of Information Engineering, University of Padova, 35131, Padova, Italy
| | - Marco Cappellato
- Department of Information Engineering, University of Padova, 35131, Padova, Italy
| | - Francesca Longhin
- Department of Information Engineering, University of Padova, 35131, Padova, Italy
| | - Claudia Del Vecchio
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Giuseppina Brancaccio
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
- Infectious Diseases Unit, University Hospital Padova, 35128, Padova, Italy
| | - Anna Maria Cattelan
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
- Infectious Diseases Unit, University Hospital Padova, 35128, Padova, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Claudio Salaris
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Ignazio Castagliuolo
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
- Microbiology and Virology Unit, University Hospital Padova, 35121, Padova, Italy
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, 35131, Padova, Italy.
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro (PD), Italy.
| |
Collapse
|
4
|
Hwang IC, Vasquez R, Song JH, Engstrand L, Valeriano VD, Kang DK. Alterations in the gut microbiome and its metabolites are associated with the immune response to mucosal immunization with Lactiplantibacillus plantarum-displaying recombinant SARS-CoV-2 spike epitopes in mice. Front Cell Infect Microbiol 2023; 13:1242681. [PMID: 37705931 PMCID: PMC10495993 DOI: 10.3389/fcimb.2023.1242681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023] Open
Abstract
Lactic acid bacteria (LAB) expressing foreign antigens have great potential as mucosal vaccines. Our previous study reported that recombinant Lactiplantibacillus plantarum SK156 displaying SARS-CoV-2 spike S1 epitopes elicited humoral and cell-mediated immune responses in mice. Here, we further examined the effect of the LAB-based mucosal vaccine on gut microbiome composition and function, and gut microbiota-derived metabolites. Forty-nine (49) female BALB/c mice were orally administered L. plantarum SK156-displaying SARS-CoV-2 spike S1 epitopes thrice (at 14-day intervals). Mucosal immunization considerably altered the gut microbiome of mice by enriching the abundance of beneficial gut bacteria, such as Muribaculaceae, Mucispirillum, Ruminococcaceae, Alistipes, Roseburia, and Clostridia vadinBB60. Moreover, the predicted function of the gut microbiome showed increased metabolic pathways for amino acids, energy, carbohydrates, cofactors, and vitamins. The fecal concentration of short-chain fatty acids, especially butyrate, was also altered by mucosal immunization. Notably, alterations in gut microbiome composition, function, and butyrate levels were positively associated with the immune response to the vaccine. Our results suggest that the gut microbiome and its metabolites may have influenced the immunogenicity of the LAB-based SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- In-Chan Hwang
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Robie Vasquez
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Ji Hoon Song
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Valerie Diane Valeriano
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
5
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
6
|
Analysis of bronchoalveolar lavage fluid metatranscriptomes among patients with COVID-19 disease. Sci Rep 2022; 12:21125. [PMID: 36476670 PMCID: PMC9729217 DOI: 10.1038/s41598-022-25463-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
To better understand the potential relationship between COVID-19 disease and hologenome microbial community dynamics and functional profiles, we conducted a multivariate taxonomic and functional microbiome comparison of publicly available human bronchoalveolar lavage fluid (BALF) metatranscriptome samples amongst COVID-19 (n = 32), community acquired pneumonia (CAP) (n = 25), and uninfected samples (n = 29). We then performed a stratified analysis based on mortality amongst the COVID-19 cohort with known outcomes of deceased (n = 10) versus survived (n = 15). Our overarching hypothesis was that there are detectable and functionally significant relationships between BALF microbial metatranscriptomes and the severity of COVID-19 disease onset and progression. We observed 34 functionally discriminant gene ontology (GO) terms in COVID-19 disease compared to the CAP and uninfected cohorts, and 21 GO terms functionally discriminant to COVID-19 mortality (q < 0.05). GO terms enriched in the COVID-19 disease cohort included hydrolase activity, and significant GO