1
|
Matera A, Compagnion AC, Pedicone C, Kotah JM, Ivanov A, Monsorno K, Labouèbe G, Leggio L, Pereira-Iglesias M, Beule D, Mansuy-Aubert V, Williams TL, Iraci N, Sierra A, Marro SG, Goate AM, Eggen BJL, Kerr WG, Paolicelli RC. Microglial lipid phosphatase SHIP1 limits complement-mediated synaptic pruning in the healthy developing hippocampus. Immunity 2024:S1074-7613(24)00513-2. [PMID: 39657671 DOI: 10.1016/j.immuni.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
The gene inositol polyphosphate-5-phosphatase D (INPP5D), which encodes the lipid phosphatase SH2-containing inositol polyphosphate 5-phosphatase 1 (SHIP1), is associated with the risk of Alzheimer's disease (AD). How it influences microglial function and brain physiology is unclear. Here, we showed that SHIP1 was enriched in early stages of healthy brain development. By combining in vivo loss-of-function approaches and proteomics, we discovered that mice conditionally lacking microglial SHIP1 displayed increased complement and synapse loss in the early postnatal brain. SHIP1-deficient microglia showed altered transcriptional signatures and abnormal synaptic pruning that was dependent on the complement system. Mice exhibited cognitive defects in adulthood only when microglial SHIP1 was depleted early postnatally but not at later stages. Induced pluripotent stem cell (iPSC)-derived microglia lacking SHIP1 also showed increased engulfment of synaptic structures. These findings suggest that SHIP1 is essential for proper microglia-mediated synapse remodeling in the healthy developing brain. Disrupting this process has lasting behavioral effects and may be linked to vulnerability to neurodegeneration.
Collapse
Affiliation(s)
- Alessandro Matera
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | | | - Chiara Pedicone
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Janssen M Kotah
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Andranik Ivanov
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katia Monsorno
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gwenaël Labouèbe
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Loredana Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Marta Pereira-Iglesias
- Achucarro Basque Center for Neuroscience, Barrio Sarriena s/n, Leioa, Spain; Department of Neuroscience, University of the Basque Country EHU/UPV, Barrio Sarriena s/n, Leioa, Spain
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Tim L Williams
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Barrio Sarriena s/n, Leioa, Spain; Department of Biochemistry and Molecular Biology, University of the Basque Country EHU/UPV, Barrio Sarriena, Leioa, Spain; Ikerbasque Foundation, Bilbao, Spain
| | - Samuele G Marro
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurosciences, Black Family Stem Cell Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Alison M Goate
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bart J L Eggen
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - William G Kerr
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rosa C Paolicelli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Ellis D, Watanabe K, Wilmanski T, Lustgarten MS, Korat AVA, Glusman G, Hadlock JJ, Fiehn O, Sebastiani P, Price ND, Hood L, Magis AT, Evans SJ, Pflieger L, Lovejoy JC, Gibbons SM, Funk CC, Baloni P, Rappaport N. APOE Genotype and Biological Age Impact Inter-Omic Associations Related to Bioenergetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618322. [PMID: 39605362 PMCID: PMC11601402 DOI: 10.1101/2024.10.17.618322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Apolipoprotein E ( APOE ) modifies human aging; specifically, the ε2 and ε4 alleles are among the strongest genetic predictors of longevity and Alzheimer's disease (AD) risk, respectively. However, detailed mechanisms for their influence on aging remain unclear. Herein, we analyzed inter-omic, context-dependent association patterns across APOE genotypes, sex, and health axes in 2,229 community-dwelling individuals to test APOE genotypes for variation in metabolites and metabolite-associations tied to a previously-validated metric of biological aging (BA) based on blood biomarkers. Our analysis, supported by validation in an independent cohort, identified top APOE -associated plasma metabolites as diacylglycerols, which were increased in ε2-carriers and trended higher in ε4-carriers compared to ε3-homozygotes, despite the known opposing aging effects of the allele variants. 'Omics association patterns of ε2-carriers and increased biological age were also counter-intuitively similar, displaying increased associations between insulin resistance markers and energy-generating pathway metabolites. These results provide an atlas of APOE -related 'omic associations and support the involvement of bioenergetic pathways in mediating the impact of APOE on aging.
