1
|
Li H, Dai X, Zhou J, Wang Y, Zhang S, Guo J, Shen L, Yan H, Jiang H. Mitochondrial dynamics in pulmonary disease: Implications for the potential therapeutics. J Cell Physiol 2024:e31370. [PMID: 38988059 DOI: 10.1002/jcp.31370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Mitochondria are dynamic organelles that continuously undergo fusion/fission to maintain normal cell physiological activities and energy metabolism. When mitochondrial dynamics is unbalanced, mitochondrial homeostasis is broken, thus damaging mitochondrial function. Accumulating evidence demonstrates that impairment in mitochondrial dynamics leads to lung tissue injury and pulmonary disease progression in a variety of disease models, including inflammatory responses, apoptosis, and barrier breakdown, and that the role of mitochondrial dynamics varies among pulmonary diseases. These findings suggest that modulation of mitochondrial dynamics may be considered as a valid therapeutic strategy in pulmonary diseases. In this review, we discuss the current evidence on the role of mitochondrial dynamics in pulmonary diseases, with a particular focus on its underlying mechanisms in the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis (PF), pulmonary arterial hypertension (PAH), lung cancer and bronchopulmonary dysplasia (BPD), and outline effective drugs targeting mitochondrial dynamics-related proteins, highlighting the great potential of targeting mitochondrial dynamics in the treatment of pulmonary disease.
Collapse
Affiliation(s)
- Hui Li
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Xinyan Dai
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Junfu Zhou
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yujuan Wang
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Shiying Zhang
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jiacheng Guo
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Lidu Shen
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Hengxiu Yan
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Huiling Jiang
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Zeng Z, Abdelwahid E, Chen W, Ascoli C, Pham T, Jacobson JR, Dudek SM, Natarajan V, Aldaz CM, Machado RF, Singla S. Endothelial knockdown of the tumor suppressor, WWOX, increases inflammation in ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2024; 326:L687-L697. [PMID: 38563965 PMCID: PMC11380939 DOI: 10.1152/ajplung.00277.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Chronic cigarette smoke exposure decreases lung expression of WWOX which is known to protect the endothelial barrier during infectious models of acute respiratory distress syndrome (ARDS). Proteomic analysis of WWOX-silenced endothelial cells (ECs) was done using tandem mass tag mass spectrometry (TMT-MS). WWOX-silenced ECs as well as those isolated from endothelial cell Wwox knockout (EC Wwox KO) mice were subjected to cyclic stretch (18% elongation, 0.5 Hz, 4 h). Cellular lysates and media supernatant were harvested for assays of cellular signaling, protein expression, and cytokine release. These were repeated with dual silencing of WWOX and zyxin. Control and EC Wwox KO mice were subjected to high tidal volume ventilation. Bronchoalveolar lavage fluid and mouse lung tissue were harvested for cellular signaling, cytokine secretion, and histological assays. TMT-MS revealed upregulation of zyxin expression during WWOX knockdown which predicted a heightened inflammatory response to mechanical stretch. WWOX-silenced ECs and ECs isolated from EC Wwox mice displayed significantly increased cyclic stretch-mediated secretion of various cytokines (IL-6, KC/IL-8, IL-1β, and MCP-1) relative to controls. This was associated with increased ERK and JNK phosphorylation but decreased p38 mitogen-activated kinases (MAPK) phosphorylation. EC Wwox KO mice subjected to VILI sustained a greater degree of injury than corresponding controls. Silencing of zyxin during WWOX knockdown abrogated stretch-induced increases in IL-8 secretion but not in IL-6. Loss of WWOX function in ECs is associated with a heightened inflammatory response during mechanical stretch that is associated with increased MAPK phosphorylation and appears, in part, to be dependent on the upregulation of zyxin.NEW & NOTEWORTHY Prior tobacco smoke exposure is associated with an increased risk of acute respiratory distress syndrome (ARDS) during critical illness. Our laboratory is investigating one of the gene expression changes that occurs in the lung following smoke exposure: WWOX downregulation. Here we describe changes in protein expression associated with WWOX knockdown and its influence on ventilator-induced ARDS in a mouse model.