terms under the parental terms of biological regulation, viral process, and interspecies interaction between organisms. Notable GO terms associated with COVID-19 mortality included nucleobase-containing compound biosynthetic process, organonitrogen compound catabolic process, pyrimidine-containing compound biosynthetic process, and DNA recombination, RNA binding, magnesium and zinc ion binding, oxidoreductase activity, and endopeptidase activity. A Dirichlet multinomial mixtures clustering analysis resulted in a best model fit using three distinct clusters that were significantly associated with COVID-19 disease and mortality. We additionally observed discriminant taxonomic differences associated with COVID-19 disease and mortality in the genus Sphingomonas, belonging to the Sphingomonadacae family, Variovorax, belonging to the Comamonadaceae family, and in the class Bacteroidia, belonging to the order Bacteroidales. To our knowledge, this is the first study to evaluate significant differences in taxonomic and functional signatures between BALF metatranscriptomes from COVID-19, CAP, and uninfected cohorts, as well as associating these taxa and microbial gene functions with COVID-19 mortality. Collectively, while this data does not speak to causality nor directionality of the association, it does demonstrate a significant relationship between the human microbiome and COVID-19. The results from this study have rendered testable hypotheses that warrant further investigation to better understand the causality and directionality of host-microbiome-pathogen interactions.
Collapse
|
7
|
Shaffer JP, Nothias LF, Thompson LR, Sanders JG, Salido RA, Couvillion SP, Brejnrod AD, Lejzerowicz F, Haiminen N, Huang S, Lutz HL, Zhu Q, Martino C, Morton JT, Karthikeyan S, Nothias-Esposito M, Dührkop K, Böcker S, Kim HW, Aksenov AA, Bittremieux W, Minich JJ, Marotz C, Bryant MM, Sanders K, Schwartz T, Humphrey G, Vásquez-Baeza Y, Tripathi A, Parida L, Carrieri AP, Beck KL, Das P, González A, McDonald D, Ladau J, Karst SM, Albertsen M, Ackermann G, DeReus J, Thomas T, Petras D, Shade A, Stegen J, Song SJ, Metz TO, Swafford AD, Dorrestein PC, Jansson JK, Gilbert JA, Knight R. Standardized multi-omics of Earth's microbiomes reveals microbial and metabolite diversity. Nat Microbiol 2022; 7:2128-2150. [PMID: 36443458 PMCID: PMC9712116 DOI: 10.1038/s41564-022-01266-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 10/10/2022] [Indexed: 11/30/2022]
Abstract
Despite advances in sequencing, lack of standardization makes comparisons across studies challenging and hampers insights into the structure and function of microbial communities across multiple habitats on a planetary scale. Here we present a multi-omics analysis of a diverse set of 880 microbial community samples collected for the Earth Microbiome Project. We include amplicon (16S, 18S, ITS) and shotgun metagenomic sequence data, and untargeted metabolomics data (liquid chromatography-tandem mass spectrometry and gas chromatography mass spectrometry). We used standardized protocols and analytical methods to characterize microbial communities, focusing on relationships and co-occurrences of microbially related metabolites and microbial taxa across environments, thus allowing us to explore diversity at extraordinary scale. In addition to a reference database for metagenomic and metabolomic data, we provide a framework for incorporating additional studies, enabling the expansion of existing knowledge in the form of an evolving community resource. We demonstrate the utility of this database by testing the hypothesis that every microbe and metabolite is everywhere but the environment selects. Our results show that metabolite diversity exhibits turnover and nestedness related to both microbial communities and the environment, whereas the relative abundances of microbially related metabolites vary and co-occur with specific microbial consortia in a habitat-specific manner. We additionally show the power of certain chemistry, in particular terpenoids, in distinguishing Earth's environments (for example, terrestrial plant surfaces and soils, freshwater and marine animal stool), as well as that of certain microbes including Conexibacter woesei (terrestrial soils), Haloquadratum walsbyi (marine deposits) and Pantoea dispersa (terrestrial plant detritus). This Resource provides insight into the taxa and metabolites within microbial communities from diverse habitats across Earth, informing both microbial and chemical ecology, and provides a foundation and methods for multi-omics microbiome studies of hosts and the environment.