Collapse
|
3
|
Gunasekaran TI, Reyes‐Dumeyer D, Faber KM, Goate A, Boeve B, Cruchaga C, Pericak‐Vance M, Haines JL, Rosenberg R, Tsuang D, Mejia DR, Medrano M, Lantigua RA, Sweet RA, Bennett DA, Wilson RS, Alba C, Dalgard C, Foroud T, Vardarajan BN, Mayeux R. Missense and loss-of-function variants at GWAS loci in familial Alzheimer's disease. Alzheimers Dement 2024; 20:7580-7594. [PMID: 39233587 PMCID: PMC11567820 DOI: 10.1002/alz.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/10/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Few rare variants have been identified in genetic loci from genome-wide association studies (GWAS) of Alzheimer's disease (AD), limiting understanding of mechanisms, risk assessment, and genetic counseling. METHODS Using genome sequencing data from 197 families in the National Institute on Aging Alzheimer's Disease Family Based Study and 214 Caribbean Hispanic families, we searched for rare coding variants within known GWAS loci from the largest published study. RESULTS Eighty-six rare missense or loss-of-function (LoF) variants completely segregated in 17.5% of families, but in 91 (22.1%) families Apolipoprotein E (APOE)-𝜀4 was the only variant segregating. However, in 60.3% of families, APOE 𝜀4, missense, and LoF variants were not found within the GWAS loci. DISCUSSION Although APOE 𝜀4and several rare variants were found to segregate in both family datasets, many families had no variant accounting for their disease. This suggests that familial AD may be the result of unidentified rare variants. HIGHLIGHTS Rare coding variants from GWAS loci segregate in familial Alzheimer's disease. Missense or loss of function variants were found segregating in nearly 7% of families. APOE-𝜀4 was the only segregating variant in 29.7% in familial Alzheimer's disease. In Hispanic and non-Hispanic families, different variants were found in segregating genes. No coding variants were found segregating in many Hispanic and non-Hispanic families.
Collapse
Affiliation(s)
- Tamil Iniyan Gunasekaran
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| | - Dolly Reyes‐Dumeyer
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| | - Kelley M. Faber
- Department of Medical and Molecular GeneticsNational Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD), 410 W. 10th St., HS 4000. Indiana University School of MedicineIndianapolisIndianaUSA
| | - Alison Goate
- Department of Genetics & Genomic SciencesRonald M. Loeb Center for Alzheimer's diseaseIcahn School of Medicine at Mount SinaiIcahn Bldg., One Gustave L. Levy PlaceNew YorkNew YorkUSA
| | - Brad Boeve
- Department of Neurology, Mayo ClinicRochesterMinnesotaUSA
| | - Carlos Cruchaga
- Department of PsychiatryWashington University in St. Louis, Rand Johnson Building, 600 S Euclid Ave., Wohl Hospital BuildingSt. LouisMissouriUSA
| | - Margaret Pericak‐Vance
- John P Hussman Institute for Human GenomicsDr. John T Macdonald Foundation Department of Human GeneticsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Jonathan L. Haines
- Department of Population & Quantitative Health Sciences and Cleveland Institute for Computational Biology. Case Western Reserve UniversityClevelandOhioUSA
| | - Roger Rosenberg
- Department of NeurologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Debby Tsuang
- Department of Psychiatry and Behavioral SciencesUniversity of Washington, GRECC VA Puget Sound, 1660 South Columbian WaySeattleWashingtonUSA
| | - Diones Rivera Mejia
- Los Centros de Diagnóstico y Medicina Avanzada y de Conferencias Médicas y TelemedicinaCEDIMAT, Arturo LogroñoPlaza de la Salud, Dr. Juan Manuel Taveras Rodríguez, C. Pepillo Salcedo esqSanto DomingoDominican Republic
- Universidad Pedro Henríquez Urena, Av. John F. Kennedy Km. 7‐1/2 Santo Domingo 1423Santo DomingoDominican Republic
| | - Martin Medrano
- Pontíficia Universidad Católica Madre y Maestra (PUCMM), Autopista Duarte Km 1 1/2Santiago de los CaballerosDominican Republic
| | - Rafael A. Lantigua
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
- Department of MedicineVagelos College of Physicians and SurgeonsColumbia University, and the New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Robert A. Sweet
- Departments of Psychiatry and NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical Center, 1750, West Harrison StChicagoIllinoisUSA