Collapse
Affiliation(s)
- Zhenguo Zeng
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, the First Affiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Eltyeb Abdelwahid
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Weiguo Chen
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Trinh Pham
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Jeffrey R Jacobson
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Viswanathan Natarajan
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - C Marcelo Aldaz
- MD Anderson Cancer Center, University of Texas, Houston, Texas, United States
| | - Roberto F Machado
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University, Indianapolis, Indiana, United States
| | - Sunit Singla
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
3
|
Zhang H, Muhetarijiang M, Chen RJ, Hu X, Han J, Zheng L, Chen T. Mitochondrial Dysfunction: A Roadmap for Understanding and Tackling Cardiovascular Aging. Aging Dis 2024:AD.2024.0058. [PMID: 38739929 DOI: 10.14336/ad.2024.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Cardiovascular aging is a progressive remodeling process constituting a variety of cellular and molecular alterations that are closely linked to mitochondrial dysfunction. Therefore, gaining a deeper understanding of the changes in mitochondrial function during cardiovascular aging is crucial for preventing cardiovascular diseases. Cardiac aging is accompanied by fibrosis, cardiomyocyte hypertrophy, metabolic changes, and infiltration of immune cells, collectively contributing to the overall remodeling of the heart. Similarly, during vascular aging, there is a profound remodeling of blood vessel structure. These remodeling present damage to endothelial cells, increased vascular stiffness, impaired formation of new blood vessels (angiogenesis), the development of arteriosclerosis, and chronic vascular inflammation. This review underscores the role of mitochondrial dysfunction in cardiac aging, exploring its impact on fibrosis and myocardial alterations, metabolic remodeling, immune response remodeling, as well as in vascular aging in the heart. Additionally, we emphasize the significance of mitochondria-targeted therapies in preventing cardiovascular diseases in the elderly.
Collapse
Affiliation(s)
- Han Zhang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mairedan Muhetarijiang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ryan J Chen
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaosheng Hu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Han
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liangrong Zheng
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Chen
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Montero-Jodra A, de la Fuente MÁ, Gobelli D, Martín-Fernández M, Villar J, Tamayo E, Simarro M. The mitochondrial signature of cultured endothelial cells in sepsis: Identifying potential targets for treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166946. [PMID: 37939908 DOI: 10.1016/j.bbadis.2023.166946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Sepsis is the most common cause of death from infection in the world. Unfortunately, there is no specific treatment for patients with sepsis, and management relies on infection control and support of organ function. A better understanding of the underlying pathophysiology of this syndrome will help to develop innovative therapies. In this regard, it has been widely reported that endothelial cell activation and dysfunction are major contributors to the development of sepsis. This review aims to provide a comprehensive overview of emerging findings highlighting the prominent role of mitochondria in the endothelial response in in vitro experimental models of sepsis. Additionally, we discuss potential mitochondrial targets that have demonstrated protective effects in preclinical investigations against sepsis. These promising findings hold the potential to pave the way for future clinical trials in the field.
Collapse
Affiliation(s)
- Alba Montero-Jodra
- Department of Surgery, University of Valladolid, Valladolid, Spain; Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain
| | - Miguel Ángel de la Fuente
- Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain; Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| | - Dino Gobelli
- Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain; Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| | - Marta Martín-Fernández
- Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain; BioCritic, Group for Biomedical Research in Critical Care Medicine, Valladolid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain; Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Eduardo Tamayo
- Department of Surgery, University of Valladolid, Valladolid, Spain; BioCritic, Group for Biomedical Research in Critical Care Medicine, Valladolid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Anaesthesiology & Critical Care, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - María Simarro
- Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain; Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| |
Collapse
|
5
|
Nguyen DV, Jin Y, Nguyen TLL, Kim L, Heo KS. 3'-Sialyllactose protects against LPS-induced endothelial dysfunction by inhibiting superoxide-mediated ERK1/2/STAT1 activation and HMGB1/RAGE axis. Life Sci 2024; 338:122410. [PMID: 38191050 DOI: 10.1016/j.lfs.2023.122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
AIM Endothelial hyperpermeability is an early stage of endothelial dysfunction associated with the progression and development of atherosclerosis. 3'-Sialyllactose (3'-SL) is the most abundant compound in human milk oligosaccharides, and it has the potential to regulate endothelial dysfunction. This study investigated the beneficial effects of 3'-SL on lipopolysaccharide (LPS)-induced endothelial dysfunction in vitro and in vivo. MAIN METHODS We established LPS-induced endothelial dysfunction models in both cultured bovine aortic endothelial cells (BAECs) and mouse models to determine the effects of 3'-SL. Western blotting, qRT-PCR analysis, immunofluorescence staining, and en face staining were employed to clarify underlying mechanisms. Superoxide production was measured by 2',7'-dichlorofluorescin diacetate, and dihydroethidium staining. KEY FINDINGS LPS significantly decreased cell viability, whereas 3'-SL treatment mitigated these effects via inhibiting ERK1/2 activation. Mechanistically, 3'-SL ameliorated LPS-induced ROS accumulation leading to ERK1/2 activation-mediated STAT1 phosphorylation and subsequent inhibition of downstream transcriptional target genes, including VCAM-1, TNF-α, IL-1β, and MCP-1. Interestingly, LPS-induced ERK1/2/STAT1 activation leads to the HMGB1 release from the nucleus into the extracellular space, where it binds to RAGE, while 3'-SL suppressed EC hyperpermeability by suppressing the HMGB1/RAGE axis. This interaction also led to VE-cadherin endothelial junction disassembly and endothelial cell monolayer disruption through ERK1/2/STAT1 modulation. In mouse endothelium, en face staining revealed that 3'-SL abolished LPS-stimulated ROS production and VCAM-1 overexpression. SIGNIFICANCE Our findings suggest that 3'-SL inhibits LPS-induced endothelial hyperpermeability by suppressing superoxide-mediated ERK1/2/STAT1 activation and HMGB1/RAGE axis. Therefore, 3'-SL may be a potential therapeutic agent for preventing the progression of atherosclerosis.