Collapse
Affiliation(s)
- Justin P Shaffer
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Louis-Félix Nothias
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Luke R Thompson
- Northern Gulf Institute, Mississippi State University, Starkville, MS, USA
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | - Jon G Sanders
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Rodolfo A Salido
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sneha P Couvillion
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Asker D Brejnrod
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Franck Lejzerowicz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Niina Haiminen
- IBM Research, T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Shi Huang
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Holly L Lutz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Qiyun Zhu
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - Cameron Martino
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - James T Morton
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Smruthi Karthikeyan
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mélissa Nothias-Esposito
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kai Dührkop
- Chair for Bioinformatics, Friedrich Schiller University, Jena, Germany
| | - Sebastian Böcker
- Chair for Bioinformatics, Friedrich Schiller University, Jena, Germany
| | - Hyun Woo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, Gyeonggi-do, Korea
| | - Alexander A Aksenov
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Wout Bittremieux
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Jeremiah J Minich
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Clarisse Marotz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - MacKenzie M Bryant
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Karenina Sanders
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tara Schwartz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Greg Humphrey
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yoshiki Vásquez-Baeza
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Anupriya Tripathi
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Laxmi Parida
- IBM Research, T.J. Watson Research Center, Yorktown Heights, NY, USA
| | | | - Kristen L Beck
- IBM Research, Almaden Research Center, San Jose, CA, USA
| | - Promi Das
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Antonio González
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Daniel McDonald
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joshua Ladau
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Søren M Karst
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institute, Copenhagen, Denmark
| | - Mads Albertsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Gail Ackermann
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jeff DeReus
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Science, The University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel Petras
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - James Stegen
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Se Jin Song
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Thomas O Metz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Austin D Swafford
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jack A Gilbert
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Zhu T, Jin J, Chen M, Chen Y. The impact of infection with COVID-19 on the respiratory microbiome: A narrative review. Virulence 2022; 13:1076-1087. [PMID: 35763685 PMCID: PMC9794016 DOI: 10.1080/21505594.2022.2090071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has affected millions of individuals with various implications. Consistent with the crucial role of the microbiome in determining health and disease in humans, various studies have investigated the gut and respiratory microbiome effect on the COVID-19. Microbiota dysbiosis might support the entry, replication, and establishment of SARS-CoV-2 infection by modulating various mechanisms. One of the main mechanisms that the modulation of respiratory microbiota composition during the COVID-19 infection affects the magnitude of the disease is changes in innate and acquired immune responses, including inflammatory markers and cytokines and B- and T-cells. The diversity of respiratory microbiota in COVID-19 patients is controversial; some studies reported low microbial diversity, while others found high diversity, suggesting the role of respiratory microbiota in this disease. Modulating microbiota diversity and profile by supplementations and nutrients can be applied prophylactic and therapeutic in combating COVID-19. Here, we discussed the lung microbiome dysbiosis during various lung diseases and its interaction with immune cells, focusing on COVID-19.
Collapse
Affiliation(s)
- Taiping Zhu
- Internal Medicine Department, Chun’an Maternal and Child Health Hospital, Hangzhou, Zhejiang, China
| | - Jun Jin
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Minhua Chen
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China,CONTACT Minhua Chen
| | - Yingjun Chen
- Department of Infectious Diseases, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
9
|
Hastak PS, Andersen CR, Kelleher AD, Sasson SC. Frontline workers: Mediators of mucosal immunity in community acquired pneumonia and COVID-19. Front Immunol 2022; 13:983550. [PMID: 36211412 PMCID: PMC9539803 DOI: 10.3389/fimmu.2022.983550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
The current COVID-19 pandemic has highlighted a need to further understand lung mucosal immunity to reduce the burden of community acquired pneumonia, including that caused by the SARS-CoV-2 virus. Local mucosal immunity provides the first line of defence against respiratory pathogens, however very little is known about the mechanisms involved, with a majority of literature on respiratory infections based on the examination of peripheral blood. The mortality for severe community acquired pneumonia has been rising annually, even prior to the current pandemic, highlighting a significant need to increase knowledge, understanding and research in this field. In this review we profile key mediators of lung mucosal immunity, the dysfunction that occurs in the diseased lung microenvironment including the imbalance of inflammatory mediators and dysbiosis of the local microbiome. A greater understanding of lung tissue-based immunity may lead to improved diagnostic and prognostic procedures and novel treatment strategies aimed at reducing the disease burden of community acquired pneumonia, avoiding the systemic manifestations of infection and excess morbidity and mortality.
