1
|
Yamaya N, Hashimoto T, Ikeda S, Brilliant T D, Tsujimoto M, Nakagawa S, Kawashima R. Preventive effect of one-session brief focused attention meditation on state fatigue: Resting state functional magnetic resonance imaging study. Neuroimage 2024; 297:120709. [PMID: 38936650 DOI: 10.1016/j.neuroimage.2024.120709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
INTRODUCTION The extended practice of meditation may reduce the influence of state fatigue by changing neurocognitive processing. However, little is known about the preventive effects of one-session brief focused attention meditation (FAM) on state fatigue in healthy participants or its potential neural mechanisms. This study examined the preventive effects of one-session brief FAM on state fatigue and its neural correlates using resting-state functional MRI (rsfMRI) measurements. METHODS We randomly divided 56 meditation-naïve participants into FAM and control groups. After the first rsfMRI scan, each group performed a 10-minute each condition while wearing a functional near-infrared spectroscopy (fNIRS) device for assessing brain activity. Subsequently, following a second rsfMRI scan, the participants completed a fatigue-inducing task (a Go/NoGo task) for 60 min. We evaluated the temporal changes in the Go/NoGo task performance of participants as an indicator of state fatigue. We then calculated changes in the resting-state functional connectivity (rsFC) of the rsfMRI from before to after each condition and compared them between groups. We also evaluated neural correlates between the changes in rsFC and state fatigue. RESULTS AND DISCUSSION The fNIRS measurements indicated differences in brain activity during each condition between the FAM and control groups, showing decreased medial prefrontal cortex activity and decreased functional connectivity between the medial prefrontal cortex and middle frontal gyrus. The control group exhibited a decrement in Go/NoGo task performance over time, whereas the FAM group did not. These results, thus, suggested that FAM could prevent state fatigue. Compared with the control group, the rsFC analysis revealed a significant increase in the connectivity between the left dorsomedial prefrontal cortex and right superior parietal lobule in the FAM group, suggesting a modification of attention regulation by cognitive effort. In the control group, increased connectivity was observed between the bilateral posterior cingulate cortex and left inferior occipital gyrus, which might be associated with poor attention regulation and reduced higher-order cognitive function. Additionally, the change in the rsFC of the control group was related to state fatigue. CONCLUSION Our findings suggested that one session of 10-minute FAM could prevent behavioral state fatigue by employing cognitive effort to modify attention regulation as well as suppressing poor attention regulation and reduced higher-order cognitive function.
Collapse
Affiliation(s)
- Noriki Yamaya
- Graduate School of Medicine, Tohoku University, 2-1 Seiryomachi, Aobaku, Sendai 9808575, Japan; Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi, Aobaku, Sendai 9808575, Japan.
| | - Teruo Hashimoto
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi, Aobaku, Sendai 9808575, Japan
| | - Shigeyuki Ikeda
- Faculty of Engineering, University of Toyama, Gofuku 3190, Toyama-shi, Toyama 9308555, Japan
| | - Denilson Brilliant T
- Graduate School of Medicine, Tohoku University, 2-1 Seiryomachi, Aobaku, Sendai 9808575, Japan; Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi, Aobaku, Sendai 9808575, Japan
| | - Masayuki Tsujimoto
- Graduate School of Medicine, Tohoku University, 2-1 Seiryomachi, Aobaku, Sendai 9808575, Japan; Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi, Aobaku, Sendai 9808575, Japan
| | - Seishu Nakagawa
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyaginoku, Sendai, Miyagi 983-8536, Japan; Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi, Aobaku, Sendai 9808575, Japan
| | - Ryuta Kawashima
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi, Aobaku, Sendai 9808575, Japan
| |
Collapse
|
2
|
Huang S, Hao S, Si Y, Shen D, Cui L, Zhang Y, Lin H, Wang S, Gao Y, Guo X. Intelligent classification of major depressive disorder using rs-fMRI of the posterior cingulate cortex. J Affect Disord 2024; 358:399-407. [PMID: 38599253 DOI: 10.1016/j.jad.2024.03.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/16/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Major Depressive Disorder (MDD) is a widespread psychiatric condition that affects a significant portion of the global population. The classification and diagnosis of MDD is crucial for effective treatment. Traditional methods, based on clinical assessment, are subjective and rely on healthcare professionals' expertise. Recently, there's growing interest in using Resting-State Functional Magnetic Resonance Imaging (rs-fMRI) to objectively understand MDD's neurobiology, complementing traditional diagnostics. The posterior cingulate cortex (PCC) is a pivotal brain region implicated in MDD which could be used to identify MDD from healthy controls. Thus, this study presents an intelligent approach based on rs-fMRI data to enhance the classification of MDD. Original rs-fMRI data were collected from a cohort of 430 participants, comprising 197 patients and 233 healthy controls. Subsequently, the data underwent preprocessing using DPARSF, and the amplitudes of low-frequency fluctuation values were computed to reduce data dimensionality and feature count. Then data associated with the PCC were extracted. After eliminating redundant features, various types of Support Vector Machines (SVMs) were employed as classifiers for intelligent categorization. Ultimately, we compared the performance of each algorithm, along with its respective optimal classifier, based on classification accuracy, true positive rate, and the area under the receiver operating characteristic curve (AUC-ROC). Upon analyzing the comparison results, we determined that the Random Forest (RF) algorithm, in conjunction with a sophisticated Gaussian SVM classifier, demonstrated the highest performance. Remarkably, this combination achieved a classification accuracy of 81.9 % and a true positive rate of 92.9 %. In conclusion, our study improves the classification of MDD by supplementing traditional methods with rs-fMRI and machine learning techniques, offering deeper neurobiological insights and aiding accuracy, while emphasizing its role as an adjunct to clinical assessment.
Collapse
Affiliation(s)
- Shihao Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shisheng Hao
- Xiangyang No.1 People's Hospital, Hubei University of Medicine, China
| | - Yue Si
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Dan Shen
- Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Lan Cui
- School of Automation, China University of Geosciences, China
| | - Yuandong Zhang
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, China
| | - Hang Lin
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, China
| | - Sanwang Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Yujun Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China; Yichang Mental Health Center, China; Institute of Mental Health, Three Gorges University, China; Yichang City Clinical Research Center for Mental Disorders, China.
| | - Xin Guo
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China.
| |
Collapse
|
3
|
Lee ZL, Siew SKH, Yu J. Intrinsic functional connectivity mediates the effect of personality traits on depressive symptoms. PLoS One 2024; 19:e0300462. [PMID: 38985695 PMCID: PMC11236141 DOI: 10.1371/journal.pone.0300462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/27/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Personality traits have been proposed as risk factors for depressive symptoms. However, the neural mechanism behind these relationships is unclear. This study examined the possible mediating effect of resting-state functional connectivity networks on these relationships. METHODS Data from 153 healthy Germans were obtained from the MPI-Leipzig Mind-Brain-Body: Neuroanatomy & Connectivity Protocol database. Network-based statistics were used to identify significant functional connectivity networks that were positively and negatively associated with the personality traits of neuroticism, conscientiousness, and extraversion, with and without demographical covariates. Mediation analyses were performed for each personality trait and depressive symptoms with the significant positive and negative network strengths of the respective personality traits as mediators. RESULTS Neuroticism, conscientiousness, and extraversion were significantly correlated with depressive symptoms. Network-based statistics identified patterns of functional connectivity that were significantly associated with neuroticism and conscientiousness. After controlling for demographical covariates, significant conscientiousness-associated and extraversion-associated networks emerged. Mediation analysis concluded that only the neuroticism-positive network mediated the effect of neuroticism on depressive symptoms. When age and sex were controlled, the extraversion-positive network completely mediated the effect of extraversion on depressive symptoms. CONCLUSIONS These findings revealed that patterns of intrinsic functional networks predict personality traits and suggest that the relationship between personality traits and depressive symptoms may in part be due to their common patterns of intrinsic functional networks.
Collapse
Affiliation(s)
- Zheng Long Lee
- School of Social Sciences, Psychology, Nanyang Technological University, Singapore, Singapore
| | - Savannah Kiah Hui Siew
- School of Social Sciences, Psychology, Nanyang Technological University, Singapore, Singapore
| | - Junhong Yu
- School of Social Sciences, Psychology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
4
|
Dagnino PC, Galadí JA, Càmara E, Deco G, Escrichs A. Inducing a meditative state by artificial perturbations: A mechanistic understanding of brain dynamics underlying meditation. Netw Neurosci 2024; 8:517-540. [PMID: 38952817 PMCID: PMC11168722 DOI: 10.1162/netn_a_00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/29/2024] [Indexed: 07/03/2024] Open
Abstract
Contemplative neuroscience has increasingly explored meditation using neuroimaging. However, the brain mechanisms underlying meditation remain elusive. Here, we implemented a mechanistic framework to explore the spatiotemporal dynamics of expert meditators during meditation and rest, and controls during rest. We first applied a model-free approach by defining a probabilistic metastable substate (PMS) space for each condition, consisting of different probabilities of occurrence from a repertoire of dynamic patterns. Moreover, we implemented a model-based approach by adjusting the PMS of each condition to a whole-brain model, which enabled us to explore in silico perturbations to transition from resting-state to meditation and vice versa. Consequently, we assessed the sensitivity of different brain areas regarding their perturbability and their mechanistic local-global effects. Overall, our work reveals distinct whole-brain dynamics in meditation compared to rest, and how transitions can be induced with localized artificial perturbations. It motivates future work regarding meditation as a practice in health and as a potential therapy for brain disorders.
Collapse
Affiliation(s)
- Paulina Clara Dagnino
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier A. Galadí
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| | - Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
5
|
Gao Y, Lin K, Wang B, Ji W, Liu J, Du M, Wang W, Li Y, Du X, Wang Y, Jiang T. Decision-making ability limitations and brain neural activity changes in healthcare workers after mild COVID-19. Neurosci Res 2024; 204:14-21. [PMID: 38355017 DOI: 10.1016/j.neures.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
Studies have demonstrated that the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) extensively affects brain function. Although cognitive dysfunction is considered a common manifestation in COVID-19 patients during the recovery period, the potential changes in decision-making ability, are not yet clear. Decision-making functions are essential to the work of healthcare workers. However, there is a lack of a multidimensional assessment of its functioning in COVID-19 cases. Here, we used tests combined with the resting-state functional magnetic resonance imaging (rs-fMRI) stabilization feature amplitude of low-frequency fluctuations (ALFF) to explore decision-making behavior and brain neural activity changes in healthcare workers after mild COVID-19. Participants were divided into the SARS-CoV-2 infected group (SI, n = 41) and healthy controls (HC, n = 42). All participants underwent a series of neuropsychological tests. They performed the Iowa Gambling Task (IGT) and the Game of Dice Task (GDT), followed by fMRI (n = 20) to assess their decision-making ability under ambiguous and risky conditions and changes in brain neural activity. The SI group performed worse in verbal memory than the HC group. Furthermore, the SI group performed worse in the IGT, whereas no significant difference was observed in the GDT. In addition, rs-fMRI showed enhanced spontaneous neural activity in the postcentral gyrus and inferior parietal lobe in the SI group compared to the HC group.
Collapse
Affiliation(s)
- Yaotian Gao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Public Health Clinical Center, Hefei, China
| | - Keyi Lin
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Public Health Clinical Center, Hefei, China
| | - Bangyue Wang
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Ji
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Public Health Clinical Center, Hefei, China; Department of Neurosurgery, Huaan Brain Hospital, Hefei, China
| | - Jia Liu
- Anhui Public Health Clinical Center, Hefei, China; Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengcheng Du
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wang
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Li
- Anhui Public Health Clinical Center, Hefei, China; Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaowen Du
- Anhui Public Health Clinical Center, Hefei, China; Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuyang Wang
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Tao Jiang
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Public Health Clinical Center, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China.
| |
Collapse
|
6
|
Zarka D, Cevallos C, Ruiz P, Petieau M, Cebolla AM, Bengoetxea A, Cheron G. Electroencephalography microstates highlight specific mindfulness traits. Eur J Neurosci 2024; 59:1753-1769. [PMID: 38221503 DOI: 10.1111/ejn.16247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
The present study aimed to investigate the spontaneous dynamics of large-scale brain networks underlying mindfulness as a dispositional trait, through resting-state electroencephalography (EEG) microstates analysis. Eighteen participants had attended a standardized mindfulness-based stress reduction training (MBSR), and 18 matched waitlist individuals (CTRL) were recorded at rest while they were passively exposed to auditory stimuli. Participants' mindfulness traits were assessed with the Five Facet Mindfulness Questionnaire (FFMQ). To further explore the relationship between microstate dynamics at rest and mindfulness traits, participants were also asked to rate their experience according to five phenomenal dimensions. After training, MBSR participants showed a highly significant increase in FFMQ score, as well as higher observing and non-reactivity FFMQ sub-scores than CTRL participants. Microstate analysis revealed four classes of microstates (A-D) in global clustering across all subjects. The MBSR group showed lower duration, occurrence and coverage of microstate C than the control group. Moreover, these microstate C parameters were negatively correlated to non-reactivity sub-scores of FFMQ across participants, whereas the microstate A occurrence was negatively correlated to FFMQ total score. Further analysis of participants' self-reports suggested that MBSR participants showed a better sensory-affective integration of auditory interferences. In line with previous studies, our results suggest that temporal dynamics of microstate C underlie specifically the non-reactivity trait of mindfulness. These findings encourage further research into microstates in the evaluation and monitoring of the impact of mindfulness-based interventions on the mental health and well-being of individuals.
Collapse
Affiliation(s)
- D Zarka
- Laboratory of Neurophysiology and Movement Biomechanics, Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
- Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - C Cevallos
- Laboratory of Neurophysiology and Movement Biomechanics, Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito, Ecuador
| | - P Ruiz
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito, Ecuador
| | - M Petieau
- Laboratory of Neurophysiology and Movement Biomechanics, Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - A M Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - A Bengoetxea
- Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
- Athenea Neuroclinics, San Sebastian, Spain
| | - G Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Electrophysiology, Université de Mons, Mons, Belgium
| |
Collapse
|
7
|
Lukemire J, Pagnoni G, Guo Y. Sparse Bayesian modeling of hierarchical independent component analysis: Reliable estimation of individual differences in brain networks. Biometrics 2023; 79:3599-3611. [PMID: 37036246 PMCID: PMC11149774 DOI: 10.1111/biom.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/27/2023] [Indexed: 04/11/2023]
Abstract
Independent component analysis (ICA) is one of the leading approaches for studying brain functional networks. There is increasing interest in neuroscience studies to investigate individual differences in brain networks and their association with demographic characteristics and clinical outcomes. In this work, we develop a sparse Bayesian group hierarchical ICA model that offers significant improvements over existing ICA techniques for identifying covariate effects on the brain network. Specifically, we model the population-level ICA source signals for brain networks using a Dirichlet process mixture. To reliably capture individual differences on brain networks, we propose sparse estimation of the covariate effects in the hierarchical ICA model via a horseshoe prior. Through extensive simulation studies, we show that our approach performs considerably better in detecting covariate effects in comparison with the leading group ICA methods. We then perform an ICA decomposition of a between-subject meditation study. Our method is able to identify significant effects related to meditative practice in brain regions that are consistent with previous research into the default mode network, whereas other group ICA approaches find few to no effects.
Collapse
Affiliation(s)
- Joshua Lukemire
- Department of Biostatistics and Bioinformatics, Emory University, Georgia, USA
| | - Giuseppe Pagnoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ying Guo
- Department of Biostatistics and Bioinformatics, Emory University, Georgia, USA
| |
Collapse
|
8
|
Zhang Y, Chen S, Zhang Z, Duan W, Zhao L, Weinschenk G, Luh WM, Anderson AK, Dai W. Effect of Meditation on Brain Activity during an Attention Task: A Comparison Study of ASL and BOLD Task fMRI. Brain Sci 2023; 13:1653. [PMID: 38137100 PMCID: PMC10741430 DOI: 10.3390/brainsci13121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Focused attention meditation (FAM) training has been shown to improve attention, but the neural basis of FAM on attention has not been thoroughly understood. Here, we aim to investigate the neural effect of a 2-month FAM training on novice meditators in a visual oddball task (a frequently adopted task to evaluate attention), evaluated with both ASL and BOLD fMRI. Using ASL, activation was increased in the middle cingulate (part of the salience network, SN) and temporoparietal (part of the frontoparietal network, FPN) regions; the FAM practice time was negatively associated with the longitudinal changes in activation in the medial prefrontal (part of the default mode network, DMN) and middle frontal (part of the FPN) regions. Using BOLD, the FAM practice time was positively associated with the longitudinal changes of activation in the inferior parietal (part of the dorsal attention network, DAN), dorsolateral prefrontal (part of the FPN), and precentral (part of the DAN) regions. The effect sizes for the activation changes and their association with practice time using ASL are significantly larger than those using BOLD. Our study suggests that FAM training may improve attention via modulation of the DMN, DAN, SN, and FPN, and ASL may be a sensitive tool to study the FAM effect on attention.
Collapse
Affiliation(s)
- Yakun Zhang
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| | - Shichun Chen
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| | - Zongpai Zhang
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| | - Wenna Duan
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| | - Li Zhao
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - George Weinschenk
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| | - Wen-Ming Luh
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21225, USA
| | - Adam K. Anderson
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA;
| | - Weiying Dai
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| |
Collapse
|
9
|
Lorenzetti V, Gaillard A, Beyer E, Kowalczyk M, Kamboj SK, Manning V, Gleeson J. Do mindfulness-based interventions change brain function in people with substance dependence? A systematic review of the fMRI evidence. BMC Psychiatry 2023; 23:407. [PMID: 37286936 DOI: 10.1186/s12888-023-04789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/14/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Substance use disorders (SUDs) affect ~ 35 million people globally and are associated with strong cravings, stress, and brain alterations. Mindfulness-based interventions (MBIs) can mitigate the adverse psychosocial outcomes of SUDs, but the underlying neurobiology is unclear. Emerging findings were systematically synthesised from fMRI studies about MBI-associated changes in brain function in SUDs and their associations with mindfulness, drug quantity, and craving. METHODS PsycINFO, Medline, CINAHL, PubMed, Scopus, and Web of Science were searched. Seven studies met inclusion criteria. RESULTS Group by time effects indicated that MBIs in SUDs (6 tobacco and 1 opioid) were associated with changes in the function of brain pathways implicated in mindfulness and addiction (e.g., anterior cingulate cortex and striatum), which correlated with greater mindfulness, lower craving and drug quantity. CONCLUSIONS The evidence for fMRI-related changes with MBI in SUD is currently limited. More fMRI studies are required to identify how MBIs mitigate and facilitate recovery from aberrant brain functioning in SUDs.
Collapse
Affiliation(s)
- Valentina Lorenzetti
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Level 5 Daniel Mannix Building, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia.
| | - Alexandra Gaillard
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Level 5 Daniel Mannix Building, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, Australia
| | - Emillie Beyer
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Level 5 Daniel Mannix Building, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
| | - Magdalena Kowalczyk
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Level 5 Daniel Mannix Building, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
| | - Sunjeev K Kamboj
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Victoria Manning
- Monash Addiction Research Centre, Eastern Health Clinical School, Monash University, Melbourne, Australia
- Turning Point, Eastern Health, Monash University, Melbourne, Australia
| | - John Gleeson
- Digital Innovations in Mental Health and Well-being Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Jiang L, Yang Q, He R, Wang G, Yi C, Si Y, Yao D, Xu P, Yu L, Li F. Edge-centric functional network predicts risk propensity in economic decision-making: evidence from a resting-state fMRI study. Cereb Cortex 2023:7162717. [PMID: 37191346 DOI: 10.1093/cercor/bhad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
Despite node-centric studies revealing an association between resting-state functional connectivity and individual risk propensity, the prediction of future risk decisions remains undetermined. Herein, we applied a recently emerging edge-centric method, the edge community similarity network (ECSN), to alternatively describe the community structure of resting-state brain activity and to probe its contribution to predicting risk propensity during gambling. Results demonstrated that inter-individual variability of risk decisions correlates with the inter-subnetwork couplings spanning the visual network (VN) and default mode network (DMN), cingulo-opercular task control network, and sensory/somatomotor hand network (SSHN). Particularly, participants who have higher community similarity of these subnetworks during the resting state tend to choose riskier and higher yielding bets. And in contrast to low-risk propensity participants, those who behave high-risky show stronger couplings spanning the VN and SSHN/DMN. Eventually, based on the resting-state ECSN properties, the risk rate during the gambling task is effectively predicted by the multivariable linear regression model at the individual level. These findings provide new insights into the neural substrates of the inter-individual variability in risk propensity and new neuroimaging metrics to predict individual risk decisions in advance.
Collapse
Affiliation(s)
- Lin Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qingqing Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Runyang He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guangying Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chanlin Yi
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yajing Si
- School of Psychology, Xinxiang Medical University, Xinxiang 453003, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Liang Yu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China
| |
Collapse
|
11
|
Nie Z, Xie X, Kang L, Wang W, Xu S, Chen M, Yao L, Gong Q, Zhou E, Li M, Wang H, Bu L, Liu Z. A Cross-Sectional Study: Structural and Related Functional Connectivity Changes in the Brain: Stigmata of Adverse Parenting in Patients with Major Depressive Disorder? Brain Sci 2023; 13:brainsci13040694. [PMID: 37190659 DOI: 10.3390/brainsci13040694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Background: There is a high correlation between the risk of major depressive disorder (MDD) and adverse childhood experiences (ACEs) such as adverse parenting (AP). While there appears to be an association between ACEs and changes in brain structure and function, there have yet to be multimodal neuroimaging studies of associations between parenting style and brain developmental changes in MDD patients. To explore the effect of AP on brain structure and function. Methods: In this cross-sectional study, 125 MDD outpatients were included in the study and divided into the AP group and the optimal parenting (OP) group. Participants completed self-rating scales to assess depressive severity, symptoms, and their parents' styles. They also completed magnetic resonance imaging within one week of filling out the instruments. The differences between groups of gender, educational level, and medications were analyzed using the chi-squared test and those of age, duration of illness, and scores on scales using the independent samples t-test. Differences in gray matter volume (GMV) and resting-state functional connectivity (RS-FC) were assessed between groups. Results: AP was associated with a significant increase in GMV in the right superior parietal lobule (SPL) and FC between the right SPL and the bilateral medial superior frontal cortex in MDD patients. Limitations: The cross-cultural characteristics of AP will result in the lack of generalizability of the findings. Conclusions: The results support the hypothesis that AP during childhood may imprint the brain and affect depressive symptoms in adulthood. Parents should pay attention to the parenting style and avoid a style that lacks warmth.
Collapse
Affiliation(s)
- Zhaowen Nie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xinhui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lijun Kang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wei Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shuxian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mianmian Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qian Gong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Enqi Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Meng Li
- PET/CT/MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lihong Bu
- PET/CT/MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
12
|
Voss S, Cerna J, Gothe NP. Yoga Impacts Cognitive Health: Neurophysiological Changes and Stress Regulation Mechanisms. Exerc Sport Sci Rev 2023; 51:73-81. [PMID: 36342265 PMCID: PMC10033324 DOI: 10.1249/jes.0000000000000311] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Yoga, a physical and contemplative practice, offers the practitioner a unique mind-body exercise experience demonstrating preliminary efficacy in improving cognitive health. We examine the evidence for underlying mechanisms that explain the yoga-cognition relationship in healthy older adults. The cognitive benefits of yoga may be the result of improved stress regulation and neurocognitive resource efficiency that facilitate bidirectional brain-body communication.
Collapse
Affiliation(s)
- Stephanie Voss
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign
| | - Jonathan Cerna
- Neuroscience Program, University of Illinois Urbana-Champaign
| | - Neha P. Gothe
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign
- Neuroscience Program, University of Illinois Urbana-Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign
- Bouvé College of Health Sciences, Northeastern University
| |
Collapse
|
13
|
Guidotti R, D'Andrea A, Basti A, Raffone A, Pizzella V, Marzetti L. Long-Term and Meditation-Specific Modulations of Brain Connectivity Revealed Through Multivariate Pattern Analysis. Brain Topogr 2023; 36:409-418. [PMID: 36977909 PMCID: PMC10164028 DOI: 10.1007/s10548-023-00950-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/22/2023] [Indexed: 03/30/2023]
Abstract
Neuroimaging studies have provided evidence that extensive meditation practice modifies the functional and structural properties of the human brain, such as large-scale brain region interplay. However, it remains unclear how different meditation styles are involved in the modulation of these large-scale brain networks. Here, using machine learning and fMRI functional connectivity, we investigated how focused attention and open monitoring meditation styles impact large-scale brain networks. Specifically, we trained a classifier to predict the meditation style in two groups of subjects: expert Theravada Buddhist monks and novice meditators. We showed that the classifier was able to discriminate the meditation style only in the expert group. Additionally, by inspecting the trained classifier, we observed that the Anterior Salience and the Default Mode networks were relevant for the classification, in line with their theorized involvement in emotion and self-related regulation in meditation. Interestingly, results also highlighted the role of specific couplings between areas crucial for regulating attention and self-awareness as well as areas related to processing and integrating somatosensory information. Finally, we observed a larger involvement of left inter-hemispheric connections in the classification. In conclusion, our work supports the evidence that extensive meditation practice modulates large-scale brain networks, and that the different meditation styles differentially affect connections that subserve style-specific functions.
Collapse
Affiliation(s)
- Roberto Guidotti
- Department of Neuroscience, Imaging and Clinical Sciences, "Gabriele d'Annunzio" University Chieti- Pescara, Via dei Vestini 33, 66013, Chieti, Italy
| | - Antea D'Andrea
- Department of Neuroscience, Imaging and Clinical Sciences, "Gabriele d'Annunzio" University Chieti- Pescara, Via dei Vestini 33, 66013, Chieti, Italy
| | - Alessio Basti
- Department of Neuroscience, Imaging and Clinical Sciences, "Gabriele d'Annunzio" University Chieti- Pescara, Via dei Vestini 33, 66013, Chieti, Italy
| | - Antonino Raffone
- Department of Psychology, "La Sapienza" University Rome, 00185, Rome, Italy
| | - Vittorio Pizzella
- Department of Neuroscience, Imaging and Clinical Sciences, "Gabriele d'Annunzio" University Chieti- Pescara, Via dei Vestini 33, 66013, Chieti, Italy.
- Institute for Advanced Biomedical Technologies, "Gabriele d'Annunzio" University Chieti-Pescara, 66013, Chieti, Italy.
| | - Laura Marzetti
- Department of Neuroscience, Imaging and Clinical Sciences, "Gabriele d'Annunzio" University Chieti- Pescara, Via dei Vestini 33, 66013, Chieti, Italy
- Institute for Advanced Biomedical Technologies, "Gabriele d'Annunzio" University Chieti-Pescara, 66013, Chieti, Italy
| |
Collapse
|
14
|
Global Functional Connectivity at Rest Is Associated with Attention: An Arterial Spin Labeling Study. Brain Sci 2023; 13:brainsci13020228. [PMID: 36831771 PMCID: PMC9954008 DOI: 10.3390/brainsci13020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Neural markers of attention, including those frequently linked to the event-related potential P3 (P300) or P3b component, vary widely within and across participants. Understanding the neural mechanisms of attention that contribute to the P3 is crucial for better understanding attention-related brain disorders. All ten participants were scanned twice with a resting-state PCASL perfusion MRI and an ERP with a visual oddball task to measure brain resting-state functional connectivity (rsFC) and P3 parameters (P3 amplitudes and P3 latencies). Global rsFC (average rsFC across the entire brain) was associated with both P3 amplitudes (r = 0.57, p = 0.011) and P3 onset latencies (r = -0.56, p = 0.012). The observed P3 parameters were correlated with predicted P3 amplitude from the global rsFC (amplitude: r = +0.48, p = 0.037; latency: r = +0.40, p = 0.088) but not correlated with the rsFC over the most significant individual edge. P3 onset latency was primarily related to long-range connections between the prefrontal and parietal/limbic regions, while P3 amplitudes were related to connections between prefrontal and parietal/occipital, between sensorimotor and subcortical, and between limbic/subcortical and parietal/occipital regions. These results demonstrated the power of resting-state PCASL and P3 correlation with brain global functional connectivity.
Collapse
|
15
|
Cooper AC, Ventura B, Northoff G. Beyond the veil of duality-topographic reorganization model of meditation. Neurosci Conscious 2022; 2022:niac013. [PMID: 36237370 PMCID: PMC9552929 DOI: 10.1093/nc/niac013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 11/14/2022] Open
Abstract
Meditation can exert a profound impact on our mental life, with proficient practitioners often reporting an experience free of boundaries between a separate self and the environment, suggesting an explicit experience of "nondual awareness." What are the neural correlates of such experiences and how do they relate to the idea of nondual awareness itself? In order to unravel the effects that meditation has on the brain's spatial topography, we review functional magnetic resonance imaging brain findings from studies specific to an array of meditation types and meditator experience levels. We also review findings from studies that directly probe the interaction between meditation and the experience of the self. The main results are (i) decreased posterior default mode network (DMN) activity, (ii) increased central executive network (CEN) activity, (iii) decreased connectivity within posterior DMN as well as between posterior and anterior DMN, (iv) increased connectivity within the anterior DMN and CEN, and (v) significantly impacted connectivity between the DMN and CEN (likely a nonlinear phenomenon). Together, these suggest a profound organizational shift of the brain's spatial topography in advanced meditators-we therefore propose a topographic reorganization model of meditation (TRoM). One core component of the TRoM is that the topographic reorganization of DMN and CEN is related to a decrease in the mental-self-processing along with a synchronization with the more nondual layers of self-processing, notably interoceptive and exteroceptive-self-processing. This reorganization of the functionality of both brain and self-processing can result in the explicit experience of nondual awareness. In conclusion, this review provides insight into the profound neural effects of advanced meditation and proposes a result-driven unifying model (TRoM) aimed at identifying the inextricably tied objective (neural) and subjective (experiential) effects of meditation.
Collapse
Affiliation(s)
- Austin Clinton Cooper
- Integrated Program of Neuroscience, Room 302, Irving Ludmer Building, 1033 Pine Avenue W., McGill University, Montreal, QC H3A 1A1, Canada
| | - Bianca Ventura
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
- Mental Health Center, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
16
|
Martins JE, Simões J, Barros M, Simões M. Pre-Molecular Assessment of Self-Processes in Neurotypical Subjects Using a Single Cognitive Behavioral Intervention Evoking Autobiographical Memory. Behav Sci (Basel) 2022; 12:381. [PMID: 36285950 PMCID: PMC9598325 DOI: 10.3390/bs12100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
In the last 20 years, several contributions have been published on what concerns the conceptual and empirical connections between self-processes. However, only a limited number of publications addressed the viability of those processes to characterize mental health in neurotypical subjects with a normative pattern of neurodevelopment. Furthermore, even fewer experiments focused explicitly on the complexity of studying neurotypical phenomenal data. On the one hand, this normative pattern is commonly associated with mental health and a multifaceted self-concept and well-being. On the other hand, well-being is often related to a healthy cognitive life. However, how such intricate and complex relation between self-processes is established in neurotypical subjects requires further evidence. The novelty of this work is thus studying the first-person experience, which is correlated with the mental events aroused by a cognitive behavioral intervention. The prior methodology that led to the complete characterization of a neurotypical sample was already published by the authors, although the materials, the methods, the sample screening, and the sample size study required further explanation and exploration. This paper's innovation is hence the phenomenological assessment of subjects' self-regulation, which is used for mental health profiling, providing the basis for subsequent molecular typing. For that matter, a convenience sample of 128 (19-25-year-old) neurotypical young adults, healthy university students at the University of Lisbon, non-medicated and with no serious, uncontrolled, or chronic diseases, are characterized according to their cognitive functioning and self-concept. The procedure comprised (i) a mental status examination (psychological assessment) and (ii) a psychological intervention, i.e., a single cognitive behavioral intervention (intervention protocol). The psychological assessment was a standardized and structured clinical interview, which comprised the use of 4 psychological scales complementary to the classical Mental Status Examination (MSE). The intervention protocol applied a combined exercise of psychophysical training and autobiographical-self memory-recalling. The results permitted identifying and isolating four different subgroups (self awareness, self consciousness, reflective self, and pre-reflective self) in neurotypical subjects with discrete self-processes. The outcome of this study is screening four different aspects of self-reflection and the isolation between various forms of self-directed attention and their interconnections in these four mental health strata. The practical implication of this study is to fulfill an a priori pre-molecular assessment of self-regulation with separate cognitive characteristics. The reliability of these mental strata, their distinct neurophysiology, and discrete molecular fingerprint will be tested in a future publication by in silico characterization, total protein profiling, and simultaneous immunodetection of the neuropeptide and neuroimmune response of the same participants.
Collapse
Affiliation(s)
- Jorge Emanuel Martins
- Laboratory of Mind-Matter Interaction with Therapeutic Intention (LIMMIT), Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa, 3504-505 Viseu, Portugal
| | - Joana Simões
- Laboratory of Mind-Matter Interaction with Therapeutic Intention (LIMMIT), Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Marlene Barros
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa, 3504-505 Viseu, Portugal
| | - Mário Simões
- Laboratory of Mind-Matter Interaction with Therapeutic Intention (LIMMIT), Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| |
Collapse
|
17
|
Forman J. Believing is seeing: A Buddhist theory of creditions. Front Psychol 2022; 13:938731. [PMID: 35992400 PMCID: PMC9384695 DOI: 10.3389/fpsyg.2022.938731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
The creditions model is incredibly powerful at explaining both how beliefs are formed and how they influence our perceptions. The model contains several cognitive loops, where beliefs not only influence conscious interpretations of perceptions downstream but are active in the subconscious construction of perceptions out of sensory information upstream. This paper shows how this model is mirrored in the epistemology of two central Buddhist figures, Dignāga (480–540 CE) and Dharmakı̄rti (c. 550–650 CE). In addition to showing these parallels, the paper also demonstrates that by drawing on Dignāga and Dharmakı̄rti's theory, we can extend the explanatory power of the creditions model. Namely, while creditions explain how beliefs influence both the conscious interpretation and subconscious construction of sensory information, Dignāga and Dharmakı̄rti suggest beliefs can even be generative of sensory-like information. I recruit ancient Buddhist texts in conjunction with contemporary cognitive science scholarship to offer a hypothesis for the cognitive mechanisms responsible for this.
