1
|
Zheng X, Huang J, Meng J, Wang H, Chen L, Yao J. Identification and Experimental Verification of PDK4 as a Potential Biomarker for Diagnosis and Treatment in Rheumatoid Arthritis. Mol Biotechnol 2024:10.1007/s12033-024-01297-1. [PMID: 39466354 DOI: 10.1007/s12033-024-01297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disorder marked by sustained joint inflammation, with an etiology that remains elusive. Achieving an early and precise diagnosis poses significant challenges. This study aims to elucidate the molecular pathways involved in RA pathogenesis by screening genes associated with its occurrence, analyzing the related molecular activities, and ultimately developing more effective molecular-level treatments for RA. METHODS Microarray expression profiling datasets GSE1919, GSE10500, GSE15573, GSE77298, GSE206848, and GSE236924 were sourced from the Gene Expression Omnibus (GEO) database. Samples were divided into experimental (RA) and control (normal) groups. Differentially expressed genes (DEGs) were identified using R software packages such as limma, glmnet, e1071 as well as randomForest. Cross-validation of DEGs was conducted using lasso regression and the random forest (RF) algorithm in R software to pinpoint intersecting genes that met the criteria. Among these, one gene was selected as the target for correlation analysis to identify DEGs related to the target gene. Enrichment analysis utilized the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway databases and Gene Ontology (GO) data. Gene Set Enrichment Analysis (GSEA) was performed to compare the expression levels of the target gene (PDK4) across various biological pathways and functions in groups with high and low expression. The relationship between target gene expression levels and cellular immune function was assessed using the immune function score technique. The discrepancy in immune cell distribution between the control and experimental groups, as well as their correlation with target gene expression levels, was elucidated using CIBERSORT. The relationships between mRNA, lncRNA, and miRNA were depicted in the ceRNA regulation network. The expression levels of the target gene were validated using Western blot and qRT-PCR. RESULTS In this study, six intersecting genes meeting the criteria were identified through cross-validation, and PDK4 was chosen as the target gene for further investigation. Functional analysis using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) revealed that PDK4-associated DEGs are primarily enriched in the PPAR signaling pathway, thereby regulating synovial cell proliferation and migration, ultimately influencing the onset and progression of rheumatoid arthritis (RA). Immune infiltration analysis suggested that eosinophil quantity may influence the progression of RA. Experimental results from PCR and Western blot confirmed the downregulation of PDK4 in the RA group. CONCLUSION The significant downregulation of PDK4 expression in patients diagnosed with rheumatoid arthritis (RA) was confirmed. PDK4 may function as a novel regulatory factor in the onset and progression of RA, with potential applications as a diagnostic biomarker for the condition.
Collapse
Affiliation(s)
- Xifan Zheng
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Junpu Huang
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinzhi Meng
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hongtao Wang
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lingyun Chen
- Spine Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jun Yao
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
dos Santos PMF, Díaz Acosta CC, Rosa TLSA, Ishiba MH, Dias AA, Pereira AMR, Gutierres LD, Pereira MP, da Silva Rocha M, Rosa PS, Bertoluci DFF, Meyer-Fernandes JR, da Mota Ramalho Costa F, Marques MAM, Belisle JT, Pinheiro RO, Rodrigues LS, Pessolani MCV, Berrêdo-Pinho M. Adenosine A 2A receptor as a potential regulator of Mycobacterium leprae survival mechanisms: new insights into leprosy neural damage. Front Pharmacol 2024; 15:1399363. [PMID: 39005937 PMCID: PMC11239521 DOI: 10.3389/fphar.2024.1399363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Background Leprosy is a chronic infectious disease caused by Mycobacterium leprae, which can lead to a disabling neurodegenerative condition. M. leprae preferentially infects skin macrophages and Schwann cells-glial cells of the peripheral nervous system. The infection modifies the host cell lipid metabolism, subverting it in favor of the formation of cholesterol-rich lipid droplets (LD) that are essential for bacterial survival. Although researchers have made progress in understanding leprosy pathogenesis, many aspects of the molecular and cellular mechanisms of host-pathogen interaction still require clarification. The purinergic system utilizes extracellular ATP and adenosine as critical signaling molecules and plays several roles in pathophysiological processes. Furthermore, nucleoside surface receptors such as the adenosine receptor A2AR involved in neuroimmune response, lipid metabolism, and neuron-glia interaction are targets for the treatment of different diseases. Despite the importance of this system, nothing has been described about its role in leprosy, particularly adenosinergic signaling (AdoS) during M. leprae-Schwann cell interaction. Methods M. leprae was purified from the hind footpad of athymic nu/nu mice. ST88-14 human cells were infected with M. leprae in the presence or absence of specific agonists or antagonists of AdoS. Enzymatic activity assays, fluorescence microscopy, Western blotting, and RT-qPCR analysis were performed. M. leprae viability was investigated by RT-qPCR, and cytokines were evaluated by enzyme-linked immunosorbent assay. Results We demonstrated that M. leprae-infected Schwann cells upregulated CD73 and ADA and downregulated A2AR expression and the phosphorylation of the transcription factor CREB (p-CREB). On the other hand, activation of A2AR with its selective agonist, CGS21680, resulted in: 1) reduced lipid droplets accumulation and pro-lipogenic gene expression; 2) reduced production of IL-6 and IL-8; 3) reduced intracellular M. leprae viability; 4) increased levels of p-CREB. Conclusion These findings suggest the involvement of the AdoS in leprosy neuropathogenesis and support the idea that M. leprae, by downmodulating the expression and activity of A2AR in Schwann cells, decreases A2AR downstream signaling, contributing to the maintenance of LD accumulation and intracellular viability of the bacillus.
