1
|
Durmus H, Burak AM, Goktug S, Aysegul B. Metabolomic modelling and neuroprotective effects of carvacrol against acrylamide toxicity in rat's brain and sciatic nerve. Clin Exp Pharmacol Physiol 2024; 51:e13841. [PMID: 38302077 DOI: 10.1111/1440-1681.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
The study aimed to investigate the harmful effects of acrylamide (AA), which forms in carbohydrate-rich foods at temperatures above 120°C, on the central and peripheral nervous systems and to evaluate the potential neuroprotective effects of carvacrol (CRV). Male Wistar Albino rats were subjected to AA (40 mg/kg/bw/day) and CRV (50 mg/kg/bw/day) for 15 days. Following the last administration, evaluations revealed disrupted gait, heightened thermal sensitivity and altered paw withdrawal thresholds in AA-exposed rats. Notably, AA reduced glutathione (GSH) and raised malondialdehyde (MDA) levels in both brain and sciatic nerve tissues. AA raised nuclear factor erythroid 2-related factor 2 (Nrf2), caspase 3 and nuclear factor κB (NF-κB) gene expressions while decreasing NR4A2. CRV co-administration mitigated gait abnormalities, elevated GSH levels and lowered MDA levels in both tissues. CRV also modulated gene expression, reducing Nrf2 and NF-κB while increasing NR4A2. Histopathological signs of AA-induced neurodegeneration and elevated glial fibrillary acidic protein levels observed in brain and sciatic nerve tissues were rectified with simultaneous administration of CRV, thereby demonstrating neuroprotective efficacy in both regions. This study is pioneering in demonstrating CRV's neuroprotective potential against AA-induced neurotoxicity in both central and peripheral nervous systems, effectively addressing limitations in the literature. In conclusion, the study revealed AA-induced neurodegeneration in the brain and sciatic nerve, with CRV significantly mitigating this neurotoxicity. This novel research underscores CRV's promise as a neuroprotective agent against AA-induced adverse effects in both the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Hatipoglu Durmus
- Department of Physiology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Ates M Burak
- Department of Pathology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Senturk Goktug
- Department of Physiology, Faculty of Veterinary Medicine, Aksaray University, Aksaray, Türkiye
| | - Bulut Aysegul
- Department of Pathology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| |
Collapse
|
2
|
Silvestro S, Raffaele I, Quartarone A, Mazzon E. Innovative Insights into Traumatic Brain Injuries: Biomarkers and New Pharmacological Targets. Int J Mol Sci 2024; 25:2372. [PMID: 38397046 PMCID: PMC10889179 DOI: 10.3390/ijms25042372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
A traumatic brain injury (TBI) is a major health issue affecting many people across the world, causing significant morbidity and mortality. TBIs often have long-lasting effects, disrupting daily life and functionality. They cause two types of damage to the brain: primary and secondary. Secondary damage is particularly critical as it involves complex processes unfolding after the initial injury. These processes can lead to cell damage and death in the brain. Understanding how these processes damage the brain is crucial for finding new treatments. This review examines a wide range of literature from 2021 to 2023, focusing on biomarkers and molecular mechanisms in TBIs to pinpoint therapeutic advancements. Baseline levels of biomarkers, including neurofilament light chain (NF-L), ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1), Tau, and glial fibrillary acidic protein (GFAP) in TBI, have demonstrated prognostic value for cognitive outcomes, laying the groundwork for personalized treatment strategies. In terms of pharmacological progress, the most promising approaches currently target neuroinflammation, oxidative stress, and apoptotic mechanisms. Agents that can modulate these pathways offer the potential to reduce a TBI's impact and aid in neurological rehabilitation. Future research is poised to refine these therapeutic approaches, potentially revolutionizing TBI treatment.