| | - Robert S. Wilson
- Rush Alzheimer's Disease CenterRush University Medical Center, 1750, West Harrison StChicagoIllinoisUSA
| | - Camille Alba
- Department of AnatomyPhysiology and GeneticsUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Clifton Dalgard
- Department of AnatomyPhysiology and GeneticsUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Tatiana Foroud
- Department of Medical and Molecular GeneticsNational Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD), 410 W. 10th St., HS 4000. Indiana University School of MedicineIndianapolisIndianaUSA
| | - Badri N. Vardarajan
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| | - Richard Mayeux
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
4
|
Don J, Schork AJ, Glusman G, Rappaport N, Cummings SR, Duggan D, Raju A, Hellberg KLG, Gunn S, Monti S, Perls T, Lapidus J, Goetz LH, Sebastiani P, Schork NJ. The relationship between 11 different polygenic longevity scores, parental lifespan, and disease diagnosis in the UK Biobank. GeroScience 2024; 46:3911-3927. [PMID: 38451433 PMCID: PMC11226417 DOI: 10.1007/s11357-024-01107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
Large-scale genome-wide association studies (GWAS) strongly suggest that most traits and diseases have a polygenic component. This observation has motivated the development of disease-specific "polygenic scores (PGS)" that are weighted sums of the effects of disease-associated variants identified from GWAS that correlate with an individual's likelihood of expressing a specific phenotype. Although most GWAS have been pursued on disease traits, leading to the creation of refined "Polygenic Risk Scores" (PRS) that quantify risk to diseases, many GWAS have also been pursued on extreme human longevity, general fitness, health span, and other health-positive traits. These GWAS have discovered many genetic variants seemingly protective from disease and are often different from disease-associated variants (i.e., they are not just alternative alleles at disease-associated loci) and suggest that many health-positive traits also have a polygenic basis. This observation has led to an interest in "polygenic longevity scores (PLS)" that quantify the "risk" or genetic predisposition of an individual towards health. We derived 11 different PLS from 4 different available GWAS on lifespan and then investigated the properties of these PLS using data from the UK Biobank (UKB). Tests of association between the PLS and population structure, parental lifespan, and several cancerous and non-cancerous diseases, including death from COVID-19, were performed. Based on the results of our analyses, we argue that PLS are made up of variants not only robustly associated with parental lifespan, but that also contribute to the genetic architecture of disease susceptibility, morbidity, and mortality.
Collapse
Affiliation(s)
- Janith Don
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Andrew J Schork
- The Institute of Biological Psychiatry, Copenhagen University Hospital, Copenhagen, Denmark
- GLOBE Institute, Copenhagen University, Copenhagen, Denmark
| | | | | | - Steve R Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - David Duggan
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Anish Raju
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Kajsa-Lotta Georgii Hellberg
- The Institute of Biological Psychiatry, Copenhagen University Hospital, Copenhagen, Denmark
- GLOBE Institute, Copenhagen University, Copenhagen, Denmark
| | - Sophia Gunn
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Stefano Monti
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Thomas Perls
- Department of Medicine, Section of Geriatrics, Boston University, Boston, MA, USA
| | - Jodi Lapidus
- Department of Biostatistics, Oregon Health & Science University, Portland, OR, USA
| | - Laura H Goetz
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
- Veterans Affairs Loma Linda Health Care, Loma Linda, CA, USA
| | - Paola Sebastiani
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA
- Tufts University School of Medicine and Data Intensive Study Center, Boston, MA, USA
| | - Nicholas J Schork
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA.
