1
|
Arai K, Yoshida S, Furuichi E, Iwanaga S, Mir TA, Yoshida T. Transplanted artificial amnion membrane enhanced wound healing in third-degree burn injury diabetic mouse model. Regen Ther 2024; 27:170-180. [PMID: 38571890 PMCID: PMC10987674 DOI: 10.1016/j.reth.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Wound healing is severely compromised in patients with diabetes owing to factors such poor blood circulation, delayed immune response, elevated blood sugar levels, and neuropathy. Although the development of new wound healing products and prevention of serious complications such as infections in wounds have received substantial interest, wound healing remains a challenge in regenerative medicine. Burn wounds, especially third-degree burns, are difficult to treat because they are associated with immune and inflammatory reactions and distributive shock. Wound care and treatment that protects the burn site from infection and allows wound healing can be achieved with bioengineered wound dressings. However, few studies have reported effective dressings for third-degree burn wounds, making it important to develop new dressing materials. Methods In this study, we developed an artificial amniotic membrane (AM) using epithelial and mesenchymal cells derived from human amnion as a novel dressing material. The artificial AM was applied to the wound of a diabetic third-degree burn model and its wound healing ability was evaluated. Results This artificial amnion produced multiple growth factors associated with angiogenesis, fibroblast proliferation, and anti-inflammation. In addition, angiogenesis and granulation tissue formation were promoted in the artificial AM-treated mouse group compared with the control group. Furthermore, the inflammatory phase was prolonged in the control group. Conclusions Our preliminary results indicate that the artificial AM might be useful as a new dressing for refractory ulcers and third-degree burns. This artificial AM-based material represents great potential for downstream clinical research and treatment of diabetes patients with third-degree burns.
Collapse
Affiliation(s)
- Kenichi Arai
- Department of Clinical Biomaterial Applied Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Satoshi Yoshida
- Department of Medical Oncology, Toyama University Hospital, Toyama, Japan
| | - Etsuko Furuichi
- Department of Clinical Biomaterial Applied Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Shintaroh Iwanaga
- Division of Biomedical System Engineering, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Tanveer Ahmad Mir
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Toshiko Yoshida
- Department of Clinical Biomaterial Applied Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
2
|
Masri S, Fauzi MB, Rajab NF, Lee WH, Zainal Abidin DA, Siew EL. In vitro 3D skin culture and its sustainability in toxicology: a narrative review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:476-499. [PMID: 39359233 DOI: 10.1080/21691401.2024.2407617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
In current toxicological research, 2D cell cultures and animal models are well- accepted and commonly employed methods. However, these approaches have many drawbacks and are distant from the actual environment in human. To embrace this, great efforts have been made to provide alternative methods for non-animal skin models in toxicology studies with the need for more mechanistically informative methods. This review focuses on the current state of knowledge regarding the in vitro 3D skin model methods, with different functional states that correspond to the sustainability in the field of toxicology testing. We discuss existing toxicology testing methods using in vitro 3D skin models which provide a better understanding of the testing requirements that are needed. The challenges and future landscape in using the in vitro 3D skin models in toxicology testing are also discussed. We are confident that the in vitro 3D skin models application may become an important tool in toxicology in the context of risk assessment.
Collapse
Affiliation(s)
- Syafira Masri
- Department of Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
- Advance Bioactive Materials-Cells (Adv-BioMaC) UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Nor Fadilah Rajab
- Centre for Health Aging and Wellness, Faculty of Helath Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Wing-Hin Lee
- Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL RCMP), Perak, Malaysia
| | | | - Ee Ling Siew
- ASASIpintar Unit, Pusat PERMATA@Pintar Negara, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Phuphanitcharoenkun S, Louis F, Sowa Y, Uchida K, Katsuyama M, Waditee-Sirisattha R, Kageyama H, Matsusaki M, Palaga T. Characterization of macrophages associated with human skin models exposed to UV radiation. Commun Biol 2024; 7:1284. [PMID: 39379484 PMCID: PMC11461876 DOI: 10.1038/s42003-024-06975-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
Skin macrophages play important roles in the response to external stimuli. Human skin equivalents (HSEs) incorporating the human monocytic cell line THP-1 were fabricated to generate immunocompetent human skin models. These HSEs were used to investigate the influence of the skin microenvironment and ultraviolet A (UVA) on macrophages. Transcriptomic analysis revealed that THP-1 cells in HSEs were enriched in extracellular matrix interaction hallmark but downregulated in DNA replication hallmark. Upon UVA exposure, immunocompetent HSEs presented epidermal distortion and increased DNA double-strand breaks (DSBs). The genes associated with oxidative stress and the inflammatory response were significantly upregulated in THP-1 cells. When the photoprotective agent mycosporine-2-glycine from cyanobacteria was applied to HSEs, the incidence of UVA-induced DSBs was significantly lower, and inflammatory and UV response hallmarks were downregulated in THP-1 cells. Taken together, these results suggest that immunocompetent HSEs can be used to investigate the responses of skin-resident macrophages to external stimuli.
