1
|
Bozkurt EU, Ørsted EC, Volke DC, Nikel PI. Accelerating enzyme discovery and engineering with high-throughput screening. Nat Prod Rep 2024. [PMID: 39403004 DOI: 10.1039/d4np00031e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Covering: up to August 2024Enzymes play an essential role in synthesizing value-added chemicals with high specificity and selectivity. Since enzymes utilize substrates derived from renewable resources, biocatalysis offers a pathway to an efficient bioeconomy with reduced environmental footprint. However, enzymes have evolved over millions of years to meet the needs of their host organisms, which often do not align with industrial requirements. As a result, enzymes frequently need to be tailored for specific industrial applications. Combining enzyme engineering with high-throughput screening has emerged as a key approach for developing novel biocatalysts, but several challenges are yet to be addressed. In this review, we explore emergent strategies and methods for isolating, creating, and characterizing enzymes optimized for bioproduction. We discuss fundamental approaches to discovering and generating enzyme variants and identifying those best suited for specific applications. Additionally, we cover techniques for creating libraries using automated systems and highlight innovative high-throughput screening methods that have been successfully employed to develop novel biocatalysts for natural product synthesis.
Collapse
Affiliation(s)
- Eray U Bozkurt
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Emil C Ørsted
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
2
|
Hilvert D. Spiers Memorial Lecture: Engineering biocatalysts. Faraday Discuss 2024; 252:9-28. [PMID: 39046423 PMCID: PMC11389855 DOI: 10.1039/d4fd00139g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Enzymes are being engineered to catalyze chemical reactions for many practical applications in chemistry and biotechnology. The approaches used are surveyed in this short review, emphasizing methods for accessing reactivities not expressed by native protein scaffolds. The successful generation of completely de novo enzymes that rival the rates and selectivities of their natural counterparts highlights the potential role that designer enzymes may play in the coming years in research, industry, and medicine. Some challenges that need to be addressed to realize this ambitious dream are considered together with possible solutions.
Collapse
Affiliation(s)
- Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
3
|
Wardman JF, Withers SG. Carbohydrate-active enzyme (CAZyme) discovery and engineering via (Ultra)high-throughput screening. RSC Chem Biol 2024; 5:595-616. [PMID: 38966674 PMCID: PMC11221537 DOI: 10.1039/d4cb00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
Carbohydrate-active enzymes (CAZymes) constitute a diverse set of enzymes that catalyze the assembly, degradation, and modification of carbohydrates. These enzymes have been fashioned into potent, selective catalysts by millennia of evolution, and yet are also highly adaptable and readily evolved in the laboratory. To identify and engineer CAZymes for different purposes, (ultra)high-throughput screening campaigns have been frequently utilized with great success. This review provides an overview of the different approaches taken in screening for CAZymes and how mechanistic understandings of CAZymes can enable new approaches to screening. Within, we also cover how cutting-edge techniques such as microfluidics, advances in computational approaches and synthetic biology, as well as novel assay designs are leading the field towards more informative and effective screening approaches.
Collapse
Affiliation(s)
- Jacob F Wardman
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
4
|
Schnettler JD, Wang MS, Gantz M, Bunzel HA, Karas C, Hollfelder F, Hecht MH. Selection of a promiscuous minimalist cAMP phosphodiesterase from a library of de novo designed proteins. Nat Chem 2024; 16:1200-1208. [PMID: 38702405 PMCID: PMC11230910 DOI: 10.1038/s41557-024-01490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/27/2024] [Indexed: 05/06/2024]
Abstract
The ability of unevolved amino acid sequences to become biological catalysts was key to the emergence of life on Earth. However, billions of years of evolution separate complex modern enzymes from their simpler early ancestors. To probe how unevolved sequences can develop new functions, we use ultrahigh-throughput droplet microfluidics to screen for phosphoesterase activity amidst a library of more than one million sequences based on a de novo designed 4-helix bundle. Characterization of hits revealed that acquisition of function involved a large jump in sequence space enriching for truncations that removed >40% of the protein chain. Biophysical characterization of a catalytically active truncated protein revealed that it dimerizes into an α-helical structure, with the gain of function accompanied by increased structural dynamics. The identified phosphodiesterase is a manganese-dependent metalloenzyme that hydrolyses a range of phosphodiesters. It is most active towards cyclic AMP, with a rate acceleration of ~109 and a catalytic proficiency of >1014 M-1, comparable to larger enzymes shaped by billions of years of evolution.