- The City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
5
|
Gunasekaran TI, Reyes-Dumeyer D, Faber KM, Goate A, Boeve B, Cruchaga C, Pericak-Vance M, Haines JL, Rosenberg R, Tsuang D, Mejia DR, Medrano M, Lantigua RA, Sweet RA, Bennett DA, Wilson RS, Alba C, Dalgard C, Foroud T, Vardarajan BN, Mayeux R. Missense and Loss of Function Variants at GWAS Loci in Familial Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.12.18.23300145. [PMID: 38196599 PMCID: PMC10775337 DOI: 10.1101/2023.12.18.23300145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
BACKGROUND Few rare variants have been identified in genetic loci from genome wide association studies of Alzheimer's disease (AD), limiting understanding of mechanisms and risk assessment, and genetic counseling. METHODS Using genome sequencing data from 197 families in The NIA Alzheimer's Disease Family Based Study, and 214 Caribbean Hispanic families, we searched for rare coding variants within known GWAS loci from the largest published study. RESULTS Eighty-six rare missense or loss of function (LoF) variants completely segregated in 17.5% of families, but in 91 (22.1%) of families APOE-e4 was the only variant segregating. However, in 60.3% of families neither APOE-e4 nor missense or LoF variants were found within the GWAS loci. DISCUSSION Although APOE-ε4 and several rare variants were found to segregate in both family datasets, many families had no variant accounting for their disease. This suggests that familial AD may be the result of unidentified rare variants.
Collapse
|
6
|
Singh MK, Shin Y, Ju S, Han S, Kim SS, Kang I. Comprehensive Overview of Alzheimer's Disease: Etiological Insights and Degradation Strategies. Int J Mol Sci 2024; 25:6901. [PMID: 39000011 PMCID: PMC11241648 DOI: 10.3390/ijms25136901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and affects millions of individuals globally. AD is associated with cognitive decline and memory loss that worsens with aging. A statistical report using U.S. data on AD estimates that approximately 6.9 million individuals suffer from AD, a number projected to surge to 13.8 million by 2060. Thus, there is a critical imperative to pinpoint and address AD and its hallmark tau protein aggregation early to prevent and manage its debilitating effects. Amyloid-β and tau proteins are primarily associated with the formation of plaques and neurofibril tangles in the brain. Current research efforts focus on degrading amyloid-β and tau or inhibiting their synthesis, particularly targeting APP processing and tau hyperphosphorylation, aiming to develop effective clinical interventions. However, navigating this intricate landscape requires ongoing studies and clinical trials to develop treatments that truly make a difference. Genome-wide association studies (GWASs) across various cohorts identified 40 loci and over 300 genes associated with AD. Despite this wealth of genetic data, much remains to be understood about the functions of these genes and their role in the disease process, prompting continued investigation. By delving deeper into these genetic associations, novel targets such as kinases, proteases, cytokines, and degradation pathways, offer new directions for drug discovery and therapeutic intervention in AD. This review delves into the intricate biological pathways disrupted in AD and identifies how genetic variations within these pathways could serve as potential targets for drug discovery and treatment strategies. Through a comprehensive understanding of the molecular underpinnings of AD, researchers aim to pave the way for more effective therapies that can alleviate the burden of this devastating disease.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Vivek S, Faul J, Thyagarajan B, Guan W. Explainable variational autoencoder (E-VAE) model using genome-wide SNPs to predict dementia. J Biomed Inform 2023; 148:104536. [PMID: 37926392 PMCID: PMC11106718 DOI: 10.1016/j.jbi.2023.104536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE Alzheimer's disease (AD) and AD related dementias (ADRD) are complex multifactorial neurodegenerative diseases. The associations between genetic variants obtained from genome wide association studies (GWAS) are the most widely available and well documented variants associated with ADRD. Application of deep learning methods to analyze large scale GWAS data may be a powerful approach to elucidate the biological mechanisms in ADRD compared to penalized regression models that may lead to over-fitting. METHODS We developed a deep learning frame work explainable variational autoencoder (E-VAE) classifier model using genotype (GWAS SNPs = 5474) data from 2714 study participants in the Health and Retirement Study (HRS) to classify ADRD. We validated the generalizability of this model among 234 participants in the Religious Orders Study and Memory and Aging Project (ROSMAP). Utilizing a linear decoder approach we have extracted the weights associated with latent features for biological interpretation. RESULTS We obtained a predictive accuracy of 0.71 (95 % CI [0.59, 0.84]) with an AUC of 0.69 in the HRS test dataset and got an accuracy of 0.62 (95 % CI [0.56, 0.68]) with an AUC of 0.63 in the ROSMAP dataset. CONCLUSION This is the first study showing the generalizability of a deep learning prediction model for dementia using genetic variants in an independent cohort. The latent features identified using E-VAE can help us understand the biology of AD/ ADRD and better characterize disease status.