Collapse
Affiliation(s)
| | | | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, Via Provinciale Palermo, SS 113, Contrada Casazza, 98124 Messina, Italy; (S.S.); (I.R.); (A.Q.)
| |
Collapse
|
3
|
Qneibi M, Bdir S, Maayeh C, Bdair M, Sandouka D, Basit D, Hallak M. A Comprehensive Review of Essential Oils and Their Pharmacological Activities in Neurological Disorders: Exploring Neuroprotective Potential. Neurochem Res 2024; 49:258-289. [PMID: 37768469 DOI: 10.1007/s11064-023-04032-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Numerous studies have demonstrated essential oils' diverse chemical compositions and pharmacological properties encompassing antinociceptive, anxiolytic-like, and anticonvulsant activities, among other notable effects. The utilization of essential oils, whether inhaled, orally ingested, or applied topically, has commonly been employed as adjunctive therapy for individuals experiencing anxiety, insomnia, convulsions, pain, and cognitive impairment. The utilization of synthetic medications in the treatment of various disorders and symptoms is associated with a wide array of negative consequences. Consequently, numerous research groups across the globe have been prompted to explore the efficacy of natural alternatives such as essential oils. This review provides a comprehensive overview of the existing literature on the pharmacological properties of essential oils and their derived compounds and the underlying mechanisms responsible for these observed effects. The primary emphasis is on essential oils and their constituents, specifically targeting the nervous system and exhibiting significant potential in treating neurodegenerative disorders. The current state of research in this field is characterized by its preliminary nature, highlighting the necessity for a more comprehensive overlook of the therapeutic advantages of essential oils and their components. Integrating essential oils into conventional therapies can enhance the effectiveness of comprehensive treatment regimens for neurodegenerative diseases, offering a more holistic approach to addressing the multifaceted nature of these conditions.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Diana Basit
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mira Hallak
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
4
|
Avola R, Furnari AG, Graziano ACE, Russo A, Cardile V. Management of the Brain: Essential Oils as Promising Neuroinflammation Modulator in Neurodegenerative Diseases. Antioxidants (Basel) 2024; 13:178. [PMID: 38397776 PMCID: PMC10886016 DOI: 10.3390/antiox13020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Neuroinflammation, a pivotal factor in the pathogenesis of various brain disorders, including neurodegenerative diseases, has become a focal point for therapeutic exploration. This review highlights neuroinflammatory mechanisms that hallmark neurodegenerative diseases and the potential benefits of essential oils in counteracting neuroinflammation and oxidative stress, thereby offering a novel strategy for managing and mitigating the impact of various brain disorders. Essential oils, derived from aromatic plants, have emerged as versatile compounds with a myriad of health benefits. Essential oils exhibit robust antioxidant activity, serving as scavengers of free radicals and contributing to cellular defense against oxidative stress. Furthermore, essential oils showcase anti-inflammatory properties, modulating immune responses and mitigating inflammatory processes implicated in various chronic diseases. The intricate mechanisms by which essential oils and phytomolecules exert their anti-inflammatory and antioxidant effects were explored, shedding light on their multifaceted properties. Notably, we discussed their ability to modulate diverse pathways crucial in maintaining oxidative homeostasis and suppressing inflammatory responses, and their capacity to rescue cognitive deficits observed in preclinical models of neurotoxicity and neurodegenerative diseases.
