1
|
Sharpe AL, Liter LR, Donohue D, Carter KA, Vangeneugden P, Weaver S, Stout MB, Beckstead MJ. Aged mice exhibit faster acquisition of intravenous opioid self-administration with variable effects on intake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611052. [PMID: 39282417 PMCID: PMC11398421 DOI: 10.1101/2024.09.03.611052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Although opioid abuse is more prevalent in young individuals, opioid use, overdose, and use disorders continue to climb at a rapid rate among the elderly. Little is known about abuse potential in a healthy aged population, in part due to technical and logistical difficulties testing intravenous self-administration in aged rodents. The goal of this study was to address the critical gap in the literature regarding age-dependent differences in opioid (remifentanil and fentanyl) self-administration between old and young mice. Male and female mice were grouped into young (mean: 19 weeks) and old (mean: 101 weeks), and were trained to self-administer intravenous fentanyl or remifentanil in daily sessions. In both old and young mice, acquisition, intake, and cue-responding after forced abstinence were measured for both drugs, and a dose-response curve (remifentanil) and dose-escalation (fentanyl) were conducted. Surprisingly, old mice learned to self-administer both remifentanil and fentanyl faster and more accurately than young mice. Baseline intake of remifentanil was also substantially greater in old mice compared to their young counterparts; however, we did not see increased intake of fentanyl with age at either dose tested. Further, compared to young mice, the old mice showed a greater incubation of responding for cues previously associated with remifentanil after a forced abstinence, but again this was not observed with fentanyl. Together these data suggest that an aged population may have an increased drug-abuse vulnerability for opioids compared to young counterparts and underscore the importance of future work on mechanisms responsible for this increased vulnerability.
Collapse
Affiliation(s)
- Amanda L Sharpe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences
| | - Laci R Liter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences
| | - Darius Donohue
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation
| | - Kelsey A Carter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation
| | | | - Sofia Weaver
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation
| | - Michael J Beckstead
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
2
|
Liu C, Freeman DJ, Lammel S. Head-mounted central venous access during optical recordings and manipulations of neural activity in mice. Nat Protoc 2024; 19:960-983. [PMID: 38057625 PMCID: PMC10939862 DOI: 10.1038/s41596-023-00928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/11/2023] [Indexed: 12/08/2023]
Abstract
Establishing reliable intravenous catheterization in mice with optical implants allows the combination of neural manipulations and recordings with rapid, time-locked delivery of pharmacological agents. Here we present a procedure for handmade jugular vein catheters designed for head-mounted intravenous access and provide surgical and postoperative guidance for improved survival and patency. A head-mounted vascular access point eliminates the need for a back-mounted button in animals already receiving neural implants, thereby reducing sites of implantation. This protocol, which is readily adoptable by experimenters with previous training and experience in mouse surgery, enables repeated fiber photometry recordings or optogenetic manipulation during drug delivery in adult mice that are awake and behaving, whether head fixed or freely moving. With practice, an experienced surgeon requires ~30 min to perform catheterization on each mouse. Altogether, these techniques facilitate the reliable and repeated delivery of pharmacological agents in mouse models while simultaneously recording at high temporal resolution and/or manipulating neural populations.
Collapse
Affiliation(s)
- Christine Liu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Daniel J Freeman
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Stephan Lammel
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
3
|
Wilkinson CS, Luján MÁ, Hales C, Costa KM, Fiore VG, Knackstedt LA, Kober H. Listening to the Data: Computational Approaches to Addiction and Learning. J Neurosci 2023; 43:7547-7553. [PMID: 37940590 PMCID: PMC10634572 DOI: 10.1523/jneurosci.1415-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 11/10/2023] Open
Abstract
Computational approaches hold great promise for identifying novel treatment targets and creating translational therapeutics for substance use disorders. From circuitries underlying decision-making to computationally derived neural markers of drug-cue reactivity, this review is a summary of the approaches to data presented at our 2023 Society for Neuroscience Mini-Symposium. Here, we highlight data- and hypothesis-driven computational approaches that recently afforded advancements in addiction and learning neuroscience. First, we discuss the value of hypothesis-driven algorithmic modeling approaches, which integrate behavioral, neural, and cognitive outputs to refine hypothesis testing. Then, we review the advantages of data-driven dimensionality reduction and machine learning methods for uncovering novel predictor variables and elucidating relationships in high-dimensional data. Overall, this review highlights recent breakthroughs in cognitive mapping, model-based analysis of behavior/risky decision-making, patterns of drug taking, relapse, and neuromarker discovery, and showcases the benefits of novel modeling techniques, across both preclinical and clinical data.
Collapse
Affiliation(s)
| | - Miguel Á Luján
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, Maryland 21201
| | - Claire Hales
- Department of Psychology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Kauê M Costa
- National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland 21224
| | - Vincenzo G Fiore
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, New York 10029
| | - Lori A Knackstedt
- Department of Psychology, University of Florida, Gainesville, Florida 32611
| | - Hedy Kober
- Departments of Psychiatry, Psychology, and Neuroscience, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
4
|
Chen J, Garcia EJ, Merritt CR, Zamora JC, Bolinger AA, Pazdrak K, Stafford SJ, Mifflin RC, Wold EA, Wild CT, Chen H, Anastasio NC, Cunningham KA, Zhou J. Discovery of Novel Oleamide Analogues as Brain-Penetrant Positive Allosteric Serotonin 5-HT 2C Receptor and Dual 5-HT 2C/5-HT 2A Receptor Modulators. J Med Chem 2023; 66:9992-10009. [PMID: 37462530 PMCID: PMC10853020 DOI: 10.1021/acs.jmedchem.3c00908] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The serotonin 5-HT2A receptor (5-HT2AR) and 5-HT2CR localize to the brain and share overlapping signal transduction facets that contribute to their roles in cognition, mood, learning, and memory. Achieving selective targeting of these receptors is challenged by the similarity in their 5-HT orthosteric binding pockets. A fragment-based discovery approach was employed to design and synthesize novel oleamide analogues as selective 5-HT2CR or dual 5-HT2CR/5-HT2AR positive allosteric modulators (PAMs). Compound 13 (JPC0323) exhibited on-target properties, acceptable plasma exposure and brain penetration, as well as negligible displacement to orthosteric sites of ∼50 GPCRs and transporters. Furthermore, compound 13 suppressed novelty-induced locomotor activity in a 5-HT2CR-dependent manner, suggesting 5-HT2CR PAM, but not 5-HT2AR, activity at the level of the whole organism at the employed doses of 13. We discovered new selective 5-HT2CR PAMs and first-in-class 5-HT2CR/5-HT2AR dual PAMs that broaden the pharmacological toolbox to explore the biology of these vital receptors.