Collapse
Affiliation(s)
- Dung Van Nguyen
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Yujin Jin
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Thuy Le Lam Nguyen
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Lila Kim
- GeneChem Inc. A-201, 187 Techno 2-ro, Daejeon 34025, South Korea
| | - Kyung-Sun Heo
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
6
|
Postma RJ, Broekhoven AG, Verspaget HW, de Boer H, Hankemeier T, Coenraad MJ, van Duinen V, van Zonneveld AJ. Novel Morphological Profiling Assay Connects ex Vivo Endothelial Cell Responses to Disease Severity in Liver Cirrhosis. GASTRO HEP ADVANCES 2023; 3:238-249. [PMID: 39129954 PMCID: PMC11307659 DOI: 10.1016/j.gastha.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/16/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims Endothelial cell (EC) dysfunction in response to circulating plasma factors is a known causal factor in many systemic diseases. However, no appropriate assay is available to investigate this causality ex vivo. In liver cirrhosis, systemic inflammation is identified as central mechanism in progression from compensated to decompensated cirrhosis (DC), but the role of ECs therein is unknown. We aimed to develop a novel ex vivo assay for assessing EC responses to patient-derived plasma (PDP) and assess the potential of this assay in a cohort of liver cirrhosis patients. Methods Image-based morphological profiling was utilized to assess the impact of PDP on cultured ECs. Endothelial cell (EC) monolayers were exposed to 25% stabilized PDP (20 compensated cirrhoses, 20 DCs, and 20 healthy controls (HCs). Single-cell morphological profiles were extracted by automated image-analysis following staining of multiple cellular components and high-content imaging. Patient profiles were created by dimension reduction and cell-to-patient data aggregation, followed by multivariate-analysis to stratify patients and identify discriminating features. Results Patient-derived plasma (PDP) exposure induced profound changes in EC morphology, displaying clear differences between controls and DC patients. Compensated cirrhosis patients showed overlap with healthy controls and DC patients. Supervised analysis showed Child-Pugh (CP) class could be predicted from EC morphology. Most importantly, CP-C patients displayed distinct EC phenotypes, in which mitochondrial changes were most discriminative. Conclusion Morphological profiling presents a viable tool to assess the endothelium ex vivo. We demonstrated that the EC phenotype corresponds with disease severity in liver cirrhosis. Moreover, our results suggest the presence of mitochondrial dysfunction in ECs of CP-C patient.
Collapse
Affiliation(s)
- Rudmer J. Postma
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Annelotte G.C. Broekhoven
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hein W. Verspaget
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hetty de Boer
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Hankemeier
- Department of Analytical BioSciences, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Minneke J. Coenraad
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent van Duinen
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- MIMETAS B.V., Oegstgeest, The Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Budzinska A, Galganski L, Jarmuszkiewicz W. The bisphosphonates alendronate and zoledronate induce adaptations of aerobic metabolism in permanent human endothelial cells. Sci Rep 2023; 13:16205. [PMID: 37758809 PMCID: PMC10533870 DOI: 10.1038/s41598-023-43377-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023] Open
Abstract
Nitrogen-containing bisphosphonates (NBPs), compounds that are widely used in the treatment of bone disorders, may cause side effects related to endothelial dysfunction. The aim of our study was to investigate the effects of chronic 6-day exposure to two common bone-preserving drugs, alendronate and zoledronate, on endothelial function and oxidative metabolism of cultured human endothelial cells (EA.hy926). NBPs reduced cell viability, induced oxidative stress and a pro-inflammatory state and downregulated the prenylation-dependent ERK1/2 signaling pathway in endothelial cells. In addition, NBPs induced increased anaerobic respiration and slightly increased oxidative mitochondrial capacity, affecting mitochondrial turnover through reduced mitochondrial fission. Moreover, by blocking the mevalonate pathway, NBPs caused a significant decrease in the level of coenzyme Q10, thereby depriving endothelial cells of an important antioxidant and mitochondrial electron carrier. This resulted in increased formation of reactive oxygen species (ROS), upregulation of antioxidant enzymes, and impairment of mitochondrial respiratory function. A general decrease in mitochondrial respiration occurred with stronger reducing fuels (pyruvate and glutamate) in NBP-treated intact endothelial cells, and significantly reduced phosphorylating respiration was observed during the oxidation of succinate and especially malate in NBP-treated permeabilized endothelial cells. The observed changes in oxidative metabolism caused a decrease in ATP levels and an increase in oxygen levels in NBP-treated cells. Thus, NBPs modulate the energy metabolism of endothelial cells, leading to alterations in the cellular energy state, coenzyme Q10 redox balance, mitochondrial respiratory function, and mitochondrial turnover.
Collapse
Affiliation(s)
- Adrianna Budzinska
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Adam Mickiewicz University, Collegium Biologicum, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Lukasz Galganski
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Adam Mickiewicz University, Collegium Biologicum, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Wieslawa Jarmuszkiewicz
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Adam Mickiewicz University, Collegium Biologicum, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
8
|
Jovanovic M, Mitra A, Besio R, Contento BM, Wong KW, Derkyi A, To M, Forlino A, Dale RK, Marini JC. Absence of TRIC-B from type XIV Osteogenesis Imperfecta osteoblasts alters cell adhesion and mitochondrial function - A multi-omics study. Matrix Biol 2023; 121:127-148. [PMID: 37348683 PMCID: PMC10634967 DOI: 10.1016/j.matbio.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Osteogenesis Imperfecta (OI) is a heritable collagen-related bone dysplasia characterized by bone fractures, growth deficiency and skeletal deformity. Type XIV OI is a recessive OI form caused by null mutations in TMEM38B, which encodes the ER membrane intracellular cation channel TRIC-B. Previously, we showed that absence of TMEM38B alters calcium flux in the ER of OI patient osteoblasts and fibroblasts, which further disrupts collagen synthesis and secretion. How the absence of TMEM38B affects osteoblast function is still poorly understood. Here we further investigated the role of TMEM38B in human osteoblast differentiation and mineralization. TMEM38B-null osteoblasts showed altered expression of osteoblast marker genes and decreased mineralization. RNA-Seq analysis revealed that cell-cell adhesion was one of the most downregulated pathways in TMEM38B-null osteoblasts, with further validation by real-time PCR and Western blot. Gap and tight junction proteins were also decreased by TRIC-B absence, both in patient osteoblasts and in calvarial osteoblasts of Tmem38b-null mice. Disrupted cell adhesion decreased mutant cell proliferation and cell cycle progression. An important novel finding was that TMEM38B-null osteoblasts had elongated mitochondria with altered fusion and fission markers, MFN2 and DRP1. In addition, TMEM38B-null osteoblasts exhibited a significant increase in superoxide production in mitochondria, further supporting mitochondrial dysfunction. Together these results emphasize the novel role of TMEM38B/TRIC-B in osteoblast differentiation, affecting cell-cell adhesion processes, gap and tight junction, proliferation, cell cycle, and mitochondrial function.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | | | - Ka Wai Wong
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China; Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alberta Derkyi
- Office of the Clinical Director, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Michael To
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China; Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States.
| |
Collapse
|
9
|
Liu H, Kang X, Ren P, Kuang X, Yang X, Yang H, Shen X, Yan H, Kang Y, Zhang F, Wang X, Guo L, Fan W. Hydrogen gas ameliorates acute alcoholic liver injury via anti-inflammatory and antioxidant effects and regulation of intestinal microbiota. Int Immunopharmacol 2023; 120:110252. [PMID: 37196556 DOI: 10.1016/j.intimp.2023.110252] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
Alcoholic liver disease (ALD) is a globally prevalent liver-related disorder characterized by severe oxidative stress and inflammatory liver damage, for which no effective treatment is currently available. Hydrogen gas (H2) has been demonstrated to be an efficient antioxidant in various diseases in animals as well as humans. However, the protective effects of H2 on ALD and its underlying mechanisms remain to be elucidated. The present study demonstrated that H2 inhalation ameliorated liver injury, and attenuated liver oxidative stress, inflammation, and steatosis in an ALD mouse model. Moreover, H2 inhalation improved gut microbiota, including increasing the abundance of Lachnospiraceae and Clostridia, and decreasing the abundance of Prevotellaceae and Muribaculaceae, and also improved intestinal barrier integrity. Mechanistically, H2 inhalation blocked activation of the LPS/TLR4/NF-κB pathway in liver. Notably, it was further demonstrated that the reshaped gut microbiota may accelerate alcohol metabolism, regulate lipid homeostasis and maintain immune balance by bacterial functional potential prediction (PICRUSt). Fecal microbiota transplantation from mice that had undergone H2 inhalation significantly alleviated acute alcoholic liver injury. In summary, the present study showed that H2 inhalation alleviated liver injury by reducing oxidative stress and inflammation, while also improving intestinal flora and enhancing the intestinal barrier. H2 inhalation may serve as an effective intervention for preventing and treating ALD in a clinical context.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Xing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Peng Ren
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Xiaoyu Kuang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Xiaodan Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Hao Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Xiaorong Shen
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Huan Yan
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Yongbo Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Fan Zhang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Xiaohui Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China; Laboratory of Morphology, Shanxi Medical University, Jinzhong 030619, China
| | - Linzhi Guo
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China; Laboratory of Morphology, Shanxi Medical University, Jinzhong 030619, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China.