Collapse
Affiliation(s)
- Rosanna Avola
- Faculty of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy;
| | | | | | - Alessandra Russo
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy;
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
5
|
Pei X, Zhang L, Liu D, Wu Y, Li X, Cao Y, Du X. Notoginsenoside R1 attenuates brain injury in rats with traumatic brain injury: Possible mediation of apoptosis via ERK1/2 signaling pathway. PLoS One 2023; 18:e0295903. [PMID: 38109303 PMCID: PMC10727368 DOI: 10.1371/journal.pone.0295903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023] Open
Abstract
Traumatic brain injury (TBI) occurs worldwide and is associated with high mortality and disability rate. Apoptosis induced by TBI is one of the important causes of secondary injury after TBI. Notoginsenoside R1 (NGR1) is the main phytoestrogen extracted from Panax notoginseng. Many studies have shown that NGR1 has potent neuroprotective, anti-inflammatory, and anti-apoptotic properties and is effective in ischemia-reperfusion injury. Therefore, we investigated the potential neuroprotective effects of NGR1 after TBI and explored its molecular mechanism of action. A rat model of TBI was established using the controlled cortical impact (CCI) method. The expression levels of Bcl-2, Bax, caspase 3, and ERK1/2-related molecules in the downstream pathway were also detected by western blotting. The expression levels of pro-inflammatory cytokines were detected by real-time quantitative PCR. Nissl staining was used to clarify the morphological changes around the injury foci in rats after TBI. Fluoro-Jade B (FJB) and terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) fluorescence staining were used to detect the apoptosis of neural cells in each group of rats. The results showed that NGR1 administration reduced neurological deficits after TBI, as well as brain edema and brain tissue apoptosis. It also significantly inhibited the expression of pro-inflammatory cytokines. Furthermore, NGR1 decreased the expression levels of extracellular signal-regulated kinase (ERK) and p-RSK1, which are phosphorylated after trauma. This study suggests that NGR1 can improve neuronal apoptosis in brain injury by inhibiting the ERK signaling pathway. NGR1 is a potential novel neuroprotective agent for the treatment of secondary brain injury after TBI.
Collapse
Affiliation(s)
- Xiaoxian Pei
- Department of Psychiatric, The Fourth People’s Hospital of Zhangjiagang City, Suzhou, China
- Medical College of Soochow University, Suzhou, China
| | - Ling Zhang
- Translational Medicine Center, The First People’s Hospital of Zhangjiagang City, Suzhou, China
| | - Dan Liu
- Department of Psychiatric, The Fourth People’s Hospital of Zhangjiagang City, Suzhou, China
| | - Yajuan Wu
- Department of Psychiatric, The Fourth People’s Hospital of Zhangjiagang City, Suzhou, China
| | - Xiaowei Li
- Department of Psychiatric, The Fourth People’s Hospital of Zhangjiagang City, Suzhou, China
| | - Ying Cao
- Department of Psychiatric, The Fourth People’s Hospital of Zhangjiagang City, Suzhou, China
| | - Xiangdong Du
- Department of Psychiatric, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Panagiotidou C, Burgers LD, Tsadila C, Almpani C, Krigas N, Mossialos D, Rallis MC, Fürst R, Karioti A. HPLC- and NMR-Based Chemical Profiling, Wound-Healing Potential, Anti-Inflammatory and Antibacterial Activities of Satureja pilosa (Lamiaceae), a Neglected Medicinal-Aromatic Herb. PLANTS (BASEL, SWITZERLAND) 2023; 12:4114. [PMID: 38140440 PMCID: PMC10747026 DOI: 10.3390/plants12244114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Satureja pilosa Velen. (Lamiaceae) is a perennial and melliferous aromatic-medicinal subshrub which is range-restricted in adjacent parts of Greece and Bulgaria and locally in Italy, known in Northern Greece as wild oregano ("agriorigani") and traditionally collected from the wild for culinary purposes. Since the ethnopharmacological data and modern biological activities of Satureja spp. suggest promising applications in skin conditions, the present study aimed to investigate the hitherto unknown phenolic content of cultivated S. pilosa and its potential biological activities, focusing mainly on wound-healing and anti-inflammatory effects. An HPLC-PDA-MS-targeted phytochemical investigation, along with NMR, allowed for the isolation and characterization of the main constituents, resulting in 18 compounds. Representative extracts and purified compounds were tested for wound-healing activity on NIH/3T3 fibroblasts. The butanol extract exhibited a significantly higher cell migration rate (73.4%) compared to aqueous (50.6%) and methanolic (49.6%) ones, enhancing the cell migration more rapidly at both concentration levels, whilst rosmarinic acid was the most potent among the isolated compounds, with a migration rate of 64.0% at the concentration level of 10-5 mg/mL, followed by 3,4-dihydrophenyllactic acid (54.7%). Moreover, potential effects on endothelial activation processes were explored, including the leukocyte-endothelial cell interaction during inflammatory processes and the migratory capacity during angiogenic actions, since these processes are commonly associated with skin diseases. Finally, extracts and purified compounds demonstrated weak antibacterial potential against two important pathogens (Staphylococcus aureus and Pseudomonas aeruginosa), suggesting that further investigation is warrented.