Collapse
Affiliation(s)
- Suphanun Phuphanitcharoenkun
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Materials and Bio-interfaces, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Yoshihiro Sowa
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Department of Plastic Surgery, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Kentaro Uchida
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation Kadoma, Osaka, 571-8686, Japan
| | - Misa Katsuyama
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation Kadoma, Osaka, 571-8686, Japan
| | | | - Hakuto Kageyama
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, Aichi, 468-8502, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Tanapat Palaga
- Center of Excellence in Materials and Bio-interfaces, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Mulder PP, Vlig M, Elgersma A, Rozemeijer L, Mastenbroek LS, Middelkoop E, Joosten I, Koenen HJ, Boekema BK. Monocytes and T cells incorporated in full skin equivalents to study innate or adaptive immune reactions after burn injury. Front Immunol 2023; 14:1264716. [PMID: 37901218 PMCID: PMC10611519 DOI: 10.3389/fimmu.2023.1264716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Thermal injury often leads to prolonged and excessive inflammation, which hinders the recovery of patients. There is a notable absence of suitable animal-free models for investigating the inflammatory processes following burn injuries, thereby impeding the development of more effective therapies to improve burn wound healing in patients. Methods In this study, we established a human full skin equivalent (FSE) burn wound model and incorporated human peripheral blood-derived monocytes and T cells. Results Upon infiltration into the FSEs, the monocytes differentiated into macrophages within a span of 7 days. Burn-injured FSEs exhibited macrophages with increased expression of HLA-DR+ and elevated production of IL-8 (CXCL8), in comparison to uninjured FSEs. Among the T cells that actively migrated into the FSEs, the majority were CD4+ and CD25+. These T cells demonstrated augmented expression of markers associated with regulatory T cell, Th1, or Th17 activity, which coincided with significant heightened cytokine production, including IFN-γ, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-17A, IP-10 (CXCL10), and TGF-β1. Burn injury did not impact the studied effector T cell subsets or cytokine levels. Discussion Collectively, this study represents a significant advancement in the development of an immunocompetent human skin model, specifically tailored for investigating burn-induced innate or adaptive immune reactions at the site of burn injury.
Collapse
Affiliation(s)
- Patrick P.G. Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
| | - Anouk Elgersma
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
| | - Lotte Rozemeijer
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
| | | | - Esther Middelkoop
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, VU University Amsterdam, Amsterdam, Netherlands
- Tissue Function and Regeneration, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hans J.P.M. Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bouke K.H.L. Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Attiogbe E, Larochelle S, Chaib Y, Mainzer C, Mauroux A, Bordes S, Closs B, Gilbert C, Moulin VJ. An in vitro autologous, vascularized, and immunocompetent Tissue Engineered Skin model obtained by the self-assembled approach. Acta Biomater 2023; 168:361-371. [PMID: 37419164 DOI: 10.1016/j.actbio.2023.06.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
A complete in vitro skin model, containing resident cell types is needed to understand physiology and to consider the role of immune and endothelial cells in dermal drug testing. In this study, a cell extraction technique was developed to isolate resident skin cells from the same human donor while preserving the immune and endothelial cells. Then those cells were used to reconstruct an autologous, vascularized, and immunocompetent Tissue-Engineered Skin model, aviTES. Phenotypic characterization of the viable cells was performed on freshly isolated cells and after thawing through flow cytometry. Dermal cell extracts were characterized as fibroblasts, endothelial and immune cells, and the average amount of each cell type represents 4, 0.5, and 1 million viable cells per g of the dermis, respectively. The 3D models, TES and aviTES, were characterized by a fully differentiated epidermis that showed an increase in the presence of Ki67+ cells in the basolateral layer of the aviTES model. Capillary-like network formation, through the self-assembly of endothelial cells, and the presence of functional immune cells were identified through immunofluorescence staining in aviTES. In addition, the aviTES model was immunocompetent, as evidenced by its capacity to increase the production of pro-inflammatory cytokines TNF-α, MIP-1α, and GM-CSF following LPS stimulation. This study describes an autologous skin model containing a functional resident skin immune system and a capillary network. It provides a relevant tool to study the contribution of the immune system to skin diseases and inflammatory responses and to investigate resident skin cell interactions and drug development. STATEMENT OF SIGNIFICANCE: There is an urgent need for a complete in vitro skin model containing the resident cell types to better understand the role of immune and endothelial cells in skin and to be able to use it for drug testing. Actual 3D models of human skin most often contain only fibroblasts and keratinocytes with a limited number of models containing endothelial cells or a limited variety of immune cells. This study describes an autologous skin model containing a functional resident skin immune system and a capillary network. It provides a relevant tool to study the contribution of the immune system to skin diseases and inflammatory responses and to investigate interactions between resident skin cell, improving our capacity to develop new drugs.
