1
|
El-Nahas GA, Ibrahim ME, Baka ZAM, Ibrahim AH. Scrutinizing harsh habitats endophytic fungi and their prospective effect on water-stressed maize seedlings. Int Microbiol 2024:10.1007/s10123-024-00609-4. [PMID: 39541056 DOI: 10.1007/s10123-024-00609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Drought constitutes a significant abiotic stressor that hinders plant growth and productivity in many countries. Habitat-adapted endophytic fungi offer an environmentally sustainable approach to address this issue by promoting plant development and enhancing resilience against abiotic stresses. In this study, 30 endophytic fungal isolates were recovered from some wild plants in the extreme habitats of Port Said Governorate, Egypt, and evaluated for their drought tolerance using polyethylene glycol (PEG-6000). Only eight isolates demonstrated drought tolerance properties and were further evaluated for their plant growth-promoting biochemical activities and ability to improve maize germination under simulated drought conditions. All eight isolates exhibited enzyme activity for endo-1,4-β-glucanase, amylase, and pectinase, and most displayed significant nutrient mobilization, with siderophores production ranging from 4 to 89%, ammonia production from 1 to 7 μmol/ml, and phosphate solubilization from 129 to 256 µg/ml. Additionally, all isolates showed strong antioxidant activity and high total phenolic content, with some also producing notable levels of indole acetic acid (IAA) and gibberellic acid (GA3) as plant growth hormones. Coating maize grains with spore suspensions of the eight fungal isolates, in general, significantly increased their germination parameters and seedling vigor in vitro under 8% PEG-6000. This enhancement was particularly pronounced with Neurospora sitophila (P8L4M1) and Penicillium tardochrysogenum (P15L4M1), which increased the vigor of maize seedlings by approximately 308% compared to untreated control. Molecular identification of P8L4M1 and P15L4M1 was performed by amplifying the 28S rRNA gene. This study disclosed unique endophytic fungal isolates with promising potential for enhancing drought resistance in maize.
Collapse
Affiliation(s)
- Gehad A El-Nahas
- Department of Botany, Faculty of Science, Port Said University, Port Said, Egypt.
| | - Mohsen E Ibrahim
- Department of Botany, Faculty of Science, Port Said University, Port Said, Egypt
| | - Zakaria A M Baka
- Department of Botany and Microbiology, Faculty of Science, University of Damietta, New Damietta, Egypt
| | - Ali H Ibrahim
- Department of Botany, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
2
|
Rabbee MF, Ali MS, Islam MN, Rahman MM, Hasan MM, Baek KH. Endophyte mediated biocontrol mechanisms of phytopathogens in agriculture. Res Microbiol 2024; 175:104229. [PMID: 38992820 DOI: 10.1016/j.resmic.2024.104229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
The global human population is growing and demand for food is increasing. Global agriculture faces numerous challenges, including excessive application of synthetic pesticides, emergence of herbicide-and pesticide-resistant pathogenic microbes, and more frequent natural disasters associated with global warming. Searches for valuable endophytes have increased, with the aim of making agriculture more sustainable and environmentally friendly. Endophytic microbes are known to have a variety of beneficial effects on plants. They can effectively transfer nutrients from the soil into plants, promote plant growth and development, increase disease resistance, increase stress tolerance, prevent herbivore feeding, reduce the virulence of pathogens, and inhibit the growth of rival plant species. Endophytic microbes can considerably minimize the need for agrochemicals, such as fertilizers, fungicides, bactericides, insecticides, and herbicides in the cultivation of crop plants. This review summarizes current knowledge on the roles of endophytes focusing on their mechanisms of disease control against phytopathogens through the secretion of antimicrobial substances and volatile organic compounds, and the induction of systemic resistance in plants. Additionally, the beneficial roles of these endophytes and their metabolites in the control of postharvest diseases in plants have been summarized.
