1
|
Vieira S, Bolton TAW, Schöttner M, Baecker L, Marquand A, Mechelli A, Hagmann P. Multivariate brain-behaviour associations in psychiatric disorders. Transl Psychiatry 2024; 14:231. [PMID: 38824172 PMCID: PMC11144193 DOI: 10.1038/s41398-024-02954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Mapping brain-behaviour associations is paramount to understand and treat psychiatric disorders. Standard approaches involve investigating the association between one brain and one behavioural variable (univariate) or multiple variables against one brain/behaviour feature ('single' multivariate). Recently, large multimodal datasets have propelled a new wave of studies that leverage on 'doubly' multivariate approaches capable of parsing the multifaceted nature of both brain and behaviour simultaneously. Within this movement, canonical correlation analysis (CCA) and partial least squares (PLS) emerge as the most popular techniques. Both seek to capture shared information between brain and behaviour in the form of latent variables. We provide an overview of these methods, review the literature in psychiatric disorders, and discuss the main challenges from a predictive modelling perspective. We identified 39 studies across four diagnostic groups: attention deficit and hyperactive disorder (ADHD, k = 4, N = 569), autism spectrum disorders (ASD, k = 6, N = 1731), major depressive disorder (MDD, k = 5, N = 938), psychosis spectrum disorders (PSD, k = 13, N = 1150) and one transdiagnostic group (TD, k = 11, N = 5731). Most studies (67%) used CCA and focused on the association between either brain morphology, resting-state functional connectivity or fractional anisotropy against symptoms and/or cognition. There were three main findings. First, most diagnoses shared a link between clinical/cognitive symptoms and two brain measures, namely frontal morphology/brain activity and white matter association fibres (tracts between cortical areas in the same hemisphere). Second, typically less investigated behavioural variables in multivariate models such as physical health (e.g., BMI, drug use) and clinical history (e.g., childhood trauma) were identified as important features. Finally, most studies were at risk of bias due to low sample size/feature ratio and/or in-sample testing only. We highlight the importance of carefully mitigating these sources of bias with an exemplar application of CCA.
Collapse
Affiliation(s)
- S Vieira
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Center for Research in Neuropsychology and Cognitive Behavioral Intervention, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal.
| | - T A W Bolton
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital, Lausanne, Switzerland
| | - M Schöttner
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - L Baecker
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - A Marquand
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
- Department of Neuroimaging, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
| | - A Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - P Hagmann
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Dafflon J, Moraczewski D, Earl E, Nielson DM, Loewinger G, McClure P, Thomas AG, Pereira F. Reliability and predictability of phenotype information from functional connectivity in large imaging datasets. ARXIV 2024:arXiv:2405.00255v1. [PMID: 38745697 PMCID: PMC11092871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
One of the central objectives of contemporary neuroimaging research is to create predictive models that can disentangle the connection between patterns of functional connectivity across the entire brain and various behavioral traits. Previous studies have shown that models trained to predict behavioral features from the individual's functional connectivity have modest to poor performance. In this study, we trained models that predict observable individual traits (phenotypes) and their corresponding singular value decomposition (SVD) representations - herein referred to as latent phenotypes from resting state functional connectivity. For this task, we predicted phenotypes in two large neuroimaging datasets: the Human Connectome Project (HCP) and the Philadelphia Neurodevelopmental Cohort (PNC). We illustrate the importance of regressing out confounds, which could significantly influence phenotype prediction. Our findings reveal that both phenotypes and their corresponding latent phenotypes yield similar predictive performance. Interestingly, only the first five latent phenotypes were reliably identified, and using just these reliable phenotypes for predicting phenotypes yielded a similar performance to using all latent phenotypes. This suggests that the predictable information is present in the first latent phenotypes, allowing the remainder to be filtered out without any harm in performance. This study sheds light on the intricate relationship between functional connectivity and the predictability and reliability of phenotypic information, with potential implications for enhancing predictive modeling in the realm of neuroimaging research.
Collapse
Affiliation(s)
- Jessica Dafflon
- Data Science & Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
- Machine Learning Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Dustin Moraczewski
- Data Science & Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Eric Earl
- Data Science & Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Dylan M Nielson
- Machine Learning Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Gabriel Loewinger
- Machine Learning Team, National Institute of Mental Health, Bethesda, MD, USA
| | | | - Adam G Thomas
- Data Science & Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Francisco Pereira
- Machine Learning Team, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Wu G, Cui Z, Wang X, Du Y. Unveiling the Core Functional Networks of Cognition: An Ontology-Guided Machine Learning Approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587855. [PMID: 38617291 PMCID: PMC11014632 DOI: 10.1101/2024.04.02.587855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Deciphering the functional architecture that underpins diverse cognitive functions is fundamental quest in neuroscience. In this study, we employed an innovative machine learning framework that integrated cognitive ontology with functional connectivity analysis to identify brain networks essential for cognition. We identified a core assembly of functional connectomes, primarily located within the association cortex, which showed superior predictive performance compared to two conventional methods widely employed in previous research across various cognitive domains. Our approach achieved a mean prediction accuracy of 0.13 across 16 cognitive tasks, including working memory, reading comprehension, and sustained attention, outperforming the traditional methods' accuracy of 0.08. In contrast, our method showed limited predictive power for sensory, motor, and emotional functions, with a mean prediction accuracy of 0.03 across 9 relevant tasks, slightly lower than the traditional methods' accuracy of 0.04. These cognitive connectomes were further characterized by distinctive patterns of resting-state functional connectivity, structural connectivity via white matter tracts, and gene expression, highlighting their neurogenetic underpinnings. Our findings reveal a domain-general functional network fingerprint that pivotal to cognition, offering a novel computational approach to explore the neural foundations of cognitive abilities.
Collapse
Affiliation(s)
- Guowei Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang, Beijing 100101, China
| | - Yi Du
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
4
|
Chávez-Reyes J, Gutiérrez-Reyes CD, Hernández-Cuellar E, Marichal-Cancino BA. Neurotoxicity of glyphosate: Focus on molecular mechanisms probably associated with alterations in cognition and behavior. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104381. [PMID: 38311300 DOI: 10.1016/j.etap.2024.104381] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/28/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
In recent decades, glyphosate and glyphosate-based herbicides (GBH) have been extensively used in agriculture all over the world. Initially, they were considered safe, but rising evidence suggests that these molecules reach the central nervous system producing metabolic, functional, and permanent alterations that impact cognition and behavior. This theoretical and non-systematic review involved searching, integrating, and analyzing preclinical evidence regarding the effects of acute, sub-chronic, and chronic exposure to glyphosate and GBH on cognition, behavior, neural activity, and development in adult and juvenile rodents following perinatal exposition. In addition, this review gathers the mechanisms underlying the neurotoxicity of glyphosate mediating cognitive and behavioral alterations. Furthermore, clinical evidence of the effects of exposition to GBH on human health and its possible link with several neurological disorders was revised.
Collapse
Affiliation(s)
- Jesús Chávez-Reyes
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | | | | | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.
| |
Collapse
|
5
|
Alexopoulos GS. What is the Value of MRI-Based Models of Geriatric Psychopathology Now That MRI Findings are Challenged? A View From Epistemology. Am J Geriatr Psychiatry 2023; 31:553-558. [PMID: 37291021 DOI: 10.1016/j.jagp.2023.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Affiliation(s)
- George S Alexopoulos
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, NY.
| |
Collapse
|