Collapse
Affiliation(s)
- Christina Panagiotidou
- Laboratory of Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece;
| | - Luisa D. Burgers
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, 60438 Frankfurt, Germany; (L.D.B.); (R.F.)
| | - Christina Tsadila
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (C.T.); (D.M.)
| | - Chara Almpani
- Department of Pharmaceutical Technology, School of Pharmacy, National & Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece; (C.A.); (M.C.R.)
| | - Nikos Krigas
- Hellenic Agricultural Organization—Demeter (ELGO DIMITRA), Institute of Breeding and Plant Genetic Resources, 57001 Thermi, Greece;
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (C.T.); (D.M.)
| | - Michail Christou Rallis
- Department of Pharmaceutical Technology, School of Pharmacy, National & Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece; (C.A.); (M.C.R.)
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, 60438 Frankfurt, Germany; (L.D.B.); (R.F.)
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
| | - Anastasia Karioti
- Laboratory of Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece;
| |
Collapse
|
7
|
Lin Y, Zhang J, Lu D, Zhang Y, Xu J, Wang S, Cheng X, Qin J, Zhang L, Li H, Zhang X, Li W. Uqcr11 alleviates oxidative stress and apoptosis after traumatic brain injury. Exp Neurol 2023; 370:114582. [PMID: 37884186 DOI: 10.1016/j.expneurol.2023.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability that involves brain dysfunction due to external forces. Here, we found lower levels of Ubiquinol-cytochrome c reductase, complex III subunit XI (Uqcr11) expression in the cerebral cortex of TBI mice. A neuronal damage model was constructed using H2O2 or hypoxia reoxygenation (H/R) in vitro. We found that Uqcr11 overexpression attenuated the H2O2-or H/R-induced damage by preventing oxidative stress and neuronal apoptosis in HT22 cells. Moreover, up-regulated Uqcr11 contributed to the restoration of motor, learning, and memory in C57BL/6 mice after TBI, and its underlying mechanism may be associated with promoting neuron survival and inhibited oxidative stress. Collectively, our findings demonstrated that oxidative stress as well as neuronal apoptosis can be ameliorated post-TBI by Uqcr11 overexpression, which provides a potential therapeutic target for TBI.
Collapse
Affiliation(s)
- Yujian Lin
- Department of Human Anatomy, Institute of Neurobiology, Nantong University, No.19 Qixiu Road, No.3 Building of Qixiu Campus, Nantong 226001, Jiangsu, PR China
| | - Jingjing Zhang
- Department of Human Anatomy, Institute of Neurobiology, Nantong University, No.19 Qixiu Road, No.3 Building of Qixiu Campus, Nantong 226001, Jiangsu, PR China
| | - Dongqing Lu
- Department of Human Anatomy, Institute of Neurobiology, Nantong University, No.19 Qixiu Road, No.3 Building of Qixiu Campus, Nantong 226001, Jiangsu, PR China
| | - Yuzheng Zhang
- Department of Human Anatomy, Institute of Neurobiology, Nantong University, No.19 Qixiu Road, No.3 Building of Qixiu Campus, Nantong 226001, Jiangsu, PR China
| | - Jinwen Xu
- Department of Human Anatomy, Institute of Neurobiology, Nantong University, No.19 Qixiu Road, No.3 Building of Qixiu Campus, Nantong 226001, Jiangsu, PR China
| | - Sheng Wang
- Department of Human Anatomy, Institute of Neurobiology, Nantong University, No.19 Qixiu Road, No.3 Building of Qixiu Campus, Nantong 226001, Jiangsu, PR China
| | - Xiang Cheng
- Department of Human Anatomy, Institute of Neurobiology, Nantong University, No.19 Qixiu Road, No.3 Building of Qixiu Campus, Nantong 226001, Jiangsu, PR China
| | - Jianbing Qin
- Department of Human Anatomy, Institute of Neurobiology, Nantong University, No.19 Qixiu Road, No.3 Building of Qixiu Campus, Nantong 226001, Jiangsu, PR China
| | - Lei Zhang
- Department of Human Anatomy, Institute of Neurobiology, Nantong University, No.19 Qixiu Road, No.3 Building of Qixiu Campus, Nantong 226001, Jiangsu, PR China
| | - Haoming Li
- Department of Human Anatomy, Institute of Neurobiology, Nantong University, No.19 Qixiu Road, No.3 Building of Qixiu Campus, Nantong 226001, Jiangsu, PR China
| | - Xinhua Zhang
- Department of Human Anatomy, Institute of Neurobiology, Nantong University, No.19 Qixiu Road, No.3 Building of Qixiu Campus, Nantong 226001, Jiangsu, PR China; Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, No.3 Building of Qixiu Campus, Nantong 226001, Jiangsu, PR China; Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, No.19 Qixiu Road, No.3 Building of Qixiu Campus, Nantong 226001, Jiangsu, PR China.
| | - Wen Li
- Department of Human Anatomy, Institute of Neurobiology, Nantong University, No.19 Qixiu Road, No.3 Building of Qixiu Campus, Nantong 226001, Jiangsu, PR China; Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, No.3 Building of Qixiu Campus, Nantong 226001, Jiangsu, PR China.
| |
Collapse
|
8
|
Abbasloo E, Khaksari M, Sanjari M, Kobeissy F, Thomas TC. Carvacrol decreases blood-brain barrier permeability post-diffuse traumatic brain injury in rats. Sci Rep 2023; 13:14546. [PMID: 37666857 PMCID: PMC10477335 DOI: 10.1038/s41598-023-40915-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
Previously, we showed that Satureja Khuzestanica Jamzad essential oil (SKEO) and its major component, carvacrol (CAR), 5-isopropyl-2-methylphenol, has anti-inflammatory, anti-apoptotic, and anti-edematous properties after experimental traumatic brain injury (TBI) in rats. CAR, predominantly found in Lamiaceae family (Satureja and Oregano), is lipophilic, allowing diffusion across the blood-brain barrier (BBB). These experiments test the hypothesis that acute treatment with CAR after TBI can attenuate oxidative stress and BBB permeability associated with CAR's anti-edematous traits. Rats were divided into six groups and injured using Marmarou weight drop: Sham, TBI, TBI + Vehicle, TBI + CAR (100 and 200 mg/kg) and CAR200-naive treated rats. Intraperitoneal injection of vehicle or CAR was administered thirty minutes after TBI induction. 24 h post-injury, brain edema, BBB permeability, BBB-related protein levels, and oxidative capacity were measured. Data showed CAR 200 mg/kg treatment decreased brain edema and prevented BBB permeability. CAR200 decreased malondialdehyde (MDA) and reactive oxygen species (ROS) and increased superoxide dismutase (SOD) and total antioxidative capacity (T-AOC), indicating the mechanism of BBB protection is, in part, through antioxidant activity. Also, CAR 200 mg/kg treatment suppressed matrix metalloproteinase-9 (MMP-9) expression and increased ZO-1, occludin, and claudin-5 levels. These data indicate that CAR can promote antioxidant activity and decrease post-injury BBB permeability, further supporting CAR as a potential early therapeutic intervention that is inexpensive and more readily available worldwide. However, more experiments are required to determine CAR's long-term impact on TBI pathophysiology.
Collapse
Affiliation(s)
- Elham Abbasloo
- Institute of Basic and Clinical Physiology Sciences, Endocrinology and Metabolism Research Center, Kerman, Iran.
| | - Mohammad Khaksari
- Institute of Neuropharmacology, Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojgan Sanjari
- Institute of Basic and Clinical Physiology Sciences, Endocrinology and Metabolism Research Center, Kerman, Iran
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Theresa Currier Thomas
- College of Medicine-Phoenix, University of Arizona, Child Health, Phoenix, USA
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, USA
| |
Collapse
|