Collapse
Affiliation(s)
| | - Michael S Wang
- Department of Chemistry, Princeton University, Princeton, USA
| | - Maximilian Gantz
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - H Adrian Bunzel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Christina Karas
- Department of Molecular Biology, Princeton University, Princeton, USA
| | | | - Michael H Hecht
- Department of Chemistry, Princeton University, Princeton, USA.
| |
Collapse
|
5
|
Eggerichs D, Weindorf N, Weddeling HG, Van der Linden IM, Tischler D. Substrate scope expansion of 4-phenol oxidases by rational enzyme selection and sequence-function relations. Commun Chem 2024; 7:123. [PMID: 38831005 PMCID: PMC11148156 DOI: 10.1038/s42004-024-01207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Enzymes are natures' catalysts and will have a lasting impact on (organic) synthesis as they possess unchallenged regio- and stereo selectivity. On the downside, this high selectivity limits enzymes' substrate range and hampers their universal application. Therefore, substrate scope expansion of enzyme families by either modification of known biocatalysts or identification of new members is a key challenge in enzyme-driven catalysis. Here, we present a streamlined approach to rationally select enzymes with proposed functionalities from the ever-increasing amount of available sequence data. In a case study on 4-phenol oxidoreductases, eight enzymes of the oxidase branch were selected from 292 sequences on basis of the properties of first shell residues of the catalytic pocket, guided by the computational tool A2CA. Correlations between these residues and enzyme activity yielded robust sequence-function relations, which were exploited by site-saturation mutagenesis. Application of a peroxidase-independent oxidase screening resulted in 16 active enzyme variants which were up to 90-times more active than respective wildtype enzymes and up to 6-times more active than the best performing natural variants. The results were supported by kinetic experiments and structural models. The newly introduced amino acids confirmed the correlation studies which overall highlights the successful logic of the presented approach.
Collapse
Affiliation(s)
- Daniel Eggerichs
- Microbial Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Nils Weindorf
- Microbial Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Heiner G Weddeling
- Microbial Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Inja M Van der Linden
- Microbial Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Dirk Tischler
- Microbial Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
6
|
Jain A, Stavrakis S, deMello A. Droplet-based microfluidics and enzyme evolution. Curr Opin Biotechnol 2024; 87:103097. [PMID: 38430713 DOI: 10.1016/j.copbio.2024.103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Enzymes are widely used as catalysts in the chemical and pharmaceutical industries. While successful in many situations, they must usually be adapted to operate efficiently under nonnatural conditions. Enzyme engineering allows the creation of novel enzymes that are stable at elevated temperatures or have higher activities and selectivities. Current enzyme engineering techniques require the production and testing of enzyme variant libraries to identify members with desired attributes. Unfortunately, traditional screening methods cannot screen such large mutagenesis libraries in a robust and timely manner. Droplet-based microfluidic systems can produce, process, and sort picoliter droplets at kilohertz rates and have emerged as powerful tools for library screening and thus enzyme engineering. We describe how droplet-based microfluidics has been used to advance directed evolution.
Collapse
Affiliation(s)
- Ankit Jain
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Andrew deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland.
| |
Collapse
|
7
|
Scheele R, Weber Y, Nintzel FEH, Herger M, Kaminski TS, Hollfelder F. Ultrahigh Throughput Evolution of Tryptophan Synthase in Droplets via an Aptamer Sensor. ACS Catal 2024; 14:6259-6271. [PMID: 38660603 PMCID: PMC11036396 DOI: 10.1021/acscatal.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Tryptophan synthase catalyzes the synthesis of a wide array of noncanonical amino acids and is an attractive target for directed evolution. Droplet microfluidics offers an ultrahigh throughput approach to directed evolution (up to 107 experiments per day), enabling the search for biocatalysts in wider regions of sequence space with reagent consumption minimized to the picoliter volume (per library member). While the majority of screening campaigns in this format on record relied on an optically active reaction product, a new assay is needed for tryptophan synthase. Tryptophan is not fluorogenic in the visible light spectrum and thus falls outside the scope of conventional droplet microfluidic readouts, which are incompatible with UV light detection at high throughput. Here, we engineer a tryptophan DNA aptamer into a sensor to quantitatively report on tryptophan production in droplets. The utility of the sensor was validated by identifying five-fold improved tryptophan synthases from ∼100,000 protein variants. More generally, this work establishes the use of DNA-aptamer sensors with a fluorogenic read-out in widening the scope of droplet microfluidic evolution.