Collapse
Affiliation(s)
- Priyanka S. Hastak
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| | - Christopher R. Andersen
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
- Intensive Care Unit, Royal North Shore Hospital, Sydney, NSW, Australia
- Critical Care and Trauma Division, The George Institute for Global Health, Sydney, NSW, Australia
| | - Anthony D. Kelleher
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| | - Sarah C. Sasson
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
10
|
Association of Gut Microbiota with Inflammatory Bowel Disease and COVID-19 Severity: A Possible Outcome of the Altered Immune Response. Curr Microbiol 2022; 79:184. [PMID: 35508737 PMCID: PMC9068506 DOI: 10.1007/s00284-022-02877-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease could be induced by SARS-CoV-2, involved in alteration of gut microbiota during the respiratory viral infection. Presence of viral RNA in fecal samples for longer period, even after the clearance of the virus from respiratory tract, is suggestive of dysbiosis leading to the poor prognosis of COVID-19 in hospitalized patients. Gut microbiome (GM) plays a significant role to stimulate the modulated antiviral immune response against invading pathogens regulating the physiological homeostasis. GM profile of COVID-19 patients has revealed the drastic depletion of dominant families of commensals in the gut such as, Bacteroidaceae, Lachnospiraceae and Ruminococcaceae to be replaced with Enterococcus, Staphylococcus, Streptococcus, Serratia etc. Immune dysfunction of Th1–Th17 cells along gut-lung axis impairs the mucosal lining translocating the microorganisms including commensals and metabolites to other body organs like lungs, brain, kidney through circulation. These events may cause hyper inflammations associated with excessive secretion of cytokines and chemokines to form the cytokine storm causing ARDS. Gut virome could interact with microbiome and immune cells, help establishing the antiviral immune signaling, important for health maintenance/ or in disease progression. Essentially, these immunological strategies are needed to use in future prospective therapeutics to control the severity events.
Collapse
|
11
|
Brogna C, Brogna B, Bisaccia DR, Lauritano F, Marino G, Montano L, Cristoni S, Prisco M, Piscopo M. Could SARS-CoV-2 Have Bacteriophage Behavior or Induce the Activity of Other Bacteriophages? Vaccines (Basel) 2022; 10:vaccines10050708. [PMID: 35632464 PMCID: PMC9143435 DOI: 10.3390/vaccines10050708] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
SARS-CoV-2 has become one of the most studied viruses of the last century. It was assumed that the only possible host for these types of viruses was mammalian eukaryotic cells. Our recent studies show that microorganisms in the human gastrointestinal tract affect the severity of COVID-19 and for the first time provide indications that the virus might replicate in gut bacteria. In order to further support these findings, in the present work, cultures of bacteria from the human microbiome and SARS-CoV-2 were analyzed by electron and fluorescence microscopy. The images presented in this article, in association with the nitrogen (15N) isotope-labeled culture medium experiment, suggest that SARS-CoV-2 could also infect bacteria in the gut microbiota, indicating that SARS-CoV-2 could act as a bacteriophage. Our results add new knowledge to the understanding of the mechanisms of SARS-CoV-2 infection and fill gaps in the study of the interactions between SARS-CoV-2 and non-mammalian cells. These findings could be useful in suggesting specific new pharmacological solutions to support the vaccination campaign.