Collapse
Affiliation(s)
- Emilie Attiogbe
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval (LOEX), Québec, QC, Canada; Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Sébastien Larochelle
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval (LOEX), Québec, QC, Canada; Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Yanis Chaib
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval (LOEX), Québec, QC, Canada; Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | | | | | | | | | - Caroline Gilbert
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Véronique J Moulin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval (LOEX), Québec, QC, Canada; Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
6
|
Huth S, Huth L, Heise R, Marquardt Y, Lopopolo L, Piecychna M, Boor P, Fingerle-Rowson G, Kapurniotu A, Yazdi AS, Bucala R, Bernhagen J, Baron JM. Macrophage migration inhibitory factor (MIF) and its homolog D-dopachrome tautomerase (D-DT) are significant promotors of UVB- but not chemically induced non-melanoma skin cancer. Sci Rep 2023; 13:11611. [PMID: 37464010 PMCID: PMC10354066 DOI: 10.1038/s41598-023-38748-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
Non-melanoma skin cancer (NMSC) is the most common cancer in Caucasians worldwide. We investigated the pathophysiological role of MIF and its homolog D-DT in UVB- and chemically induced NMSC using Mif-/-, D-dt-/- and Mif-/-/D-dt-/- mice on a hairless SKH1 background. Knockout of both cytokines showed similar attenuating effects on inflammation after acute UVB irradiation and tumor formation during chronic UVB irradiation, without additive protective effects noted in double knockout mice, indicating that both cytokines activate a similar signaling threshold. In contrast, genetic deletion of Mif and D-dt had no major effects on chemically induced skin tumors. To get insight into the contributing mechanisms, we used an in vitro 3D skin model with incorporated macrophages. Application of recombinant MIF and D-DT led to an accumulation of macrophages within the epidermal part that could be reversed by selective inhibitors of MIF and D-DT pathways. In summary, our data indicate that MIF and D-DT contribute to the development and progression of UVB- but not chemically induced NMSC, a role at least partially accounted by effects of both cytokines on epidermal macrophage accumulation. These data highlight that MIF and D-DT are both potential therapeutic targets for the prevention of photocarcinogenesis but not chemical carcinogenesis.
Collapse
Affiliation(s)
- Sebastian Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Laura Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Ruth Heise
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Yvonne Marquardt
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Linda Lopopolo
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Marta Piecychna
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Peter Boor
- Institute of Pathology and Department of Nephrology and Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Günter Fingerle-Rowson
- Department I of Internal Medicine, Center of Integrated Oncology Köln Bonn, University Hospital of Cologne, Cologne, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Amir S Yazdi
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Richard Bucala
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Jens Malte Baron
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
7
|
Hofmann E, Schwarz A, Fink J, Kamolz LP, Kotzbeck P. Modelling the Complexity of Human Skin In Vitro. Biomedicines 2023; 11:biomedicines11030794. [PMID: 36979772 PMCID: PMC10045055 DOI: 10.3390/biomedicines11030794] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 03/08/2023] Open
Abstract
The skin serves as an important barrier protecting the body from physical, chemical and pathogenic hazards as well as regulating the bi-directional transport of water, ions and nutrients. In order to improve the knowledge on skin structure and function as well as on skin diseases, animal experiments are often employed, but anatomical as well as physiological interspecies differences may result in poor translatability of animal-based data to the clinical situation. In vitro models, such as human reconstructed epidermis or full skin equivalents, are valuable alternatives to animal experiments. Enormous advances have been achieved in establishing skin models of increasing complexity in the past. In this review, human skin structures are described as well as the fast evolving technologies developed to reconstruct the complexity of human skin structures in vitro.
Collapse
Affiliation(s)
- Elisabeth Hofmann
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Anna Schwarz
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Julia Fink
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Lars-Peter Kamolz
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Petra Kotzbeck
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Correspondence:
| |
Collapse
|
8
|
Smythe P, Wilkinson HN. The Skin Microbiome: Current Landscape and Future Opportunities. Int J Mol Sci 2023; 24:3950. [PMID: 36835363 PMCID: PMC9963692 DOI: 10.3390/ijms24043950] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Our skin is the largest organ of the body, serving as an important barrier against the harsh extrinsic environment. Alongside preventing desiccation, chemical damage and hypothermia, this barrier protects the body from invading pathogens through a sophisticated innate immune response and co-adapted consortium of commensal microorganisms, collectively termed the microbiota. These microorganisms inhabit distinct biogeographical regions dictated by skin physiology. Thus, it follows that perturbations to normal skin homeostasis, as occurs with ageing, diabetes and skin disease, can cause microbial dysbiosis and increase infection risk. In this review, we discuss emerging concepts in skin microbiome research, highlighting pertinent links between skin ageing, the microbiome and cutaneous repair. Moreover, we address gaps in current knowledge and highlight key areas requiring further exploration. Future advances in this field could revolutionise the way we treat microbial dysbiosis associated with skin ageing and other pathologies.
Collapse
Affiliation(s)
- Paisleigh Smythe
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| | - Holly N. Wilkinson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| |
Collapse
|
9
|
Mulder PPG, Raktoe RS, Vlig M, Elgersma A, Middelkoop E, Boekema BKHL. Full Skin Equivalent Models for Simulation of Burn Wound Healing, Exploring Skin Regeneration and Cytokine Response. J Funct Biomater 2023; 14:29. [PMID: 36662076 PMCID: PMC9864292 DOI: 10.3390/jfb14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Healing of burn injury is a complex process that often leads to the development of functional and aesthetic complications. To study skin regeneration in more detail, organotypic skin models, such as full skin equivalents (FSEs) generated from dermal matrices, can be used. Here, FSEs were generated using de-epidermalized dermis (DED) and collagen matrices MatriDerm® and Mucomaix®. Our aim was to validate the MatriDerm- and Mucomaix-based FSEs for the use as in vitro models of wound healing. Therefore, we first characterized the FSEs in terms of skin development and cell proliferation. Proper dermal and epidermal morphogenesis was established in all FSEs and was comparable to ex vivo human skin models. Extension of culture time improved the organization of the epidermal layers and the basement membrane in MatriDerm-based FSE but resulted in rapid degradation of the Mucomaix-based FSE. After applying a standardized burn injury to the models, re-epithelization occurred in the DED- and MatriDerm-based FSEs at 2 weeks after injury, similar to ex vivo human skin. High levels of pro-inflammatory cytokines were present in the culture media of all models, but no significant differences were observed between models. We anticipate that these animal-free in vitro models can facilitate research on skin regeneration and can be used to test therapeutic interventions in a preclinical setting to improve wound healing.
Collapse
Affiliation(s)
- Patrick P. G. Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Rajiv S. Raktoe
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
| | - Anouk Elgersma
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
| | - Esther Middelkoop
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
- Tissue Function and Regeneration, Amsterdam Movement Sciences, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Bouke K. H. L. Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
10
|
Unuvar Purcu D, Korkmaz A, Gunalp S, Helvaci DG, Erdal Y, Dogan Y, Suner A, Wingender G, Sag D. Effect of stimulation time on the expression of human macrophage polarization markers. PLoS One 2022; 17:e0265196. [PMID: 35286356 PMCID: PMC8920204 DOI: 10.1371/journal.pone.0265196] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/27/2022] [Indexed: 12/13/2022] Open
Abstract
Macrophages are highly plastic cells that can polarize into functionally distinct subsets in vivo and in vitro in response to environmental signals. The development of protocols to model macrophage polarization in vitro greatly contributes to our understanding of macrophage biology. Macrophages are divided into two main groups: Pro-inflammatory M1 macrophages (classically activated) and anti-inflammatory M2 macrophages (alternatively activated), based on several key surface markers and the production of inflammatory mediators. However, the expression of these common macrophage polarization markers is greatly affected by the stimulation time used. Unfortunately, there is no consensus yet regarding the optimal stimulation times for particular macrophage polarization markers in in vitro experiments. This situation is problematic, (i) as analysing a particular marker at a suboptimal time point can lead to false-negative results, and (ii) as it clearly impedes the comparison of different studies. Using human monocyte-derived macrophages (MDMs) in vitro, we analysed how the expression of the main polarization markers for M1 (CD64, CD86, CXCL9, CXCL10, HLA-DR, IDO1, IL1β, IL12, TNF), M2a (CD200R, CD206, CCL17, CCL22, IL-10, TGM2), and M2c (CD163, IL-10, TGFβ) macrophages changes over time at mRNA and protein levels. Our data establish the most appropriate stimulation time for the analysis of the expression of human macrophage polarization markers in vitro. Providing such a reference guide will likely facilitate the investigation of macrophage polarization and its reproducibility.