Collapse
Affiliation(s)
- Remkes
A. Scheele
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
| | - Yanik Weber
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
| | | | - Michael Herger
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
| | - Tomasz S. Kaminski
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
- Department
of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Florian Hollfelder
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
| |
Collapse
|
8
|
O'Connell A, Barry A, Burke AJ, Hutton AE, Bell EL, Green AP, O'Reilly E. Biocatalysis: landmark discoveries and applications in chemical synthesis. Chem Soc Rev 2024; 53:2828-2850. [PMID: 38407834 DOI: 10.1039/d3cs00689a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Biocatalysis has become an important tool in chemical synthesis, allowing access to complex molecules with high levels of activity and selectivity and with low environmental impact. Key discoveries in protein engineering, bioinformatics, recombinant technology and DNA sequencing have contributed towards the rapid acceleration of the field. This tutorial review explores enzyme engineering strategies and high-throughput screening approaches that have been applied for the discovery and development of enzymes for synthetic application. Landmark developments in the field are discussed and have been carefully selected to highlight the diverse synthetic applications of enzymes within the pharmaceutical, agricultural, food and chemical industries. The design and development of artificial biocatalytic cascades is also examined. This tutorial review will give readers an insight into the landmark discoveries and milestones that have helped shape and grow this branch of catalysis since the discovery of the first enzyme.
Collapse
Affiliation(s)
- Adam O'Connell
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Amber Barry
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Ashleigh J Burke
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Amy E Hutton
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Elizabeth L Bell
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Anthony P Green
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Elaine O'Reilly
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
9
|
Yan W, Li X, Zhao D, Xie M, Li T, Qian L, Ye C, Shi T, Wu L, Wang Y. Advanced strategies in high-throughput droplet screening for enzyme engineering. Biosens Bioelectron 2024; 248:115972. [PMID: 38171222 DOI: 10.1016/j.bios.2023.115972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/05/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Enzymes, as biocatalysts, play a cumulatively important role in environmental purification and industrial production of chemicals and pharmaceuticals. However, natural enzymes are limited by their physiological properties in practice, which need to be modified driven by requirements. Screening and isolating certain enzyme variants or ideal industrial strains with high yielding of target product enzymes is one of the main directions of enzyme engineering research. Droplet-based high-throughput screening (DHTS) technology employs massive monodisperse emulsion droplets as microreactors to achieve single strain encapsulation, as well as continuous monitoring for the inside mutant library. It can effectively sort out strains or enzymes with desired characteristics, offering a throughput of 108 events per hour. Much of the early literature focused on screening various engineered strains or designing signalling sorting strategies based on DHTS technology. However, the field of enzyme engineering lacks a comprehensive overview of advanced methods for microfluidic droplets and their cutting-edge developments in generation and manipulation. This review emphasizes the advanced strategies and frontiers of microfluidic droplet generation and manipulation facilitating enzyme engineering development. We also introduce design for various screening signals that cooperate with DHTS and devote to enzyme engineering.
Collapse
Affiliation(s)
- Wenxin Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Xiang Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Danshan Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Meng Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Ting Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Lu Qian
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; Ministry of Education Key Laboratory of NSLSCS, Nanjing Normal University, Nanjing 210046, China.
| | - Tianqiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| | - Lina Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; Food Laboratory of Zhongyuan, Luohe, 462300, Henan, China.
| | - Yuetong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
10
|
Vanella R, Küng C, Schoepfer AA, Doffini V, Ren J, Nash MA. Understanding activity-stability tradeoffs in biocatalysts by enzyme proximity sequencing. Nat Commun 2024; 15:1807. [PMID: 38418512 PMCID: PMC10902396 DOI: 10.1038/s41467-024-45630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 01/26/2024] [Indexed: 03/01/2024] Open
Abstract
Understanding the complex relationships between enzyme sequence, folding stability and catalytic activity is crucial for applications in industry and biomedicine. However, current enzyme assay technologies are limited by an inability to simultaneously resolve both stability and activity phenotypes and to couple these to gene sequences at large scale. Here we present the development of enzyme proximity sequencing, a deep mutational scanning method that leverages peroxidase-mediated radical labeling with single cell fidelity to dissect the effects of thousands of mutations on stability and catalytic activity of oxidoreductase enzymes in a single experiment. We use enzyme proximity sequencing to analyze how 6399 missense mutations influence folding stability and catalytic activity in a D-amino acid oxidase from Rhodotorula gracilis. The resulting datasets demonstrate activity-based constraints that limit folding stability during natural evolution, and identify hotspots distant from the active site as candidates for mutations that improve catalytic activity without sacrificing stability. Enzyme proximity sequencing can be extended to other enzyme classes and provides valuable insights into biophysical principles governing enzyme structure and function.