| |
Collapse
|
10
|
Zhao W, Wang L, Wang Y, Yuan H, Zhao M, Lian H, Ma S, Xu K, Li Z, Yu G. Injured Endothelial Cell: A Risk Factor for Pulmonary Fibrosis. Int J Mol Sci 2023; 24:ijms24108749. [PMID: 37240093 DOI: 10.3390/ijms24108749] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The pathological features of pulmonary fibrosis (PF) are the abnormal activation and proliferation of myofibroblasts and the extraordinary deposition of the extracellular matrix (ECM). However, the pathogenesis of PF is still indistinct. In recent years, many researchers have realized that endothelial cells had a crucial role in the development of PF. Studies have demonstrated that about 16% of the fibroblasts in the lung tissue of fibrotic mice were derived from endothelial cells. Endothelial cells transdifferentiated into mesenchymal cells via the endothelial-mesenchymal transition (E(nd)MT), leading to the excessive proliferation of endothelial-derived mesenchymal cells and the accumulation of fibroblasts and ECM. This suggested that endothelial cells, a significant component of the vascular barrier, played an essential role in PF. Herein, this review discusses E(nd)MT and its contribution to the activation of other cells in PF, which could provide new ideas for further understanding the source and activation mechanism of fibroblasts and the pathogenesis of PF.
Collapse
Affiliation(s)
- Weiming Zhao
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yaxuan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Hongmei Yuan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Mengxia Zhao
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Hui Lian
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Shuaichen Ma
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Kai Xu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Zhongzheng Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
11
|
Xu Y, Du H, Wang C, Yue L, Chen F, Wang Z. CeO 2 Nanoparticles-Regulated Plasmid Uptake and Bioavailability for Reducing Transformation of Extracellular Antibiotic Resistance Genes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:969. [PMID: 36985863 PMCID: PMC10053900 DOI: 10.3390/nano13060969] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The direct uptake of extracellular DNA (eDNA) via transformation facilitates the dissemination of antibiotic resistance genes (ARGs) in the environment. CeO2 nanoparticles (NPs) have potential in the regulation of conjugation-dominated ARGs propagation, whereas their effects on ARGs transformation remain largely unknown. Here, CeO2 NPs at concentrations lower than 50 mg L-1 have been applied to regulate the transformation of plasmid-borne ARGs to competent Escherichia coli (E. coli) cells. Three types of exposure systems were established to optimize the regulation efficiency. Pre-incubation of competent E. coli cells with CeO2 NPs at 0.5 mg L-1 inhibited the transformation (35.4%) by reducing the ROS content (0.9-fold) and cell membrane permeability (0.9-fold), thereby down-regulating the expression of genes related to DNA uptake and processing (bhsA, ybaV, and nfsB, 0.7-0.8 folds). Importantly, CeO2 NPs exhibited an excellent binding capacity with the plasmids, decreasing the amounts of plasmids available for cellular uptake and down-regulating the gene expression of DNA uptake (bhsA, ybaV, and recJ, 0.6-0.7 folds). Altogether, pre-exposure of plasmids with CeO2 NPs (10 and 25 mg L-1) suppressed the transformation with an efficiency of 44.5-51.6%. This study provides a nano-strategy for controlling the transformation of ARGs, improving our understanding on the mechanisms of nanomaterial-mediated ARGs propagation.