Collapse
Affiliation(s)
- Muhammad Fazle Rabbee
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, South Korea.
| | - Md Sarafat Ali
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh
| | - Md Nurul Islam
- Soil Resource Development Institute, Regional Office, Rajshahai 6000, Bangladesh
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Md Mohidul Hasan
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh.
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, South Korea.
| |
Collapse
|
3
|
Alquichire-Rojas S, Escobar E, Bascuñán-Godoy L, González-Teuber M. Root symbiotic fungi improve nitrogen transfer and morpho-physiological performance in Chenopodium quinoa. FRONTIERS IN PLANT SCIENCE 2024; 15:1386234. [PMID: 39297005 PMCID: PMC11409918 DOI: 10.3389/fpls.2024.1386234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024]
Abstract
Root-associated fungal endophytes may facilitate nitrogen (N) absorption in plants, leading to benefits in photosynthesis and growth. Here, we investigated whether endophytic insect pathogenic fungi (EIPF) are capable of transferring soil N to the crop species Chenopodium quinoa. We evaluated nutrient uptake, carbon allocation, and morpho-physiological performance in C. quinoa in symbiosis with two different EIPF (Beauveria and Metarhizium) under contrasting soil N supply. A controlled experiment was conducted using two plant groups: (1) plants subjected to low N level (5 mM urea) and (2) plants subjected to high N level (15 mM urea). Plants from each group were then inoculated with different EIPF strains, either Beauveria (EIPF1+), Metarhizium (EIPF2+) or without fungus (EIPF-). Differences in N and C content, amino acids, proteins, soluble sugars, starch, glutamine synthetase, glutamate dehydrogenase, and physiological (photosynthesis, stomatal conductance, transpiration), and morphological performance between plant groups under each treatment were examined. We found that both Beauveria and Metarhizium translocated N from the soil to the roots of C. quinoa, with positive effects on photosynthesis and plant growth. These effects, however, were differentially affected by fungal strain as well as by N level. Additionally, an improvement in root C and sugar content was observed in presence of EIPF, suggesting translocation of carbohydrates from leaves to roots. Whereas both strains were equally effective in N transfer to roots, Beauveria seemed to exert less demand in C. quinoa for photosynthesis-derived carbohydrates compared to Metarhizium. Our study revealed positive effects of EIPF on N transfer and morpho-physiological performance in crops, highlighting the potential of these fungi as an alternative to chemical fertilizers in agriculture systems.
Collapse
Affiliation(s)
| | - Elizabeth Escobar
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Luisa Bascuñán-Godoy
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Marcia González-Teuber
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Abdelhamid SA, Abo Elsoud MM, El-Baz AF, Nofal AM, El-Banna HY. Optimisation of indole acetic acid production by Neopestalotiopsis aotearoa endophyte isolated from Thymus vulgaris and its impact on seed germination of Ocimum basilicum. BMC Biotechnol 2024; 24:46. [PMID: 38971771 PMCID: PMC11227711 DOI: 10.1186/s12896-024-00872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Microbial growth during plant tissue culture is a common problem that causes significant losses in the plant micro-propagation system. Most of these endophytic microbes have the ability to propagate through horizontal and vertical transmission. On the one hand, these microbes provide a rich source of several beneficial metabolites. RESULTS The present study reports on the isolation of fungal species from different in vitro medicinal plants (i.e., Breynia disticha major, Breynia disticha, Duranta plumieri, Thymus vulgaris, Salvia officinalis, Rosmarinus officinalis, and Ocimum basilicum l) cultures. These species were tested for their indole acetic acid (IAA) production capability. The most effective species for IAA production was that isolated from Thymus vulgaris plant (11.16 µg/mL) followed by that isolated from sweet basil plant (8.78 µg/mL). On screening for maximum IAA productivity, medium, "MOS + tryptophan" was chosen that gave 18.02 μg/mL. The macroscopic, microscopic examination and the 18S rRNA sequence analysis indicated that the isolate that given code T4 was identified as Neopestalotiopsis aotearoa (T4). The production of IAA by N. aotearoa was statistically modeled using the Box-Behnken design and optimized for maximum level, reaching 63.13 µg/mL. Also, IAA extract was administered to sweet basil seeds in vitro to determine its effect on plant growth traits. All concentrations of IAA extract boosted germination parameters as compared to controls, and 100 ppm of IAA extract exhibited a significant growth promotion effect for all seed germination measurements. CONCLUSIONS The IAA produced from N. aotearoa (T4) demonstrated an essential role in the enhancement of sweet basil (Ocimum basilicum) growth, suggesting that it can be employed to promote the plant development while lowering the deleterious effect of using synthetic compounds in the environment.
