1
|
Wang Y, Sauvage M, Diennet M, Weber S, Mader S, Gleason JL. Design, synthesis and antiproliferative activity of raloxifene/histone deacetylase inhibitor hybrids in breast cancer. Eur J Med Chem 2024; 274:116533. [PMID: 38838548 DOI: 10.1016/j.ejmech.2024.116533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Antiestrogen/histone deacetylase inhibitor (HDACi) hybrids were designed by merging structures of raloxifene with suberoylanilide hydroxamic acid, incorporating the HDACi unit into the phenolic ring of the antiestrogen. These hybrids were synthesized with a range of HDACi chain lengths and assessed for bifunctionality. Four hybrids, 21 (YW471), 22 (YW490), 27(YW486), and 28 (YW487) showed good potency both as antiestrogens in a BRET assay and in a fluorometric HDACi assay. The antiproliferative activity of the hybrids was demonstrated in both ER+ MCF7 and ER- MDA-MB-231 breast cancer cell lines.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC, H3A 0B8, Canada
| | - Madline Sauvage
- Institute for Research in Immunology and Cancer, Pavillon Marcelle-Coutu, Université de Montréal, 2950 Chemin de Polytechnique, Montréal, QC, H3T 1J4, Canada
| | - Marine Diennet
- Institute for Research in Immunology and Cancer, Pavillon Marcelle-Coutu, Université de Montréal, 2950 Chemin de Polytechnique, Montréal, QC, H3T 1J4, Canada
| | - Sandra Weber
- Institute for Research in Immunology and Cancer, Pavillon Marcelle-Coutu, Université de Montréal, 2950 Chemin de Polytechnique, Montréal, QC, H3T 1J4, Canada
| | - Sylvie Mader
- Institute for Research in Immunology and Cancer, Pavillon Marcelle-Coutu, Université de Montréal, 2950 Chemin de Polytechnique, Montréal, QC, H3T 1J4, Canada
| | - James L Gleason
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC, H3A 0B8, Canada.
| |
Collapse
|
2
|
Sarmadi F, Gao Z, Su J, Barbier C, Artusa P, Bijian K, Gleason JL, White JH. Bifunctionality and Antitumor Efficacy of ZG-126, a Vitamin D Receptor Agonist/Histone Deacetylase Inhibitor Hybrid Molecule. J Med Chem 2024; 67:11182-11196. [PMID: 38906533 PMCID: PMC11249012 DOI: 10.1021/acs.jmedchem.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Analogues of hormonal vitamin D, 1,25-dihydroxyvitamin D (1,25D), signal through the nuclear vitamin D receptor (VDR). They have potential in combination therapies with other anticancer agents such as histone deacetylase inhibitors (HDACi's). Here, we characterize the ZG series of hybrid compounds that combine HDACi within the backbone of a VDR agonist. All display improved solubility, with ZG-126 being the most robustly bifunctional molecule in multiple cell lines. ZG-126 is well tolerated and strongly induces VDR target gene expression in vivo at therapeutic doses. Its antitumor efficacy is superior to 1,25D and the HDACi SAHA, separately or together, in mouse models of melanoma and triple-negative breast cancer (TNBC). Notably, ZG-126 treatment reduces metastases almost 4-fold in an aggressive TNBC model. ZG-126 also reduces total macrophage infiltration and the proportion of immunosuppressive M2-polarized macrophages in TNBC tumors by 2-fold. ZG-126 thus represents a bifunctional and efficacious anticancer agent with improved physicochemical properties.
Collapse
Affiliation(s)
- Fatemeh Sarmadi
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Zhizhong Gao
- Department of Chemistry, McGill University, 801 Sherbrooke W., Montreal, QC H3A 0B8, Canada
| | - Jie Su
- Segal Cancer Center and Lady Davis Institute for Medical Research, 3755 Cote Ste-Catherine, Montreal, QC H3T 1E2, Canada
| | - Camille Barbier
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Patricio Artusa
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Krikor Bijian
- Segal Cancer Center and Lady Davis Institute for Medical Research, 3755 Cote Ste-Catherine, Montreal, QC H3T 1E2, Canada
| | - James L Gleason
- Department of Chemistry, McGill University, 801 Sherbrooke W., Montreal, QC H3A 0B8, Canada
| | - John H White
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- Department of Medicine, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
3
|
Karati D, Mukherjee S, Roy S. Emerging therapeutic strategies in cancer therapy by HDAC inhibition as the chemotherapeutic potent and epigenetic regulator. Med Oncol 2024; 41:84. [PMID: 38438564 DOI: 10.1007/s12032-024-02303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/16/2024] [Indexed: 03/06/2024]
Abstract
In developing new cancer medications, attention has been focused on novel epigenetic medicines called histone deacetylase (HDAC) inhibitors. Our understanding of cancer behavior is being advanced by research on epigenetics, which also supplies new targets for improving the effectiveness of cancer therapy. Most recently published patents emphasize HDAC selective drugs and multitarget HDAC inhibitors. Though significant progress has been made in emerging HDAC selective antagonists, it is urgently necessary to find new HDAC blockers with novel zinc-binding analogues to avoid the undesirable pharmacological characteristics of hydroxamic acid. HDAC antagonists have lately been explored as a novel approach to treating various diseases, including cancer. The complicated terrain of HDAC inhibitor development is summarized in this article, starting with a discussion of the many HDAC isotypes and their involvement in cancer biology, followed by a discussion of the mechanisms of action of HDAC inhibitors, their current level of development, effect of miRNA, and their combination with immunotherapeutic.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India.
| |
Collapse
|