Collapse
Affiliation(s)
| | - Chyntia Carolina Díaz Acosta
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | | | - Michelle Harumi Ishiba
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - André Alves Dias
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Luísa Domingos Gutierres
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Melissa Pontes Pereira
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Matheus da Silva Rocha
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Daniele F. F. Bertoluci
- Divisão de Pesquisa e Ensino, Instituto Lauro de Souza Lima, São Paulo, Brazil
- Departamento de Doenças Tropicais, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maria Angela M. Marques
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - John T. Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Roberta Olmo Pinheiro
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luciana Silva Rodrigues
- Laboratório de Imunopatologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcia Berrêdo-Pinho
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Alejandra SUM, Salud P, Elisa VA, Enrique JF, Julissa RM, Jaime T, Alejandro Z, David Osvaldo SS, Maribel HR. Triterpenes G-A and G-E from Galphimia glauca with anti-inflammatory and anti-arthritic activity in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118104. [PMID: 38531431 DOI: 10.1016/j.jep.2024.118104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Galphimia glauca is a medicinal plant that treats inflammatory and anti-rheumatic problems. Its anti-inflammatory capacity has been reported pharmacologically, attributed to the triterpenes G-A and G-E. AIM The objective of the present work was to measure the anti-inflammatory and immunomodulatory effect of the methanolic extract (GgMeOH) of Galphimia glauca and the isolated galphimines G-A and G-E, first in an acute test of plantar edema with carrageenan, and later in the model of experimental-induced arthritis with CFA. The effect was measured by quantifying joint inflammation, the concentration of pro- (TNF-α, IL-6, IL-17) and anti-inflammatory (IL-10, and IL-4) cytokines, and the ADA enzyme in joints, kidneys, and spleen from mice with experimental arthritis. METHOD The extract and the active triterpenes were obtained according to established methods using different chromatographic techniques. Female ICR strain mice were subjected to intraplantar administration with carrageenan and treated with different doses of GgMeOH, G-A, and G-E; edema was monitored at different times. Subsequently, the concentration of TNF-a and IL-10 in the spleen and swollen paw was quantified. Meloxicam (MEL) was used as an anti-inflammatory control drug. The most effective doses of each treatment were analyzed using a complete Freunds adjuvant (CFA)-induced experimental arthritis model. Joint inflammation was followed throughout the experiment. Ultimately, the concentration of inflammation markers, oxidant stress, and ADA activity was quantified. In this experimental stage, methotrexate (MTX) was used as an antiarthritic drug. RESULTS Treatments derived from G. glauca, GgMeOH (DE50 = 158 mg/kg), G-A (DE50 = 2 mg/kg), and G-E (DE50 = 1.5 mg/kg) caused an anti-inflammatory effect in the plantar edema test with carrageenan. In the CFA model, joint inflammation decreased with all natural treatments; GgMeOH and G-A inhibited the ADA enzyme in all organs analyzed (joints, serum, spleen, left and right kidneys), while G-E inhibited the enzyme in joints, serum, and left kidney. CFA caused an increase in the weight index of the organs, an effect that was counteracted by the administration of G. glauca treatments, which also modulate the response to the cytokines analyzed in the different organs (IL-4, IL-10, IL-17, IL-6, and TNF- α). CONCLUSION It is shown, for the first time, that the GgMeOH extract and the triterpenes G-A and G-E of Galphimia glauca have an anti-arthritic effect (anti-inflammatory, immunomodulatory, antioxidant, and ADA inhibitor), using an experimental arthritis model with CFA. Therefore, knowledge of the plant as a possible therapeutic agent for this rheumatic condition is expanding.
Collapse
Affiliation(s)
- Santillan-Urquiza Mayra Alejandra
- Centro de Investigación Biomédica Del Sur, Instituto Mexicano Del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec, Morelos, C.P, 62790, Mexico; Departamento de Ciencias de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Leyes de Reforma 1a Sección, Ciudad de México, C.P., 09310, Mexico.
| | - Pérez Salud
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, A, Calz. Del Hueso 1100, Coapa, Villa Quietud, Coyoacán, Ciudad de México, C.P., 04960, Mexico.
| | - Vega-Avila Elisa
- Departamento de Ciencias de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Leyes de Reforma 1a Sección, Ciudad de México, C.P., 09310, Mexico.
| | - Jiménez-Ferrer Enrique
- Centro de Investigación Biomédica Del Sur, Instituto Mexicano Del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec, Morelos, C.P, 62790, Mexico.
| | - Rendón-Martínez Julissa
- Centro de Investigación Biomédica Del Sur, Instituto Mexicano Del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec, Morelos, C.P, 62790, Mexico.
| | - Tortoriello Jaime
- Centro de Investigación Biomédica Del Sur, Instituto Mexicano Del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec, Morelos, C.P, 62790, Mexico.
| | - Zamilpa Alejandro
- Centro de Investigación Biomédica Del Sur, Instituto Mexicano Del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec, Morelos, C.P, 62790, Mexico.
| | - Salinas-Sánchez David Osvaldo
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma Del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, Cuernavaca, 62209, Morelos, Mexico.
| | - Herrera-Ruiz Maribel
- Centro de Investigación Biomédica Del Sur, Instituto Mexicano Del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec, Morelos, C.P, 62790, Mexico.
| |
Collapse
|
4
|
Alfaqih MA, Ababneh E, Mhedat K, Allouh MZ. Vitamin D Reduces the Activity of Adenosine Deaminase and Oxidative Stress in Patients with Type Two Diabetes Mellitus. Mol Nutr Food Res 2024; 68:e2300870. [PMID: 38816753 DOI: 10.1002/mnfr.202300870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/29/2024] [Indexed: 06/01/2024]
Abstract
SCOPE Patients with Type 2 diabetes mellitus (T2DM) have lower levels of vitamin D. An elevation in uric acid (UA) contributes to T2DM via an increase in oxidative stress. Adenosine deaminase (ADA) is an enzyme of the purine degradation pathway. It is hypothesized that a reduction of ADA activity via vitamin D supplementation reduces UA and oxidative stress. METHODS AND RESULTS A total of 162 participants (81 with T2DM and 81 controls) are enrolled in a case-control study. A follow-up interventional study is performed on 30 patients with vitamin D deficiency. These patients receive 50 000 IU (international units) of vitamin D3 on a weekly basis for 12 weeks. This intervention is followed by the measurement of several markers. T2DM patients has higher ADA activity, UA, and lipid peroxidation but lower 25-hydroxy-vitamin D (25 (OH) vitamin D) and GSH/GSSG ratio (p < 0.05). Vitamin D supplementation results in a reduction of ADA activity and UA levels (p < 0.05) along with an increase in GSH/GSSG ratio (p < 0.05). CONCLUSION The results highlight the presence of an axis in T2DM patients between ADA, UA, and oxidative stress. Modulation of this axis can be achieved by clinically approved vitamin D supplementation protocols.
