1
|
Brainerd C, Singh MA, Tatka J, Craig C, Gilligan-Steinberg S, Panpradist N, Chang MM, Lutz B, Olanrewaju AO. REverse transcriptase ACTivity (REACT) assay for point-of-care measurement of established and emerging antiretrovirals for HIV treatment and prevention. Anal Bioanal Chem 2024; 416:6809-6818. [PMID: 39466376 DOI: 10.1007/s00216-024-05602-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
Maintaining adequate levels of antiretroviral (ARV) medications is crucial for the efficacy of HIV treatment and prevention regimens. Monitoring ARV levels can predict or prevent adverse health outcomes like treatment failure or drug resistance. However, conventional ARV measurement using liquid chromatography-tandem mass spectrometry (LC-MS/MS) is slow, expensive, and centralized delaying clinical and behavioral interventions. We previously developed a rapid enzymatic assay for measuring nucleotide reverse transcriptase inhibitors (NRTIs) - the backbone of HIV treatment and prevention regimens - based on the drugs' termination of DNA synthesis by HIV reverse transcriptase (RT) enzyme. Here, we expand our work to include non-nucleoside reverse transcriptase inhibitors (NNRTIs) - an ARV class used in established and emerging HIV treatment and prevention regimens. We demonstrate that the REverse Transcriptase ACTivity (REACT) assay can detect NNRTIs including medications used in oral and long-acting/extended-release HIV treatment and prevention. We demonstrate that REACT can measure NNRTIs spiked in either buffer or diluted plasma and that fluorescence can be measured on both a traditional plate reader and an inexpensive portable reader that can be deployed in point-of-care (POC) settings. REACT measured clinically relevant concentrations of five NNRTIs spiked in aqueous buffer. REACT measurements showed excellent agreement between the plate reader and the portable reader, with a high correlation in both aqueous buffer (Pearson's r = 0.9807, P < 0.0001) and diluted plasma (Pearson's r = 0.9681, P < 0.0001). REACT has the potential to provide rapid measurement of NNRTIs in POC settings and may help to improve HIV treatment and prevention outcomes.
Collapse
Affiliation(s)
- Cara Brainerd
- Department of Bioengineering, University of Washington, Seattle, USA
| | - Maya A Singh
- Department of Bioengineering, University of Washington, Seattle, USA
| | - John Tatka
- Department of Mechanical Engineering, University of Washington, Seattle, USA
| | - Cosette Craig
- Department of Mechanical Engineering, University of Washington, Seattle, USA
| | | | | | - Megan M Chang
- Department of Bioengineering, University of Washington, Seattle, USA
| | - Barry Lutz
- Department of Bioengineering, University of Washington, Seattle, USA
| | - Ayokunle O Olanrewaju
- Department of Bioengineering, University of Washington, Seattle, USA.
- Department of Mechanical Engineering, University of Washington, Seattle, USA.
| |
Collapse
|
2
|
Lee S, Zhao S, Jiang W, Chen X, Zhu L, Joseph J, Agus E, Mary HB, Barooj S, Slaughter K, Cheung K, Luo JN, Shukla C, Gao J, Lee D, Balakrishnan B, Jiang C, Gorantla A, Woo S, Karp JM, Joshi N. Ultra-Long-Term Delivery of Hydrophilic Drugs Using Injectable In Situ Cross-Linked Depots. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.04.565631. [PMID: 39253509 PMCID: PMC11382995 DOI: 10.1101/2023.11.04.565631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Achieving ultra-long-term release of hydrophilic drugs over several months remains a significant challenge for existing long-acting injectables (LAIs). Existing platforms, such as in situ forming implants (ISFI), exhibit high burst release due to solvent efflux and microsphere-based approaches lead to rapid drug diffusion due to significant water exchange and large pores. Addressing these challenges, we have developed an injectable platform that, for the first time, achieves ultra-long-term release of hydrophilic drugs for over six months. This system employs a methacrylated ultra-low molecular weight pre-polymer (polycaprolactone) to create in situ cross-linked depots (ISCD). The ISCD's solvent-free design and dense mesh network, both attributed to the ultra-low molecular weight of the pre-polymer, effectively minimizes burst release and water influx/efflux. In vivo studies in rats demonstrate that ISCD outperforms ISFI by achieving lower burst release and prolonged drug release. We demonstrated the versatility of ISCD by showcasing ultra-long-term delivery of several hydrophilic drugs, including antiretrovirals (tenofovir alafenamide, emtricitabine, abacavir, and lamivudine), antibiotics (vancomycin and amoxicillin) and an opioid antagonist naltrexone. Additionally, ISCD achieved ultra-long-term release of the hydrophobic drug tacrolimus and enabled co-delivery of hydrophilic drug combinations encapsulated in a single depot. We also identified design parameters to tailor the polymer network, tuning drug release kinetics and ISCD degradation. Pharmacokinetic modeling predicted over six months of drug release in humans, significantly surpassing the one-month standard achievable for hydrophilic drugs with existing LAIs. The platform's biodegradability, retrievability, and biocompatibility further underscore its potential for improving treatment adherence in chronic conditions.
Collapse
Affiliation(s)
- Sohyung Lee
- Harvard Medical School, Boston, MA, USA
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Spencer Zhao
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Weihua Jiang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14215, USA
| | - Xinyang Chen
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Lingyun Zhu
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - John Joseph
- Harvard Medical School, Boston, MA, USA
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Eli Agus
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Helna Baby Mary
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Shumaim Barooj
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Kai Slaughter
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Krisco Cheung
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - James N Luo
- Harvard Medical School, Boston, MA, USA
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Chetan Shukla
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jingjing Gao
- Harvard Medical School, Boston, MA, USA
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- College of Engineering, University of Massachusetts Amherst, MA, USA
| | - Dongtak Lee
- Harvard Medical School, Boston, MA, USA
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Biji Balakrishnan
- Somaiya Centre for Integrated Science education and research, SKSC, Somaiya Vidyavihar University, Mumbai, 400077, India
| | - Christopher Jiang
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Amogh Gorantla
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14215, USA
| | - Jeffrey M Karp
- Harvard Medical School, Boston, MA, USA
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard–Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Nitin Joshi
- Harvard Medical School, Boston, MA, USA
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
3
|
Be Rziņš KR, Czyrski GS, Aljabbari A, Heinz A, Boyd BJ. In Situ Imaging of Subcutaneous Drug Delivery Systems Using Microspatially Offset Low-Frequency Raman Spectroscopy. Anal Chem 2024; 96:6408-6416. [PMID: 38602505 DOI: 10.1021/acs.analchem.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The noninvasive in situ monitoring of the status of drug retention and implant integrity of subcutaneous implants would allow optimization of therapy and avoid periods of subtherapeutic delivery kinetics. A proof-of principle study was conducted to determine the use of microspatially offset low-frequency Raman spectroscopy (micro-SOLFRS) for nonintrusive in situ analysis of subcutaneous drug delivery systems. Caffeine was used as the model drug, and it was embedded in a circular-shape Soluplus matrix via vacuum compression molding. For the exploratory analysis, prototype implants were positioned underneath skin tissue samples, and various caffeine concentrations (1-50% w/w) and micro-SOLFRS displacement settings (Δz = 0-8 mm) were tested from the pseudo three-dimensional (3D)-imaging perspective. This format allowed the optimization of real-time micro-SOLFRS analysis of implants through skin tissue that was embedded in an agarose hydrogel. Notably, this analytical approach allowed the temporal and spatial erosion of the implant and solid-state transformations of caffeine to be distinguished. The spectrometric results correlated with complementary high-performance liquid chromatography (HPLC) determination of changes in drug concentration, illustrating drug dissipation/diffusion characteristics. The discovered capability of micro-SOLFRS for in situ measurements of drugs and implants makes it attractive for biomedical diagnostics that, ultimately, could result in development of a new point-of-care technology.
Collapse
Affiliation(s)
- Ka Rlis Be Rziņš
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Grzegorz S Czyrski
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, Copenhagen 2100, Denmark
| | - Anas Aljabbari
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, Copenhagen 2100, Denmark
| | - Ben J Boyd
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| |
Collapse
|
4
|
Gunawardana M, Remedios-Chan M, Sanchez D, Fanter R, Webster S, Webster P, Moss JA, Trinh M, Beliveau M, Ramirez CM, Marzinke MA, Kuo J, Gallay PA, Baum MM. Preclinical Considerations for Long-acting Delivery of Tenofovir Alafenamide from Subdermal Implants for HIV Pre-exposure Prophylaxis. Pharm Res 2023; 40:1657-1672. [PMID: 36418671 PMCID: PMC10421770 DOI: 10.1007/s11095-022-03440-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Long-acting formulations of the potent antiretroviral prodrug tenofovir alafenamide (TAF) hold potential as biomedical HIV prevention modalities. Here, we present a rigorous comparison of three animal models, C57BL/6 J mice, beagle dogs, and merino sheep for evaluating TAF implant pharmacokinetics (PKs). METHODS Implants delivering TAF over a wide range of controlled release rates were tested in vitro and in mice and dogs. Our existing PK model, supported by an intravenous (IV) dosing dog study, was adapted to analyze mechanistic aspects underlying implant TAF delivery. RESULTS TAF in vitro release in the 0.13 to 9.8 mg d-1 range with zero order kinetics were attained. Implants with equivalent fabrication parameters released TAF in mice and sheep at rates that were not statistically different, but were 3 times higher in dogs. When two implants were placed in the same subcutaneous pocket, a two-week creep to Cmax was observed in dogs for systemic drug and metabolite concentrations, but not in mice. Co-modeling IV and TAF implant PK data in dogs led to an apparent TAF bioavailability of 9.6 in the single implant groups (compared to the IV group), but only 1.5 when two implants were placed in the same subcutaneous pocket. CONCLUSIONS Based on the current results, we recommend using mice and sheep, with macaques as a complementary species, for preclinical TAF implant evaluation with the caveat that our observations may be specific to the implant technology used here. Our report provides fundamental, translatable insights into multispecies TAF delivery via long-acting implants.
Collapse
Affiliation(s)
- Manjula Gunawardana
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Mariana Remedios-Chan
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Debbie Sanchez
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Rob Fanter
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Simon Webster
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Paul Webster
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - John A Moss
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - MyMy Trinh
- Certara USA, Inc., Integrated Drug Development, 100 Overlook Center, Suite 101, Princeton, NJ, USA
| | - Martin Beliveau
- Certara USA, Inc., Integrated Drug Development, 100 Overlook Center, Suite 101, Princeton, NJ, USA
| | - Christina M Ramirez
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles (UCLA), 650 Charles E. Young Drive, Los Angeles, CA, USA
| | - Mark A Marzinke
- Department of Medicine, Johns Hopkins University, 600 N. Wolfe Street, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University, 600 N. Wolfe Street/Carnegie 417, Baltimore, MD, USA
| | - Joseph Kuo
- Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Philippe A Gallay
- Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Marc M Baum
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA.
| |
Collapse
|
5
|
Karim QA, Archary D, Barré-Sinoussi F, Broliden K, Cabrera C, Chiodi F, Fidler SJ, Gengiah TN, Herrera C, Kharsany ABM, Liebenberg LJP, Mahomed S, Menu E, Moog C, Scarlatti G, Seddiki N, Sivro A, Cavarelli M. Women for science and science for women: Gaps, challenges and opportunities towards optimizing pre-exposure prophylaxis for HIV-1 prevention. Front Immunol 2022; 13:1055042. [PMID: 36561760 PMCID: PMC9763292 DOI: 10.3389/fimmu.2022.1055042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Preventing new HIV infections remains a global challenge. Young women continue to bear a disproportionate burden of infection. Oral pre-exposure prophylaxis (PrEP), offers a novel women-initiated prevention technology and PrEP trials completed to date underscore the importance of their inclusion early in trials evaluating new HIV PrEP technologies. Data from completed topical and systemic PrEP trials highlight the role of gender specific physiological and social factors that impact PrEP uptake, adherence and efficacy. Here we review the past and current developments of HIV-1 prevention options for women with special focus on PrEP considering the diverse factors that can impact PrEP efficacy. Furthermore, we highlight the importance of inclusion of female scientists, clinicians, and community advocates in scientific efforts to further improve HIV prevention strategies.
Collapse
Affiliation(s)
- Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Kristina Broliden
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Cecilia Cabrera
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sarah J. Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College London UK and Imperial College NIHR BRC, London, United Kingdom
| | - Tanuja N. Gengiah
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Carolina Herrera
- Department of Infectious Disease, Section of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ayesha B. M. Kharsany
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Lenine J. P. Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sharana Mahomed
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Elisabeth Menu
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
- MISTIC Group, Department of Virology, Institut Pasteur, Paris, France
| | - Christiane Moog
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Nabila Seddiki
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| |
Collapse
|