Collapse
Affiliation(s)
- Carlo Brogna
- Department of Research, Craniomed Group Facility Srl., 20091 Bresso, Italy; (D.R.B.); (F.L.)
- Correspondence: (C.B.); (M.P.)
| | - Barbara Brogna
- Department of Radiology, Moscati Hospital, Contrada Amoretta, 83100 Avellino, Italy;
| | - Domenico Rocco Bisaccia
- Department of Research, Craniomed Group Facility Srl., 20091 Bresso, Italy; (D.R.B.); (F.L.)
| | - Francesco Lauritano
- Department of Research, Craniomed Group Facility Srl., 20091 Bresso, Italy; (D.R.B.); (F.L.)
| | - Giuliano Marino
- Marsan Consulting Srl., Public Health Company, Via dei Fiorentini, 80133 Naples, Italy;
| | - Luigi Montano
- Andrology Unit and Service of Life Style Medicine in Uro-Andrology, Local Health Authority (ASL), 84124 Salerno, Italy;
| | | | - Marina Prisco
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
- Correspondence: (C.B.); (M.P.)
| |
Collapse
|
12
|
Analysis on the characteristics of spatio-temporal evolution and aggregation trend of early COVID-19 in mainland China. Sci Rep 2022; 12:4380. [PMID: 35288642 PMCID: PMC8919916 DOI: 10.1038/s41598-022-08403-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 02/21/2022] [Indexed: 01/08/2023] Open
Abstract
To analyze the spatio-temporal aggregation of COVID-19 in mainland China within 20 days after the closure of Wuhan city, and provide a theoretical basis for formulating scientific prevention measures in similar major public health events in the future. Draw a distribution map of the cumulative number of COVID-19 by inverse distance weighted interpolation; analyze the spatio-temporal characteristics of the daily number of COVID-19 in mainland China by spatio-temporal autocorrelation analysis; use the spatio-temporal scanning statistics to detect the spatio-temporal clustering area of the daily number of new diagnosed cases. The cumulative number of diagnosed cases obeyed the characteristics of geographical proximity and network proximity to Hubei. Hubei and its neighboring provinces were most affected, and the impact in the eastern China was more dramatic than the impact in the western; the global spatio-temporal Moran’s I index showed an overall downward trend. Since the 10th day of the closure of Wuhan, the epidemic in China had been under effective control, and more provinces had shifted into low-incidence areas. The number of new diagnosed cases had gradually decreased, showing a random distribution in time and space (P< 0.1), and no clusters were formed. Conclusion: the spread of COVID-19 had obvious spatial-temporal aggregation. China’s experience shows that isolation city strategy can greatly contain the spread of the COVID-19 epidemic.
Collapse
|
13
|
Shilts MH, Rosas-Salazar C, Strickland BA, Kimura KS, Asad M, Sehanobish E, Freeman MH, Wessinger BC, Gupta V, Brown HM, Boone HH, Patel V, Barbi M, Bottalico D, O’Neill M, Akbar N, Rajagopala SV, Mallal S, Phillips E, Turner JH, Jerschow E, Das SR. Severe COVID-19 Is Associated With an Altered Upper Respiratory Tract Microbiome. Front Cell Infect Microbiol 2022; 11:781968. [PMID: 35141167 PMCID: PMC8819187 DOI: 10.3389/fcimb.2021.781968] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background The upper respiratory tract (URT) is the portal of entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and SARS-CoV-2 likely interacts with the URT microbiome. However, understanding of the associations between the URT microbiome and the severity of coronavirus disease 2019 (COVID-19) is still limited. Objective Our primary objective was to identify URT microbiome signature/s that consistently changed over a spectrum of COVID-19 severity. Methods Using data from 103 adult participants from two cities in the United States, we compared the bacterial load and the URT microbiome between five groups: 20 asymptomatic SARS-CoV-2-negative participants, 27 participants with mild COVID-19, 28 participants with moderate COVID-19, 15 hospitalized patients with severe COVID-19, and 13 hospitalized patients in the ICU with very severe COVID-19. Results URT bacterial load, bacterial richness, and within-group microbiome composition dissimilarity consistently increased as COVID-19 severity increased, while the relative abundance of an amplicon sequence variant (ASV), Corynebacterium_unclassified.ASV0002, consistently decreased as COVID-19 severity increased. Conclusions We observed that the URT microbiome composition significantly changed as COVID-19 severity increased. The URT microbiome could potentially predict which patients may be more likely to progress to severe disease or be modified to decrease severity. However, further research in additional longitudinal cohorts is needed to better understand how the microbiome affects COVID-19 severity.