Collapse
Affiliation(s)
- Mahmoud A Alfaqih
- Department of Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, 15503, Bahrain
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ebaa Ababneh
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Khawla Mhedat
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammed Z Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
5
|
Xu L, Ma J, Yu Q, Zhu K, Wu X, Zhou C, Lin X. Evidence supported by Mendelian randomization: impact on inflammatory factors in knee osteoarthritis. Front Med (Lausanne) 2024; 11:1382836. [PMID: 38863887 PMCID: PMC11165061 DOI: 10.3389/fmed.2024.1382836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/01/2024] [Indexed: 06/13/2024] Open
Abstract
Background Prior investigations have indicated associations between Knee Osteoarthritis (KOA) and certain inflammatory cytokines, such as the interleukin series and tumor necrosis factor-alpha (TNFα). To further elaborate on these findings, our investigation utilizes Mendelian randomization to explore the causal relationships between KOA and 91 inflammatory cytokines. Methods This two-sample Mendelian randomization utilized genetic variations associated with KOA from a large, publicly accessible Genome-Wide Association Study (GWAS), comprising 2,227 cases and 454,121 controls of European descent. The genetic data for inflammatory cytokines were obtained from a GWAS summary involving 14,824 individuals of European ancestry. Causal relationships between exposures and outcomes were primarily investigated using the inverse variance weighted method. To enhance the robustness of the research results, other methods were combined to assist, such as weighted median, weighted model and so on. Multiple sensitivity analysis, including MR-Egger, MR-PRESSO and leave one out, was also carried out. These different analytical methods are used to enhance the validity and reliability of the final results. Results The results of Mendelian randomization indicated that Adenosine Deaminase (ADA), Fibroblast Growth Factor 5(FGF5), and Hepatocyte growth factor (HFG) proteins are protective factors for KOA (IVWADA: OR = 0.862, 95% CI: 0.771-0.963, p = 0.008; IVWFGF5: OR = 0.850, 95% CI: 0.764-0.946, p = 0.003; IVWHFG: OR = 0.798, 95% CI: 0.642-0.991, p = 0.042), while Tumor necrosis factor (TNFα), Colony-stimulating factor 1(CSF1), and Tumor necrosis factor ligand superfamily member 12(TWEAK) proteins are risk factors for KOA. (IVWTNFα: OR = 1.319, 95% CI: 1.067-1.631, p = 0.011; IVWCSF1: OR = 1.389, 95% CI: 1.125-1.714, p = 0.002; IVWTWEAK: OR = 1.206, 95% CI: 1.016-1.431, p = 0.032). Conclusion The six proteins identified in this study demonstrate a close association with the onset of KOA, offering valuable insights for future therapeutic interventions. These findings contribute to the growing understanding of KOA at the microscopic protein level, paving the way for potential targeted therapeutic approaches.
Collapse
Affiliation(s)
- Lilei Xu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqi Ma
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Yu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kean Zhu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuewen Wu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuanlong Zhou
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Acupuncture, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianming Lin
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Acupuncture, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Xu R, Peng J, Ma Z, Xie K, Li M, Wang Q, Guo X, Nan N, Wang S, Li J, Xu J, Gong M. Prolonged administration of total glucosides of paeony improves intestinal immune imbalance and epithelial barrier damage in collagen-induced arthritis rats based on metabolomics-network pharmacology integrated analysis. Front Pharmacol 2023; 14:1187797. [PMID: 38026929 PMCID: PMC10679728 DOI: 10.3389/fphar.2023.1187797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and joint damage with complex pathological mechanisms. In recent years, many studies have shown that the dysregulation of intestinal mucosal immunity and the damage of the epithelial barrier are closely related to the occurrence of RA. Total glucosides of paeony (TGP) have been used clinically for the treatment of RA in China for decades, while the pharmacological mechanism is still uncertain. The purpose of this study was to investigate the regulatory effect and mechanism of TGP on intestinal immunity and epithelial barrier in RA model rats. The results showed that TGP alleviated immune hyperfunction by regulating the ratio of CD3+, CD4+ and CD8+ in different lymphocyte synthesis sites of the small intestine, including Peyer's patches (PPs), intraepithelial lymphocytes (IELs), and lamina propria lymphocytes (LPLs). Specially, TGP first exhibited immunomodulatory effects on sites close to the intestinal lumen (IELs and LPLs), and then on PPs far away from the intestinal lumen as the administration time prolonged. Meanwhile, TGP restores the intestinal epithelial barrier by upregulating the ratio of villi height (V)/crypt depth (C) and expression of tight junction proteins (ZO-1, occludin). Finally, the integrated analysis of metabolomics-network pharmacology was also used to explore the possible regulation mechanism of TGP on the intestinal tract. Metabolomics analysis revealed that TGP reversed the intestinal metabolic profile disturbance in CIA rats, and identified 32 biomarkers and 163 corresponding targets; network pharmacology analysis identified 111 potential targets for TGP to treat RA. By intersecting the results of the two, three key targets such as ADA, PNP and TYR were determined. Pharmacological verification experiments showed that the levels of ADA and PNP in the small intestine of CIA rats were significantly increased, while TGP significantly decreased their ADA and PNP levels. In conclusion, purine metabolism may play an important role in the process of TGP improving RA-induced intestinal immune imbalance and impaired epithelial barrier.