Collapse
Affiliation(s)
- Rosario Vanella
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.
| | - Christoph Küng
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Alexandre A Schoepfer
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- National Center for Competence in Research (NCCR), Catalysis, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Vanni Doffini
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Jin Ren
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.
- National Center for Competence in Research (NCCR), Molecular Systems Engineering, 4058, Basel, Switzerland.
- Swiss Nanoscience Institute, 4056, Basel, Switzerland.
| |
Collapse
|
11
|
Buller R, Lutz S, Kazlauskas RJ, Snajdrova R, Moore JC, Bornscheuer UT. From nature to industry: Harnessing enzymes for biocatalysis. Science 2023; 382:eadh8615. [PMID: 37995253 DOI: 10.1126/science.adh8615] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Biocatalysis harnesses enzymes to make valuable products. This green technology is used in countless applications from bench scale to industrial production and allows practitioners to access complex organic molecules, often with fewer synthetic steps and reduced waste. The last decade has seen an explosion in the development of experimental and computational tools to tailor enzymatic properties, equipping enzyme engineers with the ability to create biocatalysts that perform reactions not present in nature. By using (chemo)-enzymatic synthesis routes or orchestrating intricate enzyme cascades, scientists can synthesize elaborate targets ranging from DNA and complex pharmaceuticals to starch made in vitro from CO2-derived methanol. In addition, new chemistries have emerged through the combination of biocatalysis with transition metal catalysis, photocatalysis, and electrocatalysis. This review highlights recent key developments, identifies current limitations, and provides a future prospect for this rapidly developing technology.
Collapse
Affiliation(s)
- R Buller
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - S Lutz
- Codexis Incorporated, Redwood City, CA 94063, USA
| | - R J Kazlauskas
- Department of Biochemistry, Molecular Biology and Biophysics, Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - R Snajdrova
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - J C Moore
- MRL, Merck & Co., Rahway, NJ 07065, USA
| | - U T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, Greifswald University, Greifswald, Germany
| |
Collapse
|
12
|
Li Z, Deng Y, Yang GY. Growth-coupled high throughput selection for directed enzyme evolution. Biotechnol Adv 2023; 68:108238. [PMID: 37619825 DOI: 10.1016/j.biotechadv.2023.108238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/03/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Directed enzyme evolution has revolutionized the rapid development of enzymes with desired properties. However, the lack of a high-throughput method to identify the most suitable variants from a large pool of genetic diversity poses a major bottleneck. To overcome this challenge, growth-coupled in vivo high-throughput selection approaches (GCHTS) have emerged as a novel selection system for enzyme evolution. GCHTS links the survival of the host cell with the properties of the target protein, resulting in a screening system that is easily measurable and has a high throughput-scale limited only by transformation efficiency. This allows for the rapid identification of desired variants from a pool of >109 variants in each experiment. In recent years, GCHTS approaches have been extensively utilized in the directed evolution of multiple enzymes, demonstrating success in catalyzing non-native substrates, enhancing catalytic activity, and acquiring novel functions. This review introduces three main strategies employed to achieve GCHTS: the elimination of toxic compounds via desired variants, enabling host cells to thrive in hazardous conditions; the complementation of an auxotroph with desired variants, where essential genes for cell growth have been eliminated; and the control of the transcription or expression of a reporter gene related to host cell growth, regulated by the desired variants. Additionally, we highlighted the recent developments in the in vivo continuous evolution of enzyme technology, including phage-assisted continuous evolution (PACE) and orthogonal DNA Replication (OrthoRep). Furthermore, this review discusses the challenges and future prospects in the field of growth-coupled selection for protein engineering.
Collapse
Affiliation(s)
- Zhengqun Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuting Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
13
|
Monserrat Lopez D, Rottmann P, Puebla-Hellmann G, Drechsler U, Mayor M, Panke S, Fussenegger M, Lörtscher E. Direct electrification of silicon microfluidics for electric field applications. MICROSYSTEMS & NANOENGINEERING 2023; 9:81. [PMID: 37342556 PMCID: PMC10277806 DOