1
|
Lee J, Kim DH, Lee K. Research Note: Injection of adenoviral CRISPR/Cas9 system targeting melanophilin gene into different sites of embryos induced regional feather color changes in posthatch quail. Poult Sci 2023; 102:103087. [PMID: 37741117 PMCID: PMC10520524 DOI: 10.1016/j.psj.2023.103087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/25/2023] Open
Abstract
Poultry species is an important animal model in both avian research and the poultry industry. To advance our understanding of genetic factors and benefit both fields, a gene of interest can be genetically edited, and consequential phenotypic changes can be investigated. Injection of adenovirus containing the CRISPR/Cas9 system into avian blastoderm induced genome editing in blastodermal cells randomly, including primordial germ cells, which results in generation of whole-body knockout in the offspring of the virus-injected quail. However, to observe phenotypic and functional changes in whole-body, homozygous knockout of genes using this genome editing technology requires at least 2 generations of breeding of chimeric, and heterozygotes birds. In the current study, we developed a strategy to investigate the gene function in 1-generation by inducing regional genome editing around the injection sites with CRISPR/Cas9 adenovirus. The adenoviral CRISPR/Cas9 vector targeting the melanophilin (Mlph) gene, regulating feather pigmentation, was injected into 2 different regions of embryos, the cervical flexure of quail embryos at HH stage 13 to 15 and the tip of the upper limb bud of embryos at HH stage 22 to 24, to induce genome editing in those regions. Indel mutations in the target loci of the Mlph gene were detected by extracting genomic DNA from the embryonic tissues, and consequential phenotypes, feather color changes, were analyzed at 1 mo after hatch. Injection of the adenovirus into the cervical flexure and the tip of the upper limb bud of embryos resulted in 8 to 21% efficiency of indel mutation in the embryonic cells of the injected regions. In the posthatch quail, gray feathers were shown on their upper back and primary wing feathers, corresponding to the injection sites at embryos. Successful validation of this strategy for inducing genome editing in parts of tissues within 1-generation will accelerate studies on genetic functions with advantages of less time and cost, facilitating avian research and providing foundations for future application for the poultry industry.
Collapse
Affiliation(s)
- Joonbum Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Chaipipat S, Sritabtim K, Piyasanti Y, Prukudom S, Jurutha J, Phetpila V, Sinsiri R, Kammongkun J, Molee A, Thiangtum K, Siripattarapravat K. Initiative on Avian Primordial Germ Cell Cryobanking in Thailand. Biopreserv Biobank 2023; 21:458-466. [PMID: 36169626 DOI: 10.1089/bio.2022.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Biobanking the reproductive tissues or cells of animals preserves the genetic and reproductive ability of the species in long-term storage and promotes sharing of reproductive materials. In avian species, the primordial germ cell (PGC) is one of the most promising reproductive cells to be preserved in biobanks, due to self-renewal properties and direct access to the germ line mediated by PGC transfer. Methods: To conserve the genetic resource of local chicken breeds that are of conservation importance, we systematically isolated two types of pregonadal PGCs from chicken embryos-circulating and tissue PGCs. PGCs of individual embryos were separately isolated, cultured, and cryopreserved. Characteristics of cultured PGCs are described and evaluated. Results: The efficiency of PGC isolation from individual embryos was 98.9% (660/667). In most cases, both matching circulating and tissue PGC lines were isolated from the same embryo (68.2%, 450/660), whereas the remaining lines were from a single source, being either tissue (30.6%, 202/660) or circulating (1.2%, 8/660). Efficient PGC isolation and proliferation can be expected in cultures of circulating PGCs (68.7% and 64.3%, respectively) and tissue PGCs (97.8% and 80.7%, respectively). Following cryopreservation, recovered cells sustained PGC identities including expression of chicken vasa homolog and deleted in azoospermia-like proteins and migration ability to recipient embryonic gonads. Culture conditions equally supported proliferation of circulating and tissue PGCs from both sexes. Combining tissue PGC culture in the regimen prevented 30.3% loss of PGC cultures in the case where circulating PGC culture was ineffective. Cultured circulating and tissue PGCs were similar in morphology, but optimal culture characteristics were different. Conclusion: We applied the approach of PGC isolation from blood and tissue origins on a wide scale and demonstrated its efficiency for biobanking chicken PGCs. The workflow can be operated effectively almost year-round in a tropical climate. It was also described in ample and practical details, which are suitable for adoption or optimization in other conditions.
Collapse
Affiliation(s)
- Suparat Chaipipat
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, Thailand
| | - Kornkanok Sritabtim
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Yanika Piyasanti
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Sukumal Prukudom
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, Thailand
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Juthathip Jurutha
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Vimolrat Phetpila
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Rungthiwa Sinsiri
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Bangkhen Campus, Kasetsart University, Bangkok, Thailand
| | - Jennarong Kammongkun
- Bureau of Animal Husbandry and Genetic Improvement, Department of Livestock Development, Bangkok, Thailand
| | - Amonrat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Khongsak Thiangtum
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Kannika Siripattarapravat
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, Thailand
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Bangkhen Campus, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
3
|
Jung KM, Kim YM, Han JY. Transplantation and enrichment of busulfan-resistant primordial germ cells into adult testes for efficient production of germline chimeras in songbirds†. Biol Reprod 2023; 108:316-323. [PMID: 36383400 DOI: 10.1093/biolre/ioac206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/20/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Zebra finch is a unique model for behavioral, neural, and genomic studies of vocal learning. Several transgenic zebra finches have been produced, although the germline transmission efficiencies are reportedly low. Recently, there have been attempts to produce germline chimeras using primordial germ cells (PGCs). However, this has been hampered by difficulties associated with the manipulation of the small eggs and the fact that the zebra finch is an altricial species that requires parental care after birth, unlike precocial chickens. Consequently, it is difficult to transplant PGCs into embryos and maintain the chimeras. Here, we developed a busulfan-mediated system for transplantation of PGCs into adult testes, to produce germline chimeras with an improved germline transmission capacity. We established microsomal glutathione-S-transferase II (MGSTII)-overexpressing PGCs that are resistant to busulfan, which induces germ cell-specific cytotoxicity, and transplanted them into testes rendered temporarily infertile by busulfan. The recipients were given a second dose of busulfan to deplete endogenous germ cells and enrich the transplanted cells, and donor cell-derived spermatogenesis was accomplished. This method requires fewer recipients due to higher survival rates, and there is no need to wait for maturation of the founders, which is required when transplanting PGCs into embryos. These results are expected to improve transgenic zebra finch production.
Collapse
|
4
|
Generation and characterization of genome-modified chondrocyte-like cells from the zebra finch cell line immortalized by c-MYC expression. Front Zool 2022; 19:18. [PMID: 35690812 PMCID: PMC9188209 DOI: 10.1186/s12983-022-00464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to their cost effectiveness, ease of use, and unlimited supply, immortalized cell lines are used in place of primary cells for a wide range of research purposes, including gene function studies, CRISPR-based gene editing, drug metabolism tests, and vaccine or therapeutic protein production. Although immortalized cell lines have been established for a range of animal species, there is still a need to develop such cell lines for wild species. The zebra finch, which is used widely as a model species to study the neurobiological basis of human speech disorders, has been employed in several functional studies involving gene knockdown or the introduction of exogenous transgenes in vivo; however, the lack of an immortalized zebra finch cell line has hampered precise genome editing studies. RESULTS Here, we established an immortalized cell line by a single genetic event, expression of the c-MYC oncogene, in zebra finch embryonic fibroblasts and examined its potential suitability for gene targeting investigations. Retroviral vector-mediated transduction of c-MYC was used to immortalize zebra finch primary fibroblasts; the transformed cells proliferated stably over several passages, resulting in the expression of chondrocyte-specific genes. The transfection efficiency of the immortalized cells was much higher than that of the primary cells. Targeted knockout of the SOX9 gene, which plays a role in the differentiation of mesenchymal progenitor cells into chondrocytes, was conducted in vitro and both apoptosis and decreased expression levels of chondrogenic marker genes were observed in edited cells. CONCLUSIONS The c-MYC induced immortalized chondrocyte-like cell line described here broadens the available options for establishing zebra finch cell lines, paves the way for in-depth biological researches, and provides convenient approaches for biotechnology studies, particularly genomic modification research.