Collapse
Affiliation(s)
- Meghan H. Shilts
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christian Rosas-Salazar
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Britton A. Strickland
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kyle S. Kimura
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mohammad Asad
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Esha Sehanobish
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael H. Freeman
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Bronson C. Wessinger
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Veerain Gupta
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Hunter M. Brown
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Helen H. Boone
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Viraj Patel
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mali Barbi
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Danielle Bottalico
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Meaghan O’Neill
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nadeem Akbar
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | | | - Simon Mallal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Elizabeth Phillips
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Justin H. Turner
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Elina Jerschow
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Suman R. Das
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
14
|
Zhu Z, Zhang S, Wang P, Chen X, Bi J, Cheng L, Zhang X. A comprehensive review of the analysis and integration of omics data for SARS-CoV-2 and COVID-19. Brief Bioinform 2021; 23:6412396. [PMID: 34718395 PMCID: PMC8574485 DOI: 10.1093/bib/bbab446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Since the first report of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, over 100 million people have been infected by COVID-19, millions of whom have died. In the latest year, a large number of omics data have sprung up and helped researchers broadly study the sequence, chemical structure and function of SARS-CoV-2, as well as molecular abnormal mechanisms of COVID-19 patients. Though some successes have been achieved in these areas, it is necessary to analyze and mine omics data for comprehensively understanding SARS-CoV-2 and COVID-19. Hence, we reviewed the current advantages and limitations of the integration of omics data herein. Firstly, we sorted out the sequence resources and database resources of SARS-CoV-2, including protein chemical structure, potential drug information and research literature resources. Next, we collected omics data of the COVID-19 hosts, including genomics, transcriptomics, microbiology and potential drug information data. And subsequently, based on the integration of omics data, we summarized the existing data analysis methods and the related research results of COVID-19 multi-omics data in recent years. Finally, we put forward SARS-CoV-2 (COVID-19) multi-omics data integration research direction and gave a case study to mine deeper for the disease mechanisms of COVID-19.
Collapse
Affiliation(s)
- Zijun Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China, 150081
| | - Sainan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China, 150081
| | - Ping Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China, 150081
| | - Xinyu Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China, 150081
| | - Jianxing Bi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China, 150081
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China, 150081.,NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang, China, 150028
| | - Xue Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang, China, 150028.,McKusick-Zhang Center for Genetic Medicine, Peking Union Medical College, Beijing, China, 100005
| |
Collapse
|
15
|
Abstract
High expression of the transmembrane protein angiotensin I converting enzyme 2 (ACE2), more than 100-times higher as in the lung, and transmembrane serine protease 2 (TMPRSS2) in the gastrointestinal tract leads to infection with SARS-CoV-2. According to meta-analysis data, 9.8–20% of COVID-19 patients experience gastrointestinal symptoms, where diarrhoea is the most frequent, and about 50% shed viruses with high titre through their faeces, where a first faecal transmission was reported. Furthermore, gut inflammation, intestinal damage, and weakening of the gut mucosal integrity that leads to increased permeability has been shown in different studies for COVID-19 patients. This can lead to increased inflammation and bacteraemia. Low mucosal integrity combined with low intestinal damage is a good predictor for disease progression and submission to the intensive care unit (ICU). Several pilot studies have shown that the gut microbiome of COVID-19 patients is changed, microbial richness and diversity were lower, and opportunistic pathogens that can cause bacteraemia were enriched compared to a healthy control group. In a large proportion of these patients, dysbiosis was not resolved at discharge from the hospital and one study showed dysbiosis is still present after 3 months post COVID-19. Consequently, there might be a link between dysbiosis of the gut microbiome in COVID-19 patients and chronic COVID-19 syndrome (CCS). Various clinical trials are investigating the benefit of probiotics for acute COVID-19 patients, the majority of which have not reported results yet. However, two clinical trials have shown that a certain combination of probiotics is beneficial and safe for acute COVID-19 patients. Mortality was 11% for the probiotic treatment group, and 22% for the control group. Furthermore, for the probiotic group, symptoms cleared faster, and an 8-fold decreased risk of developing a respiratory failure was calculated. In conclusion, evidence is arising that inflammation, increased permeability, and microbiome dysbiosis in the gut occur in COVID-19 patients and thus provide new targets for adjuvant treatments of acute and chronic COVID-19. More research in this area is needed.