Collapse
Affiliation(s)
- Sayeda A Abdelhamid
- Department of Microbial Biotechnology, National Research Centre, Cairo, Egypt.
| | | | - A F El-Baz
- Department of Industrial Biotechnology, GEBRI, University of Sadat City, Sadat City, Menofia, Egypt
| | - Ashraf M Nofal
- Department of Sustainable Development, Environmental Studies and Research Institute, University of Sadat City, Menofia, Egypt
| | - Heba Y El-Banna
- Department of Vegetable and Floriculture, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Toppo P, Jangir P, Mehra N, Kapoor R, Mathur P. Bioprospecting of endophytic fungi from medicinal plant Anisomeles indica L. for their diverse role in agricultural and industrial sectors. Sci Rep 2024; 14:588. [PMID: 38182714 PMCID: PMC10770348 DOI: 10.1038/s41598-023-51057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Endophytes are microorganisms that inhabit various plant parts and cause no damage to the host plants. During the last few years, a number of novel endophytic fungi have been isolated and identified from medicinal plants and were found to be utilized as bio-stimulants and bio fertilizers. In lieu of this, the present study aims to isolate and identify endophytic fungi associated with the leaves of Anisomeles indica L. an important medicinal plant of the Terai-Duars region of West Bengal. A total of ten endophytic fungi were isolated from the leaves of A. indica and five were identified using ITS1/ITS4 sequencing based on their ability for plant growth promotion, secondary metabolite production, and extracellular enzyme production. Endophytic fungal isolates were identified as Colletotrichum yulongense Ai1, Colletotrichum cobbittiense Ai2, Colletotrichum alienum Ai2.1, Colletotrichum cobbittiense Ai3, and Fusarium equiseti. Five isolates tested positive for their plant growth promotion potential, while isolates Ai4. Ai1, Ai2, and Ai2.1 showed significant production of secondary metabolites viz. alkaloids, phenolics, flavonoids, saponins, etc. Isolate Ai2 showed maximum total phenolic concentration (25.98 mg g-1), while isolate Ai4 showed maximum total flavonoid concentration (20.10 mg g-1). Significant results were observed for the production of extracellular enzymes such as cellulases, amylases, laccases, lipases, etc. The isolates significantly influenced the seed germination percentage of tomato seedlings and augmented their growth and development under in vitro assay. The present work comprehensively tested these isolates and ascertained their huge application for the commercial utilization of these isolates both in the agricultural and industrial sectors.