Collapse
Affiliation(s)
- Jianping Chen
- Center for Addiction Sciences and Therapeutics and Chemical Biology Program and Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Erik J. Garcia
- Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Christina R. Merritt
- Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Joshua C. Zamora
- Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Andrew A. Bolinger
- Center for Addiction Sciences and Therapeutics and Chemical Biology Program and Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Konrad Pazdrak
- Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Susan J. Stafford
- Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Randy C. Mifflin
- Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Eric A. Wold
- Center for Addiction Sciences and Therapeutics and Chemical Biology Program and Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Christopher T. Wild
- Center for Addiction Sciences and Therapeutics and Chemical Biology Program and Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Haiying Chen
- Center for Addiction Sciences and Therapeutics and Chemical Biology Program and Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Noelle C. Anastasio
- Center for Addiction Sciences and Therapeutics and Chemical Biology Program and Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Kathryn A. Cunningham
- Center for Addiction Sciences and Therapeutics and Chemical Biology Program and Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Jia Zhou
- Center for Addiction Sciences and Therapeutics and Chemical Biology Program and Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| |
Collapse
|
5
|
Luján MÁ, Oliver BL, Young-Morrison R, Engi SA, Zhang LY, Wenzel JM, Li Y, Zlebnik NE, Cheer JF. A multivariate regressor of patterned dopamine release predicts relapse to cocaine. Cell Rep 2023; 42:112553. [PMID: 37224011 DOI: 10.1016/j.celrep.2023.112553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/28/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
Understanding mesolimbic dopamine adaptations underlying vulnerability to drug relapse is essential to inform prognostic tools for effective treatment strategies. However, technical limitations have hindered the direct measurement of sub-second dopamine release in vivo for prolonged periods of time, making it difficult to gauge the weight that these dopamine abnormalities have in determining future relapse incidence. Here, we use the fluorescent sensor GrabDA to record, with millisecond resolution, every single cocaine-evoked dopamine transient in the nucleus accumbens (NAc) of freely moving mice during self-administration. We reveal low-dimensional features of patterned dopamine release that are strong predictors of cue-induced reinstatement of cocaine seeking. Additionally, we report sex-specific differences in cocaine-related dopamine responses related to a greater resistance to extinction in males compared with females. These findings provide important insights into the sufficiency of NAc dopamine signaling dynamics-in interaction with sex-for recapitulating persistent cocaine seeking and future relapse vulnerability.
Collapse
Affiliation(s)
- Miguel Á Luján
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brandon L Oliver
- Division of Biomedical Sciences, University of California Riverside, School of Medicine, Riverside, CA, USA
| | - Reana Young-Morrison
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sheila A Engi
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lan-Yuan Zhang
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jennifer M Wenzel
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Natalie E Zlebnik
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA; Division of Biomedical Sciences, University of California Riverside, School of Medicine, Riverside, CA, USA.
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Leonardo M, Brunty S, Huffman J, Kastigar A, Dickson PE. Intravenous fentanyl self-administration in male and female C57BL/6J and DBA/2J mice. Sci Rep 2023; 13:799. [PMID: 36646781 PMCID: PMC9842734 DOI: 10.1038/s41598-023-27992-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The genetic mechanisms underlying fentanyl addiction, a highly heritable disease, are unknown. Identifying these mechanisms will lead to better risk assessment, early diagnosis, and improved intervention. To this end, we used intravenous fentanyl self-administration to quantify classical self-administration phenotypes and addiction-like fentanyl seeking in male and female mice from the two founder strains of the BXD recombinant inbred mouse panel (C57BL/6J and DBA/2J). We reached three primary conclusions from these experiments. First, mice from all groups rapidly acquired intravenous fentanyl self-administration and exhibited a dose-response curve, extinction burst, and extinction of the learned self-administration response. Second, fentanyl intake (during acquisition and dose response) and fentanyl seeking (during extinction) were equivalent among groups. Third, strain effects, sex effects, or both were identified for several addiction-like behaviors (cue-induced reinstatement, stress-induced reinstatement, escalation of intravenous fentanyl self-administration). Collectively, these data indicate that C57BL/6J and DBA/2J mice of both sexes were able to acquire, regulate, and extinguish intravenous fentanyl self-administration. Moreover, these data reveal novel strain and sex effects on addiction-like behaviors in the context of intravenous fentanyl self-administration in mice and indicate that the full BXD panel can be used to identify and dissect the genetic mechanisms underlying these effects.
Collapse
Affiliation(s)
- Michael Leonardo
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV, 25703, USA
| | - Sarah Brunty
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV, 25703, USA
| | - Jessica Huffman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV, 25703, USA
| | - Alexis Kastigar
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV, 25703, USA
| | - Price E Dickson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV, 25703, USA.
| |
Collapse
|