Collapse
Affiliation(s)
- Sithara Vivek
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Jessica Faul
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, United States
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States.
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis MN, United States.
| |
Collapse
|
8
|
Housini M, Zhou Z, Gutierrez J, Rao S, Jomaa R, Subasinghe K, Reid DM, Silzer T, Phillips N, O'Bryant S, Barber RC. Top Alzheimer's disease risk allele frequencies differ in HABS-HD Mexican- versus Non-Hispanic White Americans. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12518. [PMID: 38155914 PMCID: PMC10752755 DOI: 10.1002/dad2.12518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/13/2023] [Accepted: 11/25/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION: Here we evaluate frequencies of the top 10 Alzheimer's disease (AD) risk alleles for late-onset AD in Mexican American (MA) and non-Hispanic White (NHW) American participants enrolled in the Health and Aging Brain Study-Health Disparities Study cohort. METHODS: Using DNA extracted from this community-based diverse population, we calculated the genotype frequencies in each population to determine whether a significant difference is detected between the different ethnicities. DNA genotyping was performed per manufacturers' protocols. RESULTS: Allele and genotype frequencies for 9 of the 11 single nucleotide polymorphisms (two apolipoprotein E variants, CR1, BIN1, DRB1, NYAP1, PTK2B, FERMT2, and ABCA7) differed significantly between MAs and NHWs. DISCUSSION: The significant differences in frequencies of top AD risk alleles observed here across MAs and NHWs suggest that ethnicity-specific genetic risks for AD exist. Given our results, we are advancing additional projects to further elucidate ethnicity-specific differences in AD.
Collapse
Affiliation(s)
- Mohammad Housini
- Department of Pharmacology and NeuroscienceSchool of Biomedical SciencesUniversity of North Texas Health Science CenterFort WorthTexasUSA
- Department of Family Medicine & Manipulative MedicineTexas College of Osteopathic MedicineUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Zhengyang Zhou
- Department of Biostatistics and EpidemiologySchool of Public HealthUniversity of North Texas Health Science CenterFort WorthTexasUSA
- Institute for Translational ResearchUNT Health Science CenterFort WorthTexasUSA
| | - John Gutierrez
- Department of Internal MedicineTexas Institute for Graduate Medical Education and ResearchSan AntonioTexasUSA
| | - Sumedha Rao
- Department of Family Medicine & Manipulative MedicineTexas College of Osteopathic MedicineUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Rodwan Jomaa
- Department of Family Medicine & Manipulative MedicineTexas College of Osteopathic MedicineUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Kumudu Subasinghe
- Department of MicrobiologyImmunology and GeneticsSchool of Biomedical SciencesUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Danielle Marie Reid
- Department of MicrobiologyImmunology and GeneticsSchool of Biomedical SciencesUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Talisa Silzer
- Department of MicrobiologyImmunology and GeneticsSchool of Biomedical SciencesUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Nicole Phillips
- Institute for Translational ResearchUNT Health Science CenterFort WorthTexasUSA
- Department of MicrobiologyImmunology and GeneticsSchool of Biomedical SciencesUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Sid O'Bryant
- Department of Family Medicine & Manipulative MedicineTexas College of Osteopathic MedicineUniversity of North Texas Health Science CenterFort WorthTexasUSA
- Institute for Translational ResearchUNT Health Science CenterFort WorthTexasUSA
| | - Robert Clinton Barber
- Department of Family Medicine & Manipulative MedicineTexas College of Osteopathic MedicineUniversity of North Texas Health Science CenterFort WorthTexasUSA
- Institute for Translational ResearchUNT Health Science CenterFort WorthTexasUSA
| | | |
Collapse
|
9
|
Astarita G, Kelly RS, Lasky-Su J. Metabolomics and lipidomics strategies in modern drug discovery and development. Drug Discov Today 2023; 28:103751. [PMID: 37640150 PMCID: PMC10543515 DOI: 10.1016/j.drudis.2023.103751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Metabolomics and lipidomics have an increasingly pivotal role in drug discovery and development. In the context of drug discovery, monitoring changes in the levels or composition of metabolites and lipids relative to genetic variations yields functional insights, bolstering human genetics and (meta)genomic methodologies. This approach also sheds light on potential novel targets for therapeutic intervention. In the context of drug development, metabolite and lipid biomarkers contribute to enhanced success rates, promising a transformative impact on precision medicine. In this review, we deviate from analytical chemist-focused perspectives, offering an overview tailored to drug discovery. We provide introductory insight into state-of-the-art mass spectrometry (MS)-based metabolomics and lipidomics techniques utilized in drug discovery and development, drawing from the collective expertise of our research teams. We comprehensively outline the application of metabolomics and lipidomics in advancing drug discovery and development, spanning fundamental research, target identification, mechanisms of action, and the exploration of biomarkers.