Collapse
|
18
|
Branchi I. Recentering neuroscience on behavior: The interface between brain and environment is a privileged level of control of neural activity. Neurosci Biobehav Rev 2022; 138:104678. [PMID: 35487322 DOI: 10.1016/j.neubiorev.2022.104678] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/08/2023]
Abstract
Despite the huge and constant progress in the molecular and cellular neuroscience fields, our capability to understand brain alterations and treat mental illness is still limited. Therefore, a paradigm shift able to overcome such limitation is warranted. Behavior and the associated mental states are the interface between the central nervous system and the living environment. Since, in any system, the interface is a key regulator of system organization, behavior is proposed here as a unique and privileged level of control and orchestration of brain structure and activity. This view has relevant scientific and clinical implications. First, the study of behavior represents a singular starting point for the investigation of neural activity in an integrated and comprehensive fashion. Second, behavioral changes, accomplished through psychotherapy or environmental interventions, are expected to have the highest impact to specifically reorganize the complexity of the human mind and thus achieve a solid and long-lasting improvement in mental health.
Collapse
Affiliation(s)
- Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| |
Collapse
|
19
|
Jeon EJ, Kang SH, Piao YH, Kim SW, Kim JJ, Lee BJ, Yu JC, Lee KY, Won SH, Lee SH, Kim SH, Kim ET, Kim CT, Oliver D, Fusar-Poli P, Rami FZ, Chung YC. Development of the Korea-Polyenvironmental Risk Score for Psychosis. Psychiatry Investig 2022; 19:197-206. [PMID: 35196829 PMCID: PMC8958209 DOI: 10.30773/pi.2021.0328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/26/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Comprehensive understanding of polyenvironmental risk factors for the development of psychosis is important. Based on a review of related evidence, we developed the Korea Polyenvironmental Risk Score (K-PERS) for psychosis. We investigated whether the K-PERS can differentiate patients with schizophrenia spectrum disorders (SSDs) from healthy controls (HCs). METHODS We reviewed existing tools for measuring polyenvironmental risk factors for psychosis, including the Maudsley Environmental Risk Score (ERS), polyenviromic risk score (PERS), and Psychosis Polyrisk Score (PPS). Using odds ratios and relative risks for Western studies and the "population proportion" (PP) of risk factors for Korean data, we developed the K-PERS, and compared the scores thereon between patients with SSDs and HCs. In addition, correlation was performed between the K-PERS and Positive and Negative Syndrome Scale (PANSS). RESULTS We first constructed the "K-PERS-I," comprising five factors based on the PPS, and then the "K-PERS-II" comprising six factors based on the ERS. The instruments accurately predicted participants' status (case vs. control). In addition, the K-PERS-I and -II scores exhibited significant negative correlations with the negative symptom factor score of the PANSS. CONCLUSION The K-PERS is the first comprehensive tool developed based on PP data obtained from Korean studies that measures polyenvironmental risk factors for psychosis. Using pilot data, the K-PERS predicted patient status (SSD vs. HC). Further research is warranted to examine the relationship of K-PERS scores with clinical outcomes of psychosis and schizophrenia.
Collapse
Affiliation(s)
- Eun-Jin Jeon
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Shi-Hyun Kang
- Department of Social Psychiatry and Rehabilitation, National Center for Mental Health, Seoul, Republic of Korea
| | - Yan-Hong Piao
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jung-Jin Kim
- Department of Psychiatry, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Bong-Ju Lee
- Department of Psychiatry, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Je-Chun Yu
- Department of Psychiatry, Eulji University School of Medicine, Eulji University Hospital, Daejeon, Republic of Korea
| | - Kyu-Young Lee
- Department of Psychiatry, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
| | - Seung-Hee Won
- Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Hwan Lee
- Department of Psychiatry, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Seung-Hyun Kim
- Department of Psychiatry, Korea University College of Medicine, Guro Hospital, Seoul, Republic of Korea
| | - Eui-Tae Kim
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Clara Tammy Kim
- Institute of Life and Death Studies, Hallym University, Chuncheon, Republic of Korea
| | - Dominic Oliver
- Early Psychosis: Interventions and Clinical Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,OASIS Service, South London and the Maudsley NHS Foundation Trust, London, United Kingdom
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,OASIS Service, South London and the Maudsley NHS Foundation Trust, London, United Kingdom.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Fatima Zahra Rami
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Republic of Korea.,Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| |
Collapse
|
20
|
Sparby T, Sacchet MD. Defining Meditation: Foundations for an Activity-Based Phenomenological Classification System. Front Psychol 2022; 12:795077. [PMID: 35153920 PMCID: PMC8832115 DOI: 10.3389/fpsyg.2021.795077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Classifying different meditation techniques is essential for the progress of meditation research, as this will enable discerning which effects are associated with which techniques, in addition to supporting the development of increasingly effective and efficient meditation-based training programs and clinical interventions. However, both the task of defining meditation itself, as well as defining specific techniques, faces many fundamental challenges. Here we describe problems involved in this endeavor and suggest an integrated model for defining meditation. For classifying different meditation techniques, we draw on classical, contemporary, and holistic systems of classification. We analyze different techniques and propose that all meditation techniques are based on a specific set of activities, that is: focusing, releasing, imagining, and moving in relation to an object of meditation, including fields of experience. Meditative activities can be combined and unified in the activities of observing, producing, and being aware. All meditative activities are unified in awareness of awareness. Defining specific meditation techniques may be done by specifying which activities and objects are involved. The advantage of our approach is that it can potentially account for the inner workings of all current systems of classification and hence it lays the foundation for formulating an overarching system of meditation that can guide future research and practice.