Collapse
Affiliation(s)
- Yinuo Xu
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Du
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
12
|
Compound Probiotic Ameliorates Acute Alcoholic Liver Disease in Mice by Modulating Gut Microbiota and Maintaining Intestinal Barrier. Probiotics Antimicrob Proteins 2023; 15:185-201. [PMID: 36456838 DOI: 10.1007/s12602-022-10005-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 12/03/2022]
Abstract
Alcoholic liver disease (ALD) is a worldwide health threaten lack of effective treatment. Gut dysbiosis and concomitant augmented intestinal permeability are strongly implicated in the pathogenesis and progression of ALD. Research on the protective effect of probiotics on ALD is limited, and more effective intestinal microecological regulators and the related mechanisms still need to be further explored. In the present study, the protective effects and mechanisms of a compound probiotic against acute alcohol-induced liver injury in vivo were explod. It was showed that the compound probiotic ameliorated liver injury in acute ALD mice and stabilized the levels of ALT, AST, and TG in serum. The compound probiotic reversed acute alcohol-induced gut dysbiosis and maintained the intestinal barrier integrity by upregulating the production of mucus and the expression of tight junction (TJ) proteins and thus reduced LPS level in liver. Meanwhile, the compound probiotic reduced inflammation level by inhibiting TLR4/NF-κB signaling pathway and suppressed oxidative stress level in liver. Furthermore, the compound probiotic alleviated liver lipid accumulation by regulating fatty acid metabolism-associated genes and AMPK-PPARα signaling pathway. Noteworthy, fecal microbiota transplantation (FMT) realized comparable protective effect with that of compound probiotic. In conclusion, present study demonstrates the beneficial effects and underlying mechanism of the compound probiotic against acute alcohol-induced liver injury. It provides clues for development of novel strategy for treatment of ALD.
Collapse
|
13
|
Qu K, Yan F, Qin X, Zhang K, He W, Dong M, Wu G. Mitochondrial dysfunction in vascular endothelial cells and its role in atherosclerosis. Front Physiol 2022; 13:1084604. [PMID: 36605901 PMCID: PMC9807884 DOI: 10.3389/fphys.2022.1084604] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The mitochondria are essential organelles that generate large amounts of ATP via the electron transport chain (ECT). Mitochondrial dysfunction causes reactive oxygen species accumulation, energy stress, and cell death. Endothelial mitochondrial dysfunction is an important factor causing abnormal function of the endothelium, which plays a central role during atherosclerosis development. Atherosclerosis-related risk factors, including high glucose levels, hypertension, ischemia, hypoxia, and diabetes, promote mitochondrial dysfunction in endothelial cells. This review summarizes the physiological and pathophysiological roles of endothelial mitochondria in endothelial function and atherosclerosis.
Collapse
Affiliation(s)
- Kai Qu
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China,College of Bioengineering Chongqing University, Chongqing, China
| | - Fang Yan
- Department of Geriatrics, Geriatric Diseases Institute of Chengdu, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China,Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Xian Qin
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China,College of Bioengineering Chongqing University, Chongqing, China
| | - Kun Zhang
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China,College of Bioengineering Chongqing University, Chongqing, China
| | - Wen He
- Department of Geriatrics, Clinical trial center, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China,*Correspondence: Mingqing Dong, ; Guicheng Wu,
| | - Guicheng Wu
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China,*Correspondence: Mingqing Dong, ; Guicheng Wu,
| |
Collapse
|
14
|
[ALDH2 attenuates LPS-induced increase of brain microvascular endothelial cell permeability by promoting fusion and inhibiting fission of the mitochondria]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1882-1888. [PMID: 36651258 PMCID: PMC9878412 DOI: 10.12122/j.issn.1673-4254.2022.12.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To investigate the effect of aldehyde dehydrogenase 2 (ALDH2) on lipopolysaccharide (LPS)- induced damage of mouse brain microvascular endothelial barrier and explore the role of mitochondrial fusion and fission in maintaining the integrity of endothelial barrier. METHODS Mouse brain microvascular endothelial cells were treated with 1 μg/ mL LPS for 24 h with or without pretreatment with 20 μmol/mL Alda-1 (a ALDH2 agonist) for 1 h. The changes in cell viability were assessed using cell counting Kit-8 (CCK8) assay, and the cell permeability was evaluated using transendothelial cell resistance (TEER) and FITC-Dextran assay. The level of oxidative stress in the cells was assessed by detecting the levels of malondialdehyde (MDA) and superoxide dismutase (SOD), and the content of reactive oxygen species (ROS) was detected using a superoxide anion fluorescent probe (DHE). Western blotting was performed to detect the expressions of ALDH2, tight junction proteins ZO-1 and occludin, and mitochondrial fusion- and division-related proteins Mfn2, OPA1, Drp1 and Fis1. RESULTS Compared with the untreated cells, the cells treated with LPS showed significantly decreased TEER, increased FITC-dextran leakage, MDA content and ROS production, decreased SOD activity expressions of ALDH2, ZO-1, occludin, Mfn2 and OPA1, and increased expressions of Drp1 and Fis1 (P < 0.05). Pretreatment with Alda-1 prior to LPS exposure strongly suppressed the increase of endothelial cell membrane permeability, reduced ROS production, increased the expressions of ALDH2, ZO-1, occludin, OPA1 and Mfn2, and lowered the expressions of Drp1 and Fis1 (P < 0.05). CONCLUSION ALDH2 can alleviate LPS-induced damage of brain microvascular endothelial cell barrier by inhibiting the mitochondrial ROS production and promoting mitochondrial fusion and inhibiting mitochondrial fission.
