1
|
Ren M, Sun M, Dan B, Tu Y, Niu G, Lin W, Sun H, Zhu Y. Identification and genetic characterization of Xiabuqu River virus: A novel member of the Iflaviridae family detected in soft ticks from Tibet, China. Virus Res 2025; 354:199543. [PMID: 39952296 PMCID: PMC11889951 DOI: 10.1016/j.virusres.2025.199543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Soft ticks, an important group of blood-sucking arthropods in nature, are widely distributed globally and can carry a wide range of pathogens, including Theileria ovis, Anaplasma ovis, Rickettsia spp. and African swine fever virus. In this study, we identified a novel single positive-stranded RNA virus, tentatively named Xiabuqu River virus (XRV), for the first time from soft ticks collected in Shigatse, Tibet. A total of 96 engorged soft ticks were collected from Tibetan sheep, with each tick assigned to a separate pool for analysis. The complete coding sequence of XRV was determined through next-generation sequencing, revealing a sequence length of 9277 nucleotides that includes a single open reading frame (ORF) encoding proteins such as the capsid protein, RNA helicase, and RNA-dependent RNA polymerase (RDRP). Quantitative RT-PCR and nested PCR were utilized to investigate the distribution of XRV within the tick sample. Pairwise distance analysis revealed that all obtained viral sequences shared a high nucleotide identity. Phylogenetic analysis demonstrated that XRV clustered with Lhasa Iflav tick virus 1, Fuyun tick virus 2, and Hubei tick virus 2. Further analyses indicated that XRV is a new member of the unclassified genus Iflavirus within the family Iflaviridae.
Collapse
Affiliation(s)
- Meixi Ren
- Shandong Second Medical University, Weifang 261053, China
| | - Mingli Sun
- Zhucheng Center for Disease Control and Prevention, Weifang 262200, China
| | - Bataj Dan
- Neighborhood Committee of Tuanjie Xincun Community, Chengguan District, Lhasa 850010,China
| | - Yingxin Tu
- Shandong Second Medical University, Weifang 261053, China
| | - Guoyu Niu
- Shandong Second Medical University, Weifang 261053, China
| | - Weiping Lin
- Shandong Second Medical University, Weifang 261053, China.
| | - Hengyi Sun
- Shandong Second Medical University, Weifang 261053, China.
| | - Yujing Zhu
- Suqian First Hospital, Suqian 223812, China.
| |
Collapse
|
2
|
Rodríguez-Durán A, Andrade-Silva V, Numan M, Waldman J, Ali A, Logullo C, da Silva Vaz Junior I, Parizi LF. Multi-Omics Technologies Applied to Improve Tick Research. Microorganisms 2025; 13:795. [PMID: 40284631 PMCID: PMC12029647 DOI: 10.3390/microorganisms13040795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/10/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
The advancement of multi-omics technologies is crucial to deepen knowledge on tick biology. These approaches, used to study diverse phenomena, are applied to experiments that aim to understand changes in gene transcription, protein function, cellular processes, and prediction of systems at global biological levels. This review addressed the application of omics data to investigate and elucidate tick physiological processes, such as feeding, digestion, reproduction, neuronal, endocrine systems, understanding population dynamics, transmitted pathogens, control, and identifying new vaccine targets. Furthermore, new therapeutic perspectives using tick bioactive molecules, such as anti-inflammatory, analgesic, and antitumor, were summarized. Taken together, the application of omics technologies can help to understand the protein functions and biological behavior of ticks, as well as the identification of potential new antigens influencing the development of alternative control strategies and, consequently, the tick-borne disease prevention in veterinary and public health contexts. Finally, tick population dynamics have been determined through a combination of environmental factors, host availability, and genetic adaptations, and recent advances in omics technologies have improved our understanding of their ecological resilience and resistance mechanisms. Future directions point to the integration of spatial omics and artificial intelligence to further unravel tick biology and improve control strategies.
Collapse
Affiliation(s)
- Arlex Rodríguez-Durán
- Programa de Pós-Graduação em Ciências Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil; (A.R.-D.); (M.N.)
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (V.A.-S.); (J.W.); (I.d.S.V.J.)
- Grupo de Investigación Parasitología Veterinaria, Laboratorio de Parasitología Veterinaria, Universidad Nacional de Colombia (UNAL), Carrera 30 No 45-03, Bogotá 110111, Colombia
| | - Vinícius Andrade-Silva
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (V.A.-S.); (J.W.); (I.d.S.V.J.)
| | - Muhammad Numan
- Programa de Pós-Graduação em Ciências Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil; (A.R.-D.); (M.N.)
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (V.A.-S.); (J.W.); (I.d.S.V.J.)
| | - Jéssica Waldman
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (V.A.-S.); (J.W.); (I.d.S.V.J.)
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan;
| | - Carlos Logullo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-853, RJ, Brazil
| | - Itabajara da Silva Vaz Junior
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (V.A.-S.); (J.W.); (I.d.S.V.J.)
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-853, RJ, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (V.A.-S.); (J.W.); (I.d.S.V.J.)
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil
| |
Collapse
|
3
|
Kratou M, Maitre A, Abuin-Denis L, Selmi R, Belkahia H, Alanazi AD, Gattan H, Al-Ahmadi BM, Shater AF, Mateos-Hernández L, Obregón D, Messadi L, Cabezas-Cruz A, Ben Said M. Microbial community variations in adult Hyalomma dromedarii ticks from single locations in Saudi Arabia and Tunisia. Front Microbiol 2025; 16:1543560. [PMID: 40008044 PMCID: PMC11850374 DOI: 10.3389/fmicb.2025.1543560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Introduction The camel-infesting tick, Hyalomma dromedarii, is a prominent ectoparasite in the Middle East and North Africa (MENA) region, critically impacting camel health and acting as a vector for tick-borne pathogens. Despite prior studies on its microbiota, the effects of geographic origin and sex on microbial community structure and functional stability remain poorly understood. Methods To address this, we characterized the bacterial microbiota of H. dromedarii ticks collected from camels in Tunisia (TUN) and Saudi Arabia (SA) using 16S rRNA gene sequencing, microbial network analysis, and metabolic pathway prediction. Results Our findings indicate a dominant presence of Francisella endosymbionts in Tunisian ticks, suggesting adaptive roles of H. dromedarii ticks in arid ecosystems. Keystone taxa, particularly Staphylococcus and Corynebacterium, were identified as central to microbial network structure and resilience. Moreover, network robustness analyses demonstrated enhanced ecological stability in the Tunisian tick microbiota under perturbation, indicative of higher resilience to environmental fluctuations compared to Saudi Arabian ticks. Additionally, functional pathway predictions further revealed geographically distinct metabolic profiles between both groups (Tunisia vs. Saudi Arabia and males vs. females), underscoring environmental and biological influences on H. dromedarii microbiota assembly. Discussion These results highlight region-specific and sex-specific microbial adaptations in H. dromedarii, with potential implications for pathogen transmission dynamics and vector resilience. Understanding these microbial interactions may contribute to improved strategies for tick control and tick-borne disease prevention.
Collapse
Affiliation(s)
- Myriam Kratou
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | - Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L’Elevage (SELMET LRDE), Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Lianet Abuin-Denis
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Rachid Selmi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | - Hanène Belkahia
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | - Abdullah D. Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi, Saudi Arabia
| | - Hattan Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, Jeddah, Saudi Arabia
| | - Bassam M. Al-Ahmadi
- Department of Biology, Faculty of Science, Taibah University, Madinah, Saudi Arabia
| | - Abdullah F. Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Lilia Messadi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba, Tunisia
| |
Collapse
|