Collapse
Affiliation(s)
- Terje Sparby
- Rudolf Steiner University College, Oslo, Norway
- Department of Psychology and Psychotherapy, Witten/Herdecke University, Witten, Germany
- Integrated Curriculum for Anthroposophic Psychology, Witten/Herdecke University, Witten, Germany
- *Correspondence: Terje Sparby,
| | - Matthew D. Sacchet
- Meditation Research Group, Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, United States
| |
Collapse
|
21
|
Henneghan AM, Becker H, Phillips C, Kesler S. Sustained effects of mantra meditation compared to music listening on neurocognitive outcomes of breast cancer survivors: A brief report of a randomized control trial. J Psychosom Res 2021; 150:110628. [PMID: 34600308 PMCID: PMC8783371 DOI: 10.1016/j.jpsychores.2021.110628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Cancer-related cognitive impairment is common following the end of adjuvant treatment and there are limited treatment options for it. We compared the sustained cognitive (primary) and psychological (secondary) effects of mantra meditation to classical music listening 8 weeks after interventions ended (Time 3) compared to baseline (Time 1). METHODS A two-group parallel random assignment experimental design was used in a community setting. Thirty one breast cancer survivors (ages 21 to 75, received chemotherapy, and reported cognitive complaints) were randomly assigned to practice mantra meditation (n = 16) or listen to classical music (n = 15) 12 min a day for 8 weeks. No blinding was used. Repeated measures analysis of variance models were used to compare Time 1 and Time 3 data for the 26 survivors (13 per group) who completed the interventions and Time 3 data collection. RESULTS Verbal fluency (p < .001, ηp2 = 0.58), attention (p = .002, ηp2 = 0.33), immediate memory recall (p < .001, ηp2 = 0.38), perceived cognitive impairment (p < .001, ηp2 = 0.39), and quality of life (p = .001, ηp2 = 0.35) improved significantly across time for both groups. The two conditions did not differ significantly in changes across time. There were no adverse effects. CONCLUSION Daily mantra meditation or classical music listening may be beneficial for cognitive outcomes and quality of life of breast cancer survivors with cancer-related cognitive impairment. The cognitive benefits appear to be sustained beyond the initial intervention period. Clinical Trials Registration number: NCT03696056, recruitment status completed. The study details can be accessed at: https://clinicaltrials.gov/ct2/show/NCT03696056 KEY MESSAGE: There are limited treatment options for managing cancer-related cognitive impairments. Daily mantra meditation or classical music listening for 12 min a day may improve cognitive outcomes and quality of life for cancer survivors, with no negative side effects.
Collapse
Affiliation(s)
- Ashley M Henneghan
- The University of Texas at Austin, School of Nursing, 1710 Red River, St. Austin, TX 78712, United States of America; The University of Texas at Austin, Dell Medical School, Department of Oncology, 1601 Trinity, St. Austin, TX 78712, United States of America.
| | - Heather Becker
- The University of Texas at Austin, School of Nursing, 1710 Red River, St. Austin, TX 78712, United States of America
| | - Carolyn Phillips
- The University of Texas at Austin, School of Nursing, 1710 Red River, St. Austin, TX 78712, United States of America
| | - Shelli Kesler
- The University of Texas at Austin, School of Nursing, 1710 Red River, St. Austin, TX 78712, United States of America; The University of Texas at Austin, Dell Medical School, Department of Oncology, 1601 Trinity, St. Austin, TX 78712, United States of America; The University of Texas at Austin, Dell Medical School, Department of Diagnostic Medicine, 1601 Trinity, St. Austin, TX, 78712, United States of America
| |
Collapse
|
22
|
Taylor LS. Work-Life Balance in the Pharmaceutical Sciences: More Essential Than Ever Today. Mol Pharm 2021; 18:3649-3651. [PMID: 34601884 DOI: 10.1021/acs.molpharmaceut.1c00679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
The Longitudinal Effect of Meditation on Resting-State Functional Connectivity Using Dynamic Arterial Spin Labeling: A Feasibility Study. Brain Sci 2021; 11:brainsci11101263. [PMID: 34679328 PMCID: PMC8533789 DOI: 10.3390/brainsci11101263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022] Open
Abstract
We aimed to assess whether dynamic arterial spin labeling (dASL), a novel quantitative MRI technique with minimal contamination of subject motion and physiological noises, could detect the longitudinal effect of focused attention meditation (FAM) on resting-state functional connectivity (rsFC). A total of 10 novice meditators who recorded their FAM practice time were scanned at baseline and at the 2-month follow-up. Two-month meditation practice caused significantly increased rsFC between the left medial temporal (LMT) seed and precuneus area and between the right frontal eye (RFE) seed and medial prefrontal cortex. Meditation practice time was found to be positively associated with longitudinal changes of rsFC between the default mode network (DMN) and dorsal attention network (DAN), between DMN and insula, and between DAN and the frontoparietal control network (FPN) but negatively associated with changes of rsFC between DMN and FPN, and between DAN and visual regions. These findings demonstrate the capability of dASL in identifying the FAM-induced rsFC changes and suggest that the practice of FAM can strengthen the efficient control of FPN on fast switching between DMN and DAN and enhance the utilization of attentional resources with reduced focus on visual processing.
Collapse
|