Collapse
|
15
|
Song JH, Mascarenhas JB, Sammani S, Kempf CL, Cai H, Camp SM, Bermudez T, Zhang DD, Natarajan V, Garcia JGN. TLR4 activation induces inflammatory vascular permeability via Dock1 targeting and NOX4 upregulation. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166562. [PMID: 36179995 DOI: 10.1016/j.bbadis.2022.166562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/30/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
The loss of vascular integrity is a cardinal feature of acute inflammatory responses evoked by activation of the TLR4 inflammatory cascade. Utilizing in vitro and in vivo models of inflammatory lung injury, we explored TLR4-mediated dysregulated signaling that results in the loss of endothelial cell (EC) barrier integrity and vascular permeability, focusing on Dock1 and Elmo1 complexes that are intimately involved in regulation of Rac1 GTPase activity, a well recognized modulator of vascular integrity. Marked reductions in Dock1 and Elmo1 expression was observed in lung tissues (porcine, rat, mouse) exposed to TLR4 ligand-mediated acute inflammatory lung injury (LPS, eNAMPT) in combination with injurious mechanical ventilation. Lung tissue levels of Dock1 and Elmo1 were preserved in animals receiving an eNAMPT-neutralizing mAb in conjunction with highly significant decreases in alveolar edema and lung injury severity, consistent with Dock1/Elmo1 as pathologic TLR4 targets directly involved in inflammation-mediated loss of vascular barrier integrity. In vitro studies determined that pharmacologic inhibition of Dock1-mediated activation of Rac1 (TBOPP) significantly exacerbated TLR4 agonist-induced EC barrier dysfunction (LPS, eNAMPT) and attenuated increases in EC barrier integrity elicited by barrier-enhancing ligands of the S1P1 receptor (sphingosine-1-phosphate, Tysiponate). The EC barrier-disrupting influence of Dock1 inhibition on S1PR1 barrier regulation occurred in concert with: 1) suppressed formation of EC barrier-enhancing lamellipodia, 2) altered nmMLCK-mediated MLC2 phosphorylation, and 3) upregulation of NOX4 expression and increased ROS. These studies indicate that Dock1 is essential for maintaining EC junctional integrity and is a critical target in TLR4-mediated inflammatory lung injury.
Collapse
Affiliation(s)
- Jin H Song
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Joseph B Mascarenhas
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Carrie L Kempf
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Hua Cai
- Department of Anesthesiology. University of California Los Angeles, Los Angeles, CA, United States of America
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Tadeo Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America.
| |
Collapse
|
16
|
Lu ZY, Guo CL, Yang B, Yao Y, Yang ZJ, Gong YX, Yang JY, Dong WY, Yang J, Yang HB, Liu HM, Li B. Hydrogen Sulfide Diminishes Activation of Adventitial Fibroblasts Through the Inhibition of Mitochondrial Fission. J Cardiovasc Pharmacol 2022; 79:925-934. [PMID: 35234738 PMCID: PMC9162271 DOI: 10.1097/fjc.0000000000001250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Activation of adventitial fibroblasts (AFs) on vascular injury contributes to vascular remodeling. Hydrogen sulfide (H2S), a gaseous signal molecule, modulates various cardiovascular functions. The aim of this study was to explore whether exogenous H2S ameliorates transforming growth factor-β1 (TGF-β1)-induced activation of AFs and, if so, to determine the underlying molecular mechanisms. Immunofluorescent staining and western blot were used to determine the expression of collagen I and α-smooth muscle actin. The proliferation and migration of AFs were performed by using cell counting Kit-8 and transwell assay, respectively. The mitochondrial morphology was assessed by using MitoTracker Red staining. The activation of signaling pathway was evaluated by western blot. The mitochondrial reactive oxygen species and mitochondrial membrane potential were determined by MitoSOX and JC-1 (5,5',6,6'-tetrachloro-1,1,3,3'-tetraethylbenzimidazolyl carbocyanine iodide) staining. Our study demonstrated exogenous H2S treatment dramatically suppressed TGF-β1-induced AF proliferation, migration, and phenotypic transition by blockage of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission and regulated mitochondrial reactive oxygen species generation. Moreover, exogenous H2S reversed TGF-β1-induced mitochondrial fission and AF activation by modulating Rho-associated protein kinase 1-dependent phosphorylation of Drp1. In conclusion, our results suggested that exogenous H2S attenuates TGF-β1-induced AF activation through suppression of Drp1-mediated mitochondrial fission in a Rho-associated protein kinase 1-dependent fashion.
Collapse
Affiliation(s)
- Zhao-Yang Lu
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China;
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China;
| | - Chun-Ling Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China;
| | - Bin Yang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China;
| | - Yao Yao
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China;
| | - Zhuo-Jing Yang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China;
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China;
| | - Yu-Xin Gong
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China;
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China;
| | - Jing-Yao Yang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China;
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China;
| | - Wen-Yuan Dong
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China;
| | - Jun Yang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China;
| | - Hai-Bing Yang
- Department of Cardiology, Yingshang First Hospital, Fuyang, China; and
| | - Hui-Min Liu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China;
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| | - Bao Li
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China;
| |
Collapse
|
17
|
Wang F, Fan X, Kong J, Wang C, Ma B, Sun W, Ye Z, Liu P, Wen J. Inhibition of mitochondrial fission alters neo-intimal hyperplasia via PI3K/Akt signaling in arteriovenous fistulas. Vascular 2022; 31:533-543. [PMID: 35130772 DOI: 10.1177/17085381211068685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND/OBJECTIVE Arteriovenous fistulas (AVFs) are the preferred vascular access for hemodialysis of patients with end-stage renal disease. However, there is a high incidence of AVF failures caused by insufficient outward remodeling or venous neo-intimal hyperplasia formation. Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) play an important role in many cardiovascular diseases. Abnormal VSMC proliferation and migration could be abolished by inhibition of mitochondrial division. METHOD We found that abnormal proliferation and migration of VSMCs and increased mitochondrial fission were associated with AVF stenosis in patients. We also investigated the mechanisms, particularly the role of mitochondrial dynamics, underlying these VSMC behaviors. In vitro, we observed that inhibition of mitochondrial fission and Akt phosphorylation can diminish proliferation and migration of VSMCs induced by platelet-derived growth factor-BB (PDGF-BB). In vivo, daily intraperitoneal injections of mitochondrial division inhibitor 1 (Mdivi-1) decreased VSMC proliferation and reduced AVF wall thickness in a rat AVF model. CONCLUSION AND RESULT Our results suggest that inhibition of mitochondrial fission improves AVF patency by reducing wall thickening through the PI3K/Akt signaling pathway. Therefore, inhibition of mitochondrial fission has the clinical potential to improve AVF patency.
Collapse
Affiliation(s)
- Feng Wang
- Department of Cardiovascular Surgery, 36635China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Xueqiang Fan
- Department of Cardiovascular Surgery, 36635China-Japan Friendship Hospital, Beijing, China
| | - Jie Kong
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bo Ma
- Department of Cardiovascular Surgery, 36635China-Japan Friendship Hospital, Beijing, China
| | - Weiliang Sun
- 36635Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Zhidong Ye
- Department of Cardiovascular Surgery, 36635China-Japan Friendship Hospital, Beijing, China
| | - Peng Liu
- Department of Cardiovascular Surgery, 36635China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Jianyan Wen
- Department of Cardiovascular Surgery, 36635China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Systemic Effects of mitoTEMPO upon Lipopolysaccharide Challenge Are Due to Its Antioxidant Part, While Local Effects in the Lung Are Due to Triphenylphosphonium. Antioxidants (Basel) 2022; 11:antiox11020323. [PMID: 35204206 PMCID: PMC8868379 DOI: 10.3390/antiox11020323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 01/08/2023] Open
Abstract
Mitochondria-targeted antioxidants (mtAOX) are a promising treatment strategy against reactive oxygen species-induced damage. Reports about harmful effects of mtAOX lead to the question of whether these could be caused by the carrier molecule triphenylphosphonium (TPP). The aim of this study was to investigate the biological effects of the mtAOX mitoTEMPO, and TPP in a rat model of systemic inflammatory response. The inflammatory response was induced by lipopolysaccharide (LPS) injection. We show that mitoTEMPO reduced expression of inducible nitric oxide synthase in the liver, lowered blood levels of tissue damage markers such as liver damage markers (aspartate aminotransferase and alanine aminotransferase), kidney damage markers (urea and creatinine), and the general organ damage marker, lactate dehydrogenase. In contrast, TPP slightly, but not significantly, increased the LPS-induced effects. Surprisingly, both mitoTEMPO and TPP reduced the wet/dry ratio in the lung after 24 h. In the isolated lung, both substances enhanced the increase in pulmonary arterial pressure induced by LPS observed within 3 h after LPS treatments but did not affect edema formation at this time. Our data suggest that beneficial effects of mitoTEMPO in organs are due to its antioxidant moiety (TEMPO), except for the lung where its effects are mediated by TPP.
Collapse
|