Collapse
|
5
|
Haynes EM, Ulland TK, Eliceiri KW. A Model of Discovery: The Role of Imaging Established and Emerging Non-mammalian Models in Neuroscience. Front Mol Neurosci 2022; 15:867010. [PMID: 35493325 PMCID: PMC9046975 DOI: 10.3389/fnmol.2022.867010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
Rodents have been the dominant animal models in neurobiology and neurological disease research over the past 60 years. The prevalent use of rats and mice in neuroscience research has been driven by several key attributes including their organ physiology being more similar to humans, the availability of a broad variety of behavioral tests and genetic tools, and widely accessible reagents. However, despite the many advances in understanding neurobiology that have been achieved using rodent models, there remain key limitations in the questions that can be addressed in these and other mammalian models. In particular, in vivo imaging in mammals at the cell-resolution level remains technically difficult and demands large investments in time and cost. The simpler nervous systems of many non-mammalian models allow for precise mapping of circuits and even the whole brain with impressive subcellular resolution. The types of non-mammalian neuroscience models available spans vertebrates and non-vertebrates, so that an appropriate model for most cell biological questions in neurodegenerative disease likely exists. A push to diversify the models used in neuroscience research could help address current gaps in knowledge, complement existing rodent-based bodies of work, and bring new insight into our understanding of human disease. Moreover, there are inherent aspects of many non-mammalian models such as lifespan and tissue transparency that can make them specifically advantageous for neuroscience studies. Crispr/Cas9 gene editing and decreased cost of genome sequencing combined with advances in optical microscopy enhances the utility of new animal models to address specific questions. This review seeks to synthesize current knowledge of established and emerging non-mammalian model organisms with advances in cellular-resolution in vivo imaging techniques to suggest new approaches to understand neurodegeneration and neurobiological processes. We will summarize current tools and in vivo imaging approaches at the single cell scale that could help lead to increased consideration of non-mammalian models in neuroscience research.
Collapse
Affiliation(s)
- Elizabeth M. Haynes
- Morgridge Institute for Research, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
| | - Tyler K. Ulland
- Department of Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Kevin W. Eliceiri
- Morgridge Institute for Research, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
6
|
Biegler MT, Fedrigo O, Collier P, Mountcastle J, Haase B, Tilgner HU, Jarvis ED. Induction of an immortalized songbird cell line allows for gene characterization and knockout by CRISPR-Cas9. Sci Rep 2022; 12:4369. [PMID: 35288582 PMCID: PMC8921232 DOI: 10.1038/s41598-022-07434-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
The zebra finch is one of the most commonly studied songbirds in biology, particularly in genomics, neuroscience and vocal communication. However, this species lacks a robust cell line for molecular biology research and reagent optimization. We generated a cell line, designated CFS414, from zebra finch embryonic fibroblasts using the SV40 large and small T antigens. This cell line demonstrates an improvement over previous songbird cell lines through continuous and density-independent growth, allowing for indefinite culture and monoclonal line derivation. Cytogenetic, genomic, and transcriptomic profiling established the provenance of this cell line and identified the expression of genes relevant to ongoing songbird research. Using this cell line, we disrupted endogenous gene sequences using S.aureus Cas9 and confirmed a stress-dependent localization response of a song system specialized gene, SAP30L. The utility of CFS414 cells enhances the comprehensive molecular potential of the zebra finch and validates cell immortalization strategies in a songbird species.
Collapse
Affiliation(s)
- Matthew T Biegler
- Laboratory of Neurogenetics of Language, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, 10065, USA
| | - Paul Collier
- Center for Neurogenetics, Graduate School of Medical Sciences, Weil Cornell Medical Center, New York, NY, 10065, USA
| | | | - Bettina Haase
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, 10065, USA
| | - Hagen U Tilgner
- Center for Neurogenetics, Graduate School of Medical Sciences, Weil Cornell Medical Center, New York, NY, 10065, USA
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|