Collapse
Affiliation(s)
- Duygu Unuvar Purcu
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Molecular Medicine, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Asli Korkmaz
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Genomic Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sinem Gunalp
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Genomic Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | | | - Yonca Erdal
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Yavuz Dogan
- Department of Microbiology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Asli Suner
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Gerhard Wingender
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Biomedicine and Health Technologies, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Duygu Sag
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Genomic Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
- * E-mail:
| |
Collapse
|
11
|
Papi M, Pozzi D, Palmieri V, Caracciolo G. Principles for optimization and validation of mRNA lipid nanoparticle vaccines against COVID-19 using 3D bioprinting. NANO TODAY 2022; 43:101403. [PMID: 35079274 PMCID: PMC8776405 DOI: 10.1016/j.nantod.2022.101403] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 05/03/2023]
Abstract
BioNTech/Pfizer's Comirnaty and Moderna's SpikeVax vaccines consist in mRNA encapsulated in lipid nanoparticles (LNPs). The modularity of the delivery platform and the manufacturing possibilities provided by microfluidics let them look like an instant success, but they are the product of decades of intense research. There is a multitude of considerations to be made when designing an optimal mRNA-LNPs vaccine. Herein, we provide a brief overview of what is presently known and what still requires investigation to optimize mRNA LNPs vaccines. Lastly, we give our perspective on the engineering of 3D bioprinted validation systems that will allow faster, cheaper, and more predictive vaccine testing in the future compared with animal models.
Collapse
Affiliation(s)
- Massimiliano Papi
- Department of Neuroscience, Catholic University of Sacred Heart, L.go Francesco Vito 1, 00168 Rome, Italy
| | - Daniela Pozzi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Valentina Palmieri
- Institute for Complex Systems, National Research Council of Italy, Via dei Taurini 19, 00185 Rome, Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| |
Collapse
|
12
|
Varga-Medveczky Z, Kocsis D, Naszlady MB, Fónagy K, Erdő F. Skin-on-a-Chip Technology for Testing Transdermal Drug Delivery-Starting Points and Recent Developments. Pharmaceutics 2021; 13:1852. [PMID: 34834264 PMCID: PMC8619496 DOI: 10.3390/pharmaceutics13111852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
During the last decades, several technologies were developed for testing drug delivery through the dermal barrier. Investigation of drug penetration across the skin can be important in topical pharmaceutical formulations and also in cosmeto-science. The state-of- the-art in the field of skin diffusion measurements, different devices, and diffusion platforms used, are summarized in the introductory part of this review. Then the methodologies applied at Pázmány Péter Catholic University are shown in detail. The main testing platforms (Franz diffusion cells, skin-on-a-chip devices) and the major scientific projects (P-glycoprotein interaction in the skin; new skin equivalents for diffusion purposes) are also presented in one section. The main achievements of our research are briefly summarized: (1) new skin-on-a-chip microfluidic devices were validated as tools for drug penetration studies for the skin; (2) P-glycoprotein transport has an absorptive orientation in the skin; (3) skin samples cannot be used for transporter interaction studies after freezing and thawing; (4) penetration of hydrophilic model drugs is lower in aged than in young skin; (5) mechanical sensitization is needed for excised rodent and pig skins for drug absorption measurements. Our validated skin-on-a-chip platform is available for other research groups to use for testing and for utilizing it for different purposes.
Collapse
Affiliation(s)
| | | | | | | | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary; (Z.V.-M.); (D.K.); (M.B.N.); (K.F.)
| |
Collapse
|