Collapse
Affiliation(s)
- Rui Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Jine Peng
- Department of Pharmacy, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhe Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Kaili Xie
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Meijing Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Qi Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Xiaomeng Guo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Nan Nan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Sihui Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Jing Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Jingjing Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Muxin Gong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| |
Collapse
|
7
|
Pradhan SS, R SS, Kanikaram SP, V M DD, Pargaonkar A, Dandamudi RB, Sivaramakrishnan V. Metabolic deregulation associated with aging modulates protein aggregation in the yeast model of Huntington's disease. J Biomol Struct Dyn 2023; 42:10521-10538. [PMID: 37732342 DOI: 10.1080/07391102.2023.2257322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Huntington's disease is associated with increased CAG repeat resulting in an expanded polyglutamine tract in the protein Huntingtin (HTT) leading to its aggregation resulting in neurodegeneration. Previous studies have shown that N-terminal HTT with 46Q aggregated in the stationary phase but not the logarithmic phase in the yeast model of HD. We carried out a metabolomic analysis of logarithmic and stationary phase yeast model of HD expressing different polyQ lengths attached to N-terminal HTT tagged with enhanced green fluorescent protein (EGFP). The results show significant changes in the metabolic profile and deregulated pathways in stationary phase cells compared to logarithmic phase cells. Comparison of metabolic pathways obtained from logarithmic phase 46Q versus 25Q with those obtained for presymptomatic HD patients from our previous study and drosophila model of HD showed considerable overlap. The arginine biosynthesis pathway emerged as one of the key pathways that is common in stationary phase yeast compared to logarithmic phase and HD patients. Treatment of yeast with arginine led to a significant decrease, while transfer to arginine drop-out media led to a significant increase in the size of protein aggregates in both logarithmic and stationary phase yeast model of HD. Knockout of arginine transporters in the endoplasmic reticulum and vacuole led to a significant decrease in mutant HTT aggregation. Overall our results highlight arginine as a critical metabolite that modulates the aggregation of mutant HTT and disease progression in HD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| | - Sai Swaroop R
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| | - Sai Phalguna Kanikaram
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| | - Datta Darshan V M
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| | - Ashish Pargaonkar
- Application Division, Agilent Technologies Ltd., Bengaluru, Karnataka, India
| | | | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| |
Collapse
|
8
|
Xiao C, Gavrilova O, Liu N, Lewicki SA, Reitman ML, Jacobson KA. In vivo phenotypic validation of adenosine receptor-dependent activity of non-adenosine drugs. Purinergic Signal 2023; 19:551-564. [PMID: 36781825 PMCID: PMC10539256 DOI: 10.1007/s11302-023-09924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Some non-adenosinergic drugs are reported to also act through adenosine receptors (ARs). We used mouse hypothermia, which can be induced by agonism at any of the four ARs, as an in vivo screen for adenosinergic effects. An AR contribution was identified when a drug caused hypothermia in wild type mice that was diminished in mice lacking all four ARs (quadruple knockout, QKO). Alternatively, an adenosinergic effect was identified if a drug potentiated adenosine-induced hypothermia. Four drugs (dipyridamole, nimodipine, cilostazol, cyclosporin A) increased the hypothermia caused by adenosine. Dipyridamole and nimodipine probably achieved this by inhibition of adenosine clearance via ENT1. Two drugs (cannabidiol, canrenoate) did not cause hypothermia in wild type mice. Four other drugs (nifedipine, ranolazine, ketamine, ethanol) caused hypothermia, but the hypothermia was unchanged in QKO mice indicating non-adenosinergic mechanisms. Zinc chloride caused hypothermia and hypoactivity; the hypoactivity was blunted in the QKO mice. Interestingly, the antidepressant amitriptyline caused hypothermia in wild type mice that was amplified in the QKO mice. Thus, we have identified adenosine-related effects for some drugs, while other candidates do not affect adenosine signaling by this in vivo assay. The adenosine-modulating drugs could be considered for repurposing based on predicted effects on AR activation.
Collapse
Affiliation(s)
- Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA
| | - Sarah A Lewicki
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA.
| |
Collapse
|
9
|
Liu CL, Yang MQ, Tang ZS, Liu YR, Song ZX, Zhang X, Yang XJ, Zhao YT. Research on the improvement effect of Saposhnikovia divaricata (Trucz.) Schischk on rheumatoid arthritis based on the "component-target-pathway" association. Anal Biochem 2023:115184. [PMID: 37285946 DOI: 10.1016/j.ab.2023.115184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/19/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To investigate the therapeutic effect and mechanism of the traditional Chinese medicine Saposhnikovia divaricata (Trucz.) Schischk in rats with complete Freund's adjuvant-induced rheumatoid arthritis (RA). METHODS The chemical targets and RA targets of Saposhnikovia divaricata (Trucz.) Schischk were acquired by the network pharmacological method. The complete Freund's adjuvant-induced rat RA model was used to further explore the mechanism of Saposhnikovia divaricata (Trucz.) Schischk in improving RA. Pathological changes in the volume of toes, body weight and synovial tissues of joints as well as serum inflammatory factor levels before and after the intervention of Saposhnikovia divaricata (Trucz.) Schischk were investigated. The key metabolic pathways were screened by correlations between metabolites and key targets. Finally, a quantitative analysis of key targets and metabolites was experimentally validated. RESULTS Saposhnikovia divaricata (Trucz.) Schischk administration increased body weight, mitigated foot swelling and downregulated inflammatory cytokine levels in model rats. The histopathology showed that treatment with Saposhnikovia divaricata (Trucz.) Schischk can induce inflammatory cell infiltration and synovial hyperplasia and obviously reduce cartilage injuries, thus improving arthritis symptoms in rats. According to the network pharmacology-metabonomics association analysis results, the purine metabolic signaling pathway might be the key pathway for RA intervention with Saposhnikovia divaricata (Trucz.) Schischk. Targeted metabonomics, Western blotting (WB) and reverse transcription-polymerase chain reaction (RT‒PCR) assays showed that the recombinant adenosine deaminase (ADA) mRNA expression level and metabolic level of inosine in Saposhnikovia divaricata (Trucz.) Schischk administration group were lower than those of the model group. This reflected that Saposhnikovia divaricata (Trucz.) Schischk could improve RA by downregulating ADA mRNA expression levels and the metabolic level of inosine in the purine signaling pathway. CONCLUSION Based on the "component-disease-target" association analysis, this study concludes that Saposhnikovia divaricata (Trucz.) Schischk improves complete Freund's adjuvant-induced RA symptoms in rats mainly by downregulating ADA mRNA expression levels in the purine metabolic signaling pathway, mitigating foot swelling, improving the levels of serum inflammatory factors (IL-1β, IL-6 and TNF-α), and decreasing the ADA protein expression level to intervene in purine metabolism.