Collapse
Affiliation(s)
- Prabha Toppo
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, West Bengal, 734013, India
| | - Pooja Jangir
- Plant-Fungus Interactions Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Namita Mehra
- Plant-Fungus Interactions Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Rupam Kapoor
- Plant-Fungus Interactions Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
6
|
Kumar V, Nautiyal CS. Endophytes Modulate Plant Genes: Present Status and Future Perspectives. Curr Microbiol 2023; 80:353. [PMID: 37740026 DOI: 10.1007/s00284-023-03466-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/31/2023] [Indexed: 09/24/2023]
Abstract
Interactions among endophytes and plants are widespread and can vary from neutral or positive or negative. Plants are continually in a functionally dynamic state due to interactions with diverse endophytic microorganisms, which produce various metabolic substances. Through quorum sensing, these substances not only help endophytes to outcompete other host-associated pathogens or microbes but also allow them to overcome the plant immune system. Manifold interactions between endophytic microbiota cause a reflective impact on the host plant functioning and the development of 'endobiomes,' by synthesizing chemicals that fill the gap between host and endophytes. Despite the advances in the field, specific mechanisms for the endophytes' precise methods to modulate plant genome and their effects on host plants remain poorly understood. Deeper genomic exploration can provide a locked away understanding of the competencies of endophytes and their conceivable function in host growth and health. Endophytes also can modify host metabolites, which could manipulate plants' growth, adaptation, and proliferation, and can be a more exciting and puzzling topic that must be properly investigated. The consequence of the interaction of endophytes on the host genome was analyzed as it can help unravel the gray areas of endophytes about which very little or no knowledge exists. This review discusses the recent advances in understanding the future challenges in the emerging research investigating how endosymbionts affect the host's metabolism and gene expression as an effective strategy for imparting resistance to biotic and abiotic challenges.
Collapse
Affiliation(s)
- Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jollygrant, Dehradun-248016, Uttrakhand, India.
| | - Chandra S Nautiyal
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jollygrant, Dehradun-248016, Uttrakhand, India
| |
Collapse
|
7
|
Marchut-Mikołajczyk O, Chlebicz M, Kawecka M, Michalak A, Prucnal F, Nielipinski M, Filipek J, Jankowska M, Perek Z, Drożdżyński P, Rutkowska N, Otlewska A. Endophytic bacteria isolated from Urtica dioica L.- preliminary screening for enzyme and polyphenols production. Microb Cell Fact 2023; 22:169. [PMID: 37649058 PMCID: PMC10466763 DOI: 10.1186/s12934-023-02167-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/05/2023] [Indexed: 09/01/2023] Open
Abstract
Endophytes, especially those isolated from herbal plants, may act as a reservoir of a variety of secondary metabolites exhibiting biological activity. Some endophytes express the ability to produce the same bioactive compounds as their plant hosts, making them a more sustainable industrial supply of these substances. Urtica dioica L. (common stinging nettle) is a synanthropic plant that is widely used in herbal medicine due to the diversity of bioactive chemicals it contains, e.g., polyphenols, which demonstrate anti-inflammatory, antioxidant, and anti-cancerous capabilities. This study aimed at isolating endophytic bacteria from stinging nettles for their bioactive compounds. The endophytic isolates were identified by both biochemical and molecular methods (16S rRNA) and investigated for enzymes, biosurfactants, and polyphenols production. Each of the isolated bacterial strains was capable of producing biosurfactants and polyphenols. However, three of the isolated endophytes, identified as two strains of Bacillus cereus and one strain of Bacillus mycoides, possessed the greatest capacity to produce biosurfactants and polyphenols. The derivatized extracts from culture liquid showed the 1.633 mol l-1 (9.691 mg l-1) concentration of polyphenol compounds. Therefore, the present study signifies that endophytic B. cereus and B. mycoides isolated from Urtica dioica L. could be a potential source of biosurfactants and polyphenols. However, further study is required to understand the mechanism of the process and achieve efficient polyphenol production by endophytic bacteria.
Collapse
Affiliation(s)
- Olga Marchut-Mikołajczyk
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland.
| | - Magdalena Chlebicz
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530, Lodz, Poland
| | - Monika Kawecka
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530, Lodz, Poland
| | - Agnieszka Michalak
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530, Lodz, Poland
| | - Filip Prucnal
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530, Lodz, Poland
| | - Maciej Nielipinski
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - Jakub Filipek
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530, Lodz, Poland
| | - Michalina Jankowska
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530, Lodz, Poland
| | - Zofia Perek
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530, Lodz, Poland
| | - Piotr Drożdżyński
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - Natalia Rutkowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - Anna Otlewska
- Institute of Fermentation Technology And Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530, Lodz, Poland
| |
Collapse
|