Collapse
|
16
|
Pathophysiology of SARS-CoV-2 Infection in the Upper Respiratory Tract and Its Relation to Breath Volatile Organic Compounds. mSystems 2021; 6:e0010421. [PMID: 34313463 PMCID: PMC8407219 DOI: 10.1128/msystems.00104-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Among the many products of metabolic processes are volatile organic compounds (VOCs). In the airways, these volatile metabolites are emitted through breathing and thus are easily sampled for analysis. Recent work has connected the functions and structure of the human microbiome with health and disease. Alteration in microbial function in this context can result in differences in metabolite composition, including that of VOCs, presenting the possibility of a new noninvasive method for clinical diagnosis. Screening methods that assess VOCs arising from changes in the airway microbiome could be highly useful in diagnosing viral upper respiratory tract infections (URTIs), e.g., COVID-19, which are highly contagious and have an enormous public health impact worldwide. A rapid noninvasive screening test for URTIs would pose major advantages in containing the disease. As early evidence shows that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alters the human microbiome (both in the gut and the respiratory tract), we propose that detection of a VOC signature of an altered nasal microbiome could be fruitful as a rapid noninvasive measure of URTI in general and of SARS-CoV-2 in particular.
Collapse
|
17
|
Gasmi A, Tippairote T, Mujawdiya PK, Peana M, Menzel A, Dadar M, Benahmed AG, Bjørklund G. The microbiota-mediated dietary and nutritional interventions for COVID-19. Clin Immunol 2021; 226:108725. [PMID: 33845194 PMCID: PMC8032598 DOI: 10.1016/j.clim.2021.108725] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Worldwide, scientists are looking for specific treatment for COVID-19. Apart from the antiviral approach, the interventions to support healthy immune responses to the virus are feasible through diet, nutrition, and lifestyle approaches. This narrative review explores the recent studies on dietary, nutritional, and lifestyle interventions that influence the microbiota-mediated immunomodulatory effects against viral infections. Cumulative studies reported that the airway microbiota and SARS-CoV-2 leverage each other and determine the pathogen-microbiota-host responses. Cigarette smoking can disrupt microbiota abundance. The composition and diversification of intestinal microbiota influence the airway microbiota and the innate and adaptive immunity, which require supports from the balance of macro- and micronutrients from the diet. Colorful vegetables supplied fermentable prebiotics and anti-inflammatory, antioxidant phytonutrients. Fermented foods and beverages support intestinal microbiota. In sensitive individuals, the avoidance of the high immunoreactive food antigens contributes to antiviral immunity. This review suggests associations between airway and intestinal microbiota, antiviral host immunity, and the influences of dietary, nutritional, and lifestyle interventions to prevent the clinical course toward severe COVID-19.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Torsak Tippairote
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine, Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand; Thailand Institute for Functional Medicine, Bangkok, Thailand
| | | | | | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| |
Collapse
|