Collapse
Affiliation(s)
- Chang-Le Liu
- Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, China
| | - Meng-Qi Yang
- Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, China
| | - Zhi-Shu Tang
- Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, China; China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yan-Ru Liu
- Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, China.
| | - Zhong-Xing Song
- Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, China
| | - Xin Zhang
- Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, China
| | - Xing-Jing Yang
- Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, China
| | - Yan-Ting Zhao
- Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, China
| |
Collapse
|
10
|
Rathnakumar S, Kambhampati NSV, Saiswaroop R, Pradhan SS, Ramkumar G, Beeraka N, Muddu GK, Kumar S, Javvaji SK, Parangoankar A, Sivaramakrishnan V, Ramamurthy SS. Integrated clinical and metabolomic analysis of dengue infection shows molecular signatures associated with host-pathogen interaction in different phases of the disease. Metabolomics 2023; 19:47. [PMID: 37130982 DOI: 10.1007/s11306-023-02011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
PURPOSE Dengue is a mosquito vector-borne disease caused by the dengue virus, which affects 125 million people globally. The disease causes considerable morbidity. The disease, based on symptoms, is classified into three characteristic phases, which can further lead to complications in the second phase. Molecular signatures that are associated with the three phases have not been well characterized. We performed an integrated clinical and metabolomic analysis of our patient cohort and compared it with omics data from the literature to identify signatures unique to the different phases. METHODS The dengue patients are recruited by clinicians after standard-of-care diagnostic tests and evaluation of symptoms. Blood from the patients was collected. NS1 antigen, IgM, IgG antibodies, and cytokines in serum were analyzed using ELISA. Targeted metabolomics was performed using LC-MS triple quad. The results were compared with analyzed transcriptomic data from the GEO database and metabolomic data sets from the literature. RESULTS The dengue patients displayed characteristic features of the disease, including elevated NS1 levels. TNF-α was found to be elevated in all three phases compared to healthy controls. The metabolic pathways were found to be deregulated compared to healthy controls only in phases I and II of dengue patients. The pathways represent viral replication and host response mediated pathways. The major pathways include nucleotide metabolism of various amino acids and fatty acids, biotin, etc. CONCLUSION: The results show elevated TNF-α and metabolites that are characteristic of viral infection and host response. IL10 and IFN-γ were not significant, consistent with the absence of any complications.
Collapse
Affiliation(s)
- Sriram Rathnakumar
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh, 515134, India
| | - Naga Sai Visweswar Kambhampati
- STAR Laboratory, Central Research Instruments Facility, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh, 515134, India
| | - R Saiswaroop
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh, 515134, India
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh, 515134, India
| | - G Ramkumar
- Department of General Medicine, Sri Sathya Sai General Hospital, Sri Sathya Sai Institute of Higher Medical Sciences Campus, Whitefield, Bengaluru, Karnataka, 560066, India
| | - Nirmala Beeraka
- Department of General Medicine, Sri Sathya Sai General Hospital, Sri Sathya Sai Institute of Higher Medical Sciences Campus, Whitefield, Bengaluru, Karnataka, 560066, India
| | - Gopi Krishna Muddu
- Department of Pediatrics, Sri Sathya Sai General Hospital, Puttaparthi, Andhra Pradesh, 515134, India
| | - Sandeep Kumar
- Department of General Medicine, Sri Sathya Sai General Hospital, Puttaparthi, Andhra Pradesh, 515134, India
| | - Sai Kiran Javvaji
- Department of Laboratory Medicine and Cardiology, Sri Sathya Sai Institute of Higher Medical Sciences, Whitefield, Bengaluru, Karnataka, 560066, India
| | | | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh, 515134, India.
| | - Sai Sathish Ramamurthy
- STAR Laboratory, Central Research Instruments Facility, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh, 515134, India.
| |
Collapse
|
11
|
Rajaratnam S, Soman AP, Phalguna KS, Pradhan SS, Manjunath M, Rao RK, Dandamudi RB, Bhagavatham SKS, Pulukool SK, Rathnakumar S, Kocherlakota S, Pargaonkar A, Veeranna RP, Arumugam N, Almansour AI, Choudhary B, Sivaramakrishnan V. Integrated Omic Analysis Delineates Pathways Modulating Toxic TDP-43 Protein Aggregates in Amyotrophic Lateral Sclerosis. Cells 2023; 12:cells12091228. [PMID: 37174628 PMCID: PMC10177613 DOI: 10.3390/cells12091228] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a multi-systemic, incurable, amyloid disease affecting the motor neurons, resulting in the death of patients. The disease is either sporadic or familial with SOD1, C9orf72, FUS, and TDP-43 constituting the majority of familial ALS. Multi-omics studies on patients and model systems like mice and yeast have helped in understanding the association of various signaling and metabolic pathways with the disease. The yeast model system has played a pivotal role in elucidating the gene amyloid interactions. We carried out an integrated transcriptomic and metabolomic analysis of the TDP-43 expressing yeast model to elucidate deregulated pathways associated with the disease. The analysis shows the deregulation of the TCA cycle, single carbon metabolism, glutathione metabolism, and fatty acid metabolism. Transcriptomic analysis of GEO datasets of TDP-43 expressing motor neurons from mice models of ALS and ALS patients shows considerable overlap with experimental results. Furthermore, a yeast model was used to validate the obtained results using metabolite addition and gene knock-out experiments. Taken together, our result shows a potential role for the TCA cycle, cellular redox pathway, NAD metabolism, and fatty acid metabolism in disease. Supplementation of reduced glutathione, nicotinate, and the keto diet might help to manage the disease.
Collapse
Affiliation(s)
- Saiswaroop Rajaratnam
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur 515134, Andhra Pradesh, India
| | - Akhil P Soman
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur 515134, Andhra Pradesh, India
- Central Water and Power Research Station, Khadakwasla, Pune 411024, Maharashtra, India
| | - Kanikaram Sai Phalguna
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur 515134, Andhra Pradesh, India
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur 515134, Andhra Pradesh, India
| | - Meghana Manjunath
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India
| | - Raksha Kanthavara Rao
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India
| | | | - Sai Krishna Srimadh Bhagavatham
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur 515134, Andhra Pradesh, India
| | - Sujith Kumar Pulukool
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur 515134, Andhra Pradesh, India
| | - Sriram Rathnakumar
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur 515134, Andhra Pradesh, India
| | - Sai Kocherlakota
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Ashish Pargaonkar
- Application Division, Agilent Technologies Ltd., Bengaluru 560066, Karnataka, India
| | - Ravindra P Veeranna
- Department of Biochemistry, Council of Scientific & Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysuru 570020, Karnataka, India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur 515134, Andhra Pradesh, India
| |
Collapse
|
12
|
Kodam P, Sai Swaroop R, Pradhan SS, Sivaramakrishnan V, Vadrevu R. Integrated multi-omics analysis of Alzheimer's disease shows molecular signatures associated with disease progression and potential therapeutic targets. Sci Rep 2023; 13:3695. [PMID: 36879094 PMCID: PMC9986671 DOI: 10.1038/s41598-023-30892-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the formation of amyloid plaques implicated in neuronal death. Genetics, age, and sex are the risk factors attributed to AD. Though omics studies have helped to identify pathways associated with AD, an integrated systems analysis with the available data could help to understand mechanisms, potential biomarkers, and therapeutic targets. Analysis of transcriptomic data sets from the GEO database, and proteomic and metabolomic data sets from literature was performed to identify deregulated pathways and commonality analysis identified overlapping pathways among the data sets. The deregulated pathways included those of neurotransmitter synapses, oxidative stress, inflammation, vitamins, complement, and coagulation pathways. Cell type analysis of GEO data sets showed microglia, endothelial, myeloid, and lymphoid cells are affected. Microglia are associated with inflammation and pruning of synapses with implications for memory and cognition. Analysis of the protein-cofactor network of B2, B6, and pantothenate shows metabolic pathways modulated by these vitamins which overlap with the deregulated pathways from the multi-omics analysis. Overall, the integrated analysis identified the molecular signature associated with AD. Treatment with anti-oxidants, B2, B6, and pantothenate in genetically susceptible individuals in the pre-symptomatic stage might help in better management of the disease.