Collapse
Affiliation(s)
- Giuseppe Astarita
- Georgetown University, Washington, DC, USA; Arkuda Therapeutics, Watertown, MA, USA.
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Qian XH, Chen SY, Liu XL, Tang HD. ABCA7-Associated Clinical Features and Molecular Mechanisms in Alzheimer's Disease. Mol Neurobiol 2023; 60:5548-5556. [PMID: 37322288 DOI: 10.1007/s12035-023-03414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Alzheimer's disease (AD) is the most common type of neurodegenerative disease and its pathogenesis is still unclear. Genetic factors are thought to account for a large proportion of the overall AD phenotypes. ATP-binding cassette transporter A7 (ABCA7) is one of the most important risk gene for AD. Multiple forms of ABCA7 variants significantly increase the risk of AD, such as single-nucleotide polymorphisms, premature termination codon variants, missense variants, variable number tandem repeat, mutations, and alternative splicing. AD patients with ABCA7 variants usually exhibit typical clinical and pathological features of traditional AD with a wide age of onset range. ABCA7 variants can alter ABCA7 protein expression levels and protein structure to affect protein functions such as abnormal lipid metabolism, amyloid precursor protein (APP) processing, and immune cell function. Specifically, ABCA7 deficiency can cause neuronal apoptosis by inducing endoplasmic reticulum stress through the PERK/eIF2α pathway. Second, ABCA7 deficiency can increase Aβ production by upregulating the SREBP2/BACE1 pathway and promoting APP endocytosis. In addition, the ability of microglia to phagocytose and degrade Aβ is destroyed by ABCA7 deficiency, leading to reduced clearance of Aβ. Finally, disturbance of lipid metabolism may also be an important method by which ABCA7 variants influence the incidence rate of AD. In the future, more attention should be given to different ABCA7 variants and ABCA7 targeted therapies for AD.
Collapse
Affiliation(s)
- Xiao-Hang Qian
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si-Yue Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Li Liu
- Department of Neurology, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China.
| | - Hui-Dong Tang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Epremyan KK, Mamaev DV, Zvyagilskaya RA. Alzheimer's Disease: Significant Benefit from the Yeast-Based Models. Int J Mol Sci 2023; 24:9791. [PMID: 37372938 DOI: 10.3390/ijms24129791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related, multifaceted neurological disorder associated with accumulation of aggregated proteins (amyloid Aβ and hyperphosphorylated tau), loss of synapses and neurons, and alterations in microglia. AD was recognized by the World Health Organization as a global public health priority. The pursuit of a better understanding of AD forced researchers to pay attention to well-defined single-celled yeasts. Yeasts, despite obvious limitations in application to neuroscience, show high preservation of basic biological processes with all eukaryotic organisms and offer great advantages over other disease models due to the simplicity, high growth rates on low-cost substrates, relatively simple genetic manipulations, the large knowledge base and data collections, and availability of an unprecedented amount of genomic and proteomic toolboxes and high-throughput screening techniques, inaccessible to higher organisms. Research reviewed above clearly indicates that yeast models, together with other, more simple eukaryotic models including animal models, C. elegans and Drosophila, significantly contributed to understanding Aβ and tau biology. These models allowed high throughput screening of factors and drugs that interfere with Aβ oligomerization, aggregation and toxicity, and tau hyperphosphorylation. In the future, yeast models will remain relevant, with a focus on creating novel high throughput systems to facilitate the identification of the earliest AD biomarkers among different cellular networks in order to achieve the main goal-to develop new promising therapeutic strategies to treat or prevent the disease.
Collapse
Affiliation(s)
- Khoren K Epremyan
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Dmitry V Mamaev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Renata A Zvyagilskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| |
Collapse
|
12
|
Reitz C, Pericak-Vance MA, Foroud T, Mayeux R. A global view of the genetic basis of Alzheimer disease. Nat Rev Neurol 2023; 19:261-277. [PMID: 37024647 PMCID: PMC10686263 DOI: 10.1038/s41582-023-00789-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 04/08/2023]
Abstract
The risk of Alzheimer disease (AD) increases with age, family history and informative genetic variants. Sadly, there is still no cure or means of prevention. As in other complex diseases, uncovering genetic causes of AD could identify underlying pathological mechanisms and lead to potential treatments. Rare, autosomal dominant forms of AD occur in middle age as a result of highly penetrant genetic mutations, but the most common form of AD occurs later in life. Large-scale, genome-wide analyses indicate that 70 or more genes or loci contribute to AD. One of the major factors limiting progress is that most genetic data have been obtained from non-Hispanic white individuals in Europe and North America, preventing the development of personalized approaches to AD in individuals of other ethnicities. Fortunately, emerging genetic data from other regions - including Africa, Asia, India and South America - are now providing information on the disease from a broader range of ethnicities. Here, we summarize the current knowledge on AD genetics in populations across the world. We predominantly focus on replicated genetic discoveries but also include studies in ethnic groups where replication might not be feasible. We attempt to identify gaps that need to be addressed to achieve a complete picture of the genetic and molecular factors that drive AD in individuals across the globe.
Collapse
Affiliation(s)
- Christiane Reitz
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Epidemiology, Columbia University, New York, NY, USA
| | - Margaret A Pericak-Vance
- The John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- National Centralized Repository for Alzheimer's Disease and Related Dementias, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Richard Mayeux
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
- The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA.
- Department of Neurology, Columbia University, New York, NY, USA.
- Department of Epidemiology, Columbia University, New York, NY, USA.
| |
Collapse
|
13
|
Radak M, Ghamari N, Fallahi H. Common factors among three types of cells aged in mice. Biogerontology 2023; 24:363-375. [PMID: 37081236 DOI: 10.1007/s10522-023-10035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
The greatest risk factor for the formation of numerous significant chronic disorders is aging. Understanding the core molecular underpinnings of aging can help to slow down the inevitable process. Systematic study of gene expression or DNA methylation data is possible at the transcriptomics and epigenetics levels. DNA methylation and gene expression are both affected by aging. Gene expression is an important element in the aging of Homo sapiens. In this work, we evaluated the expression of differentially expressed genes (DEGs), proteins, and transcription factors (TFs) in three different types of cells in mice: antibody-secreting cells, cardiac mesenchymal stromal cells, and skeletal muscle cells. The goal of this article is to uncover a common cause during aging among these cells in order to increase understanding about establishing complete techniques for preventing aging and improving people's quality of life. We conducted a comprehensive network-based investigation to establish which genes and proteins are shared by the three different types of aged cells. Our findings clearly indicated that aging induces gene dysregulation in immune, pharmacological, and apoptotic pathways. Furthermore, our research developed a list of hub genes with differential expression in aging responses that should be investigated further to discover viable anti-aging treatments.
Collapse
Affiliation(s)
- Mehran Radak
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, 6714967346, Kermanshah, Islamic Republic of Iran
| | - Nakisa Ghamari
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, 6714967346, Kermanshah, Islamic Republic of Iran
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, 6714967346, Kermanshah, Islamic Republic of Iran.
| |
Collapse
|
14
|
Urbiola-Salvador V, Lima de Souza S, Grešner P, Qureshi T, Chen Z. Plasma Proteomics Unveil Novel Immune Signatures and Biomarkers upon SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:ijms24076276. [PMID: 37047248 PMCID: PMC10093853 DOI: 10.3390/ijms24076276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Several elements have an impact on COVID-19, including comorbidities, age and sex. To determine the protein profile changes in peripheral blood caused by a SARS-CoV-2 infection, a proximity extension assay was used to quantify 1387 proteins in plasma samples among 28 Finnish patients with COVID-19 with and without comorbidities and their controls. Key immune signatures, including CD4 and CD28, were changed in patients with comorbidities. Importantly, several unreported elevated proteins in patients with COVID-19, such as RBP2 and BST2, which show anti-microbial activity, along with proteins involved in extracellular matrix remodeling, including MATN2 and COL6A3, were identified. RNF41 was downregulated in patients compared to healthy controls. Our study demonstrates that SARS-CoV-2 infection causes distinct plasma protein changes in the presence of comorbidities despite the interpatient heterogeneity, and several novel potential biomarkers associated with a SARS-CoV-2 infection alone and in the presence of comorbidities were identified. Protein changes linked to the generation of SARS-CoV-2-specific antibodies, long-term effects and potential association with post-COVID-19 condition were revealed. Further study to characterize the identified plasma protein changes from larger cohorts with more diverse ethnicities of patients with COVID-19 combined with functional studies will facilitate the identification of novel diagnostic, prognostic biomarkers and potential therapeutic targets for patients with COVID-19.
Collapse
Affiliation(s)
- Víctor Urbiola-Salvador
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, 80-307 Gdańsk, Pomerania, Poland
| | - Suiane Lima de Souza
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, North Ostrobothnia, Finland
| | - Peter Grešner
- Department of Translational Oncology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, 80-211 Gdańsk, Pomerania, Poland
| | - Talha Qureshi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, North Ostrobothnia, Finland
| | - Zhi Chen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, North Ostrobothnia, Finland
- Correspondence:
| |
Collapse
|
15
|
Host Genetic Variants Linked to COVID-19 Neurological Complications and Susceptibility in Young Adults-A Preliminary Analysis. J Pers Med 2023; 13:jpm13010123. [PMID: 36675784 PMCID: PMC9860613 DOI: 10.3390/jpm13010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
To date, multiple efforts have been made to use genome-wide association studies (GWAS) to untangle the genetic basis for SARS-CoV-2 infection susceptibility and severe COVID-19. However, data on the genetic-related effects of SARS-CoV-2 infection on the presence of accompanying and long-term post-COVID-19 neurological symptoms in younger individuals remain absent. We aimed to examine the possible association between SNPs found in a GWAS of COVID-19 outcomes and three phenotypes: SARS-CoV-2 infection, neurological complications during disease progression, and long-term neurological complications in young adults with a mild-to-moderate disease course. University students (N = 336, age 18-25 years, European ancestry) with or without COVID-19 and neurological symptoms in anamnesis comprised the study sample. Logistic regression was performed with COVID-19-related phenotypes as outcomes, and the top 25 SNPs from GWAS meta-analyses and an MR study linking COVID-19 and cognitive deficits were found. We replicated previously reported associations of the FURIN and SLC6A20 gene variants (OR = 2.36, 95% CI 1.31-4.24) and OR = 1.94, 95% CI 1.08-3.49, respectively) and remaining neurological complications (OR = 2.12, 95% CI 1.10-4.35 for SLC6A20), while NR1H2 (OR = 2.99, 95% CI 1.39-6.69) and TMPRSS2 (OR = 2.03, 95% CI 1.19-3.50) SNPs were associated with neurological symptoms accompanying COVID-19. Our findings indicate that genetic variants related to a severe COVID-19 course in adults may contribute to the occurrence of neurological repercussions in individuals at a young age.
Collapse
|