Collapse
Affiliation(s)
- Pradeep Kodam
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India
| | - R Sai Swaroop
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, 515134, India
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, 515134, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, 515134, India.
| | - Ramakrishna Vadrevu
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
13
|
Pradhan SS, Rao KR, Manjunath M, Saiswaroop R, Patnana DP, Phalguna KS, Choudhary B, Sivaramakrishnan V. Vitamin B 6, B 12 and folate modulate deregulated pathways and protein aggregation in yeast model of Huntington disease. 3 Biotech 2023; 13:96. [PMID: 36852176 PMCID: PMC9958225 DOI: 10.1007/s13205-023-03525-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Huntington's disease (HD) is an incurable and progressive neurodegenerative disease affecting the basal ganglia of the brain. HD is caused due to expansion of the polyglutamine tract in the protein Huntingtin resulting in aggregates. The increased PolyQ length results in aggregation of protein Huntingtin leading to neuronal cell death. Vitamin B6, B12 and folate are deficient in many neurodegenerative diseases. We performed an integrated analysis of transcriptomic, metabolomic and cofactor-protein network of vitamin B6, B12 and folate was performed. Our results show considerable overlap of pathways modulated by Vitamin B6, B12 and folate with those obtained from transcriptomic and metabolomic data of HD patients and model systems. Further, in yeast model of HD we showed treatment of B6, B12 or folate either alone or in combination showed impaired aggregate formation. Transcriptomic analysis of yeast model treated with B6, B12 and folate showed upregulation of pathways like ubiquitin mediated proteolysis, autophagy, peroxisome, fatty acid, lipid and nitrogen metabolism. Metabolomic analysis of yeast model shows deregulation of pathways like aminoacyl-tRNA biosynthesis, metabolism of various amino acids, nitrogen metabolism and glutathione metabolism. Integrated transcriptomic and metabolomic analysis of yeast model showed concordance in the pathways obtained. Knockout of Peroxisomal (PXP1 and PEX7) and Autophagy (ATG5) genes in yeast increased aggregates which is mitigated by vitamin B6, B12 and folate treatment. Taken together our results show a role for Vitamin B6, B12 and folate mediated modulation of pathways important for preventing protein aggregation with potential implications for HD. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03525-y.
Collapse
Affiliation(s)
- Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| | - K. Raksha Rao
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka 560100 India
| | - Meghana Manjunath
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka 560100 India
| | - R. Saiswaroop
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| | - Durga Prasad Patnana
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| | - Kanikaram Sai Phalguna
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka 560100 India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| |
Collapse
|
14
|
Yang K, Li J, Tao L. Purine metabolism in the development of osteoporosis. Biomed Pharmacother 2022; 155:113784. [DOI: 10.1016/j.biopha.2022.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
|
15
|
Pradhan SS, Thota SM, Rajaratnam S, Bhagavatham SKS, Pulukool SK, Rathnakumar S, Phalguna KS, Dandamudi RB, Pargaonkar A, Joseph P, Joshy EV, Sivaramakrishnan V. Integrated multi-omics analysis of Huntington disease identifies pathways that modulate protein aggregation. Dis Model Mech 2022; 15:dmm049492. [PMID: 36052548 PMCID: PMC10655815 DOI: 10.1242/dmm.049492] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disease associated with polyglutamine expansion in the protein huntingtin (HTT). Although the length of the polyglutamine repeat correlates with age at disease onset and severity, psychological, cognitive and behavioral complications point to the existence of disease modifiers. Mitochondrial dysfunction and metabolic deregulation are both associated with the HD but, despite multi-omics characterization of patients and model systems, their mechanisms have remained elusive. Systems analysis of multi-omics data and its validation by using a yeast model could help to elucidate pathways that modulate protein aggregation. Metabolomics analysis of HD patients and of a yeast model of HD was, therefore, carried out. Our analysis showed a considerable overlap of deregulated metabolic pathways. Further, the multi-omics analysis showed deregulated pathways common in human, mice and yeast model systems, and those that are unique to them. The deregulated pathways include metabolic pathways of various amino acids, glutathione metabolism, longevity, autophagy and mitophagy. The addition of certain metabolites as well as gene knockouts targeting the deregulated metabolic and autophagy pathways in the yeast model system showed that these pathways do modulate protein aggregation. Taken together, our results showed that the modulation of deregulated pathways influences protein aggregation in HD, and has implications for progression and prognosis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sai S. Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sai M. Thota
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Saiswaroop Rajaratnam
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sai K. S. Bhagavatham
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sujith K. Pulukool
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sriram Rathnakumar
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Kanikaram S. Phalguna
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Rajesh B. Dandamudi
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515 134, India
| | - Ashish Pargaonkar
- Application Division, Agilent Technologies Ltd., Bengaluru 560048, India
| | - Prasanth Joseph
- Application Division, Agilent Technologies Ltd., Bengaluru 560048, India
| | - E. V. Joshy
- Department of Neurology, Sri Sathya Sai Institute of Higher Medical Sciences, Whitefield, Bengaluru, Karnataka 560066, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| |
Collapse
|
16
|
Srimadh Bhagavatham SK, Pulukool SK, Pradhan SS, R S, Ashok Naik A, V M DD, Sivaramakrishnan V. Systems biology approach delineates critical pathways associated with disease progression in rheumatoid arthritis. J Biomol Struct Dyn 2022:1-22. [PMID: 36047508 DOI: 10.1080/07391102.2022.2115555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Rheumatoid Arthritis (RA) is a chronic systemic autoimmune disease leading to inflammation, cartilage cell death, synoviocyte proliferation, and increased and impaired differentiation of osteoclasts and osteoblasts leading to joint erosions and deformities. Transcriptomics, proteomics, and metabolomics datasets were analyzed to identify the critical pathways that drive the RA pathophysiology. Single nucleotide polymorphisms (SNPs) associated with RA were analyzed for the functional implications, clinical outcomes, and blood parameters later validated by literature. SNPs associated with RA were grouped into pathways that drive the immune response and cytokine production. Further gene set enrichment analysis (GSEA) was performed on gene expression omnibus (GEO) data sets of peripheral blood mononuclear cells (PBMCs), synovial macrophages, and synovial biopsies from RA patients showed enrichment of Th1, Th2, Th17 differentiation, viral and bacterial infections, metabolic signalling and immunological pathways with potential implications for RA. The proteomics data analysis presented pathways with genes involved in immunological signaling and metabolic pathways, including vitamin B12 and folate metabolism. Metabolomics datasets analysis showed significant pathways like amino-acyl tRNA biosynthesis, metabolism of amino acids (arginine, alanine aspartate, glutamate, glutamine, phenylalanine, and tryptophan), and nucleotide metabolism. Furthermore, our commonality analysis of multi-omics datasets identified common pathways with potential implications for joint remodeling in RA. Disease-modifying anti-rheumatic drugs (DMARDs) and biologics treatments were found to modulate many of the pathways that were deregulated in RA. Overall, our analysis identified molecular signatures associated with the observed symptoms, joint erosions, potential biomarkers, and therapeutic targets in RA. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Sujith Kumar Pulukool
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| | - Saiswaroop R
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| | - Ashwin Ashok Naik
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| | - Datta Darshan V M
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| |
Collapse
|
17
|
Michopoulou S, Prosser A, Kipps C, Dickson J, Guy M, Teeling J. Biomarkers of Inflammation Increase with Tau and Neurodegeneration but not with Amyloid-β in a Heterogenous Clinical Cohort. J Alzheimers Dis 2022; 89:1303-1314. [DOI: 10.3233/jad-220523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Neuroinflammation is an integral part of Alzheimer’s disease (AD) pathology. Inflammatory mediators can exacerbate the production of amyloid-β (Aβ), the propagation of tau pathology and neuronal loss. Objective: To evaluate the relationship between inflammation markers and established markers of AD in a mixed memory clinic cohort. Methods: 105 cerebrospinal fluid (CSF) samples from a clinical cohort under investigation for cognitive complaints were analyzed. Levels of Aβ 42, total tau, and phosphorylated tau were measured as part of the clinical pathway. Analysis of inflammation markers in CSF samples was performed using multiplex immune assays. Participants were grouped according to their Aβ, tau, and neurodegeneration status and the Paris-Lille-Montpellier (PLM) scale was used to assess the likelihood of AD. Results: From 102 inflammatory markers analyzed, 19 and 23 markers were significantly associated with CSF total tau and phosphorylated tau levels respectively (p < 0.001), while none were associated with Aβ 42. The CSF concentrations of 4 inflammation markers were markedly elevated with increasing PLM class indicating increased likelihood of AD (p < 0.001). Adenosine deaminase, an enzyme involved in sleep homeostasis, was the single best predictor of high likelihood of AD (AUROC 0.788). Functional pathway analysis demonstrated a widespread role for inflammation in neurodegeneration, with certain pathways explaining over 30% of the variability in tau values. Conclusion: CSF inflammation markers increase significantly with tau and neurodegeneration, but not with Aβ in this mixed memory clinic cohort. Thus, such markers could become useful for the clinical diagnosis of neurodegenerative disorders alongside the established Aβ and tau measures.
Collapse
Affiliation(s)
- Sofia Michopoulou
- Imaging Physics, University Hospital Southampton, Southampton, UK
- Interdisciplinary Dementia and Imaging Centre (iDeAC), Southampton, UK
| | - Angus Prosser
- Faculty of Medicine, University of Southampton, Southampton, UK
- Interdisciplinary Dementia and Imaging Centre (iDeAC), Southampton, UK
| | - Christopher Kipps
- Faculty of Medicine, University of Southampton, Southampton, UK
- Interdisciplinary Dementia and Imaging Centre (iDeAC), Southampton, UK
| | - John Dickson
- Institute of Nuclear Medicine, University College London Hospitals, London, UK
| | - Matthew Guy
- Imaging Physics, University Hospital Southampton, Southampton, UK
| | - Jessica Teeling
- School of Biological Sciences, University of Southampton, Southampton, UK
- Interdisciplinary Dementia and Imaging Centre (iDeAC), Southampton, UK
| |
Collapse
|
18
|
Manjunath M, Swaroop S, Pradhan SS, Rao K R, Mahadeva R, Sivaramakrishnan V, Choudhary B. Integrated Transcriptome and Metabolomic Analysis Reveal Anti-Angiogenic Properties of Disarib, a Novel Bcl2-Specific Inhibitor. Genes (Basel) 2022; 13:genes13071208. [PMID: 35885991 PMCID: PMC9316176 DOI: 10.3390/genes13071208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Transcriptomic profiling of several drugs in cancer cell lines has been utilised to obtain drug-specific signatures and guided combination therapy to combat drug resistance and toxicity. Global metabolomics reflects changes due to altered activity of enzymes, environmental factors, etc. Integrating transcriptomics and metabolomics can provide genotype-phenotype correlation, providing meaningful insights into alterations in gene expression and its outcome to understand differential metabolism and guide therapy. This study uses a multi-omics approach to understand the global gene expression and metabolite changes induced by Disarib, a novel Bcl2-specific inhibitor in the Ehrlich adenocarcinoma (EAC) breast cancer mouse model. RNAseq analysis was performed on EAC mouse tumours treated with Disarib and compared to the controls. The expression of 6 oncogenes and 101 tumour suppressor genes interacting with Bcl2 and Bak were modulated upon Disarib treatment. Cancer hallmark pathways like DNA repair, Cell cycle, angiogenesis, and mitochondrial metabolism were downregulated, and programmed cell death platelet-related pathways were upregulated. Global metabolomic profiling using LC-MS revealed that Oncometabolites like carnitine, oleic acid, glycine, and arginine were elevated in tumour mice compared to normal and were downregulated upon Disarib treatment. Integrated transcriptomic and metabolomic profiles identified arginine metabolism, histidine, and purine metabolism to be altered upon Disarib treatment. Pro-angiogenic metabolites, arginine, palmitic acid, oleic acid, and myristoleic acid were downregulated in Disarib-treated mice. We further validated the effect of Disarib on angiogenesis by qRT-PCR analysis of genes in the VEGF pathway. Disarib treatment led to the downregulation of pro-angiogenic markers. Furthermore, the chorioallantoic membrane assay displayed a reduction in the formation of the number of secondary blood vessels upon Disarib treatment. Disarib reduces tumours by reducing oncometabolite and activating apoptosis and downregulating angiogenesis.
Collapse
Affiliation(s)
- Meghana Manjunath
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India; (M.M.); (R.R.K.); (R.M.)
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sai Swaroop
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur 515001, Andhra Pradesh, India; (S.S.); (S.S.P.); (V.S.)
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur 515001, Andhra Pradesh, India; (S.S.); (S.S.P.); (V.S.)
| | - Raksha Rao K
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India; (M.M.); (R.R.K.); (R.M.)
| | - Raghunandan Mahadeva
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India; (M.M.); (R.R.K.); (R.M.)
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur 515001, Andhra Pradesh, India; (S.S.); (S.S.P.); (V.S.)
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India; (M.M.); (R.R.K.); (R.M.)
- Correspondence:
| |
Collapse
|
19
|
CKS2 and S100A12: Two Novel Diagnostic Biomarkers for Rheumatoid Arthritis. DISEASE MARKERS 2022; 2022:2431976. [PMID: 35789606 PMCID: PMC9250429 DOI: 10.1155/2022/2431976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic systematicness autoimmunity disease with joint inflammation. RA etiology is still unknown. Early and exact diagnosing is still hard to reach. In the paper, we purposed to discover novel diagnosis biological marker for RA. Two open, usable gene expression profiles of human RA as well as controlled specimens (dataset GSE17755 as well as GSE93272) were downloaded from the GEO database. Differentially expressed genes (DEGs) were screened between 331 RA and 88 control samples. Functional enrichment analysis was applied to explore the possible function of DEGs. Expression levels as well as diagnosis values of biological marker in RA were further verified in our cohort by the use of RT-PCR and ROC assays. We identified 13 DEGs between RA samples and control samples. 13 DEGs were remarkably abundant in NF-kappa B signal pathway. Among the 13 DEGs, CKS2, S100A12, LY96, and ANXA3 exhibited a strong diagnostic ability in screening RA specimens from normal specimens using all AUC > 0.8. Moreover, we confirmed that the expression of CKS2 and S100A12 was distinctly upregulated in RA specimens contrasted to normal specimens. Overall, serum CKS2 and S100A12 could be used as novel diagnosis biological markers for RA patients.
Collapse
|
20
|
Naik AA, Sivaramakrishnan V. Femoral Head Osteonecrosis is associated with thrombosis, fatty acid and cholesterol biosynthesis: A potential role for anti-thrombotics and statins as disease modifying agents. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Pulukool SK, Srimadh Bhagavatham SK, Kannan V, Parim B, Challa S, Karnatam V, V.M DD, Ahmad Mir I, Sukumar P, Venkateshan V, Sharma A, Sivaramakrishnan V. Elevated ATP, cytokines and potential microglial inflammation distinguish exfoliation glaucoma from exfoliation syndrome. Cytokine 2022; 151:155807. [DOI: 10.1016/j.cyto.2022.155807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/19/2021] [Accepted: 01/11/2022] [Indexed: 12/27/2022]
|
22
|
Srimadh Bhagavatham SK, Potikuri D, Sivaramakrishnan V. Adenosine deaminase and cytokines associated with infectious diseases as risk factors for inflammatory arthritis and methotrexate as a potential prophylactic agent. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2021.110751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Naik AA, Sivaramakrishnan V. Systems analysis of steroid induced osteonecrosis shows role for heme and vitamin D in pathogenesis. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Bhagavatham SKS, Kannan V, Darshan VMD, Sivaramakrishnan V. Nucleotides modulate synoviocyte proliferation and osteoclast differentiation in macrophages with potential implications for rheumatoid arthritis. 3 Biotech 2021; 11:504. [PMID: 34840926 DOI: 10.1007/s13205-021-03052-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/30/2021] [Indexed: 12/29/2022] Open
Abstract
P2 receptors are nucleotide-activated receptors involved in inflammation, cell proliferation osteoblastogenesis, osteoclastogenesis and their function. They can be potential role players in the pathophysiology of rheumatoid arthritis (RA). Our analysis of gene expression datasets of synovial tissue biopsy from the GEO database shows changes in the expression levels of P2 receptors. HIG-82, a synovial fibroblast cell line and RAW 264.7, a macrophage cell line are good in vitro models to study RA. Nucleotide addition experiments showed UDP Glucose significantly increased the proliferation of synovial fibroblasts (HIG-82). Similarly, nucleotides such as Adenosine tri-phosphate (ATP), Adenosine di-phosphate (ADP), Uridine tri-phosphate (UTP), Uridine di-phosphate (UDP) and Uridine diphosphoglucose (UDPG) induced elevated reactive oxygen species (ROS) and tartrate Resistant Acid Phosphatase (TRAP) activity in RAW264.7 cells. The ADP-induced TRAP could be inhibited by clopidogrel a P2Y12 inhibitor. ATP, ADP, UTP, UDP and UDPG also induced osteoclastogenesis as evident from fused multinucleate cells and expression of osteoclast markers (TRAP, Cathepsin K [CTSK]) as determined by Q-PCR. Apyrase (APY) a nucleotidase and an enzyme that is used to modulate extracellular nucleotide concentration is sufficient to induce osteoclastogenesis. Taken together our results show that nucleotides modulate synoviocyte proliferation and macrophage differentiation into osteoclast and play an important role in RA. Nucleotide receptors might be potential therapeutic targets in RA. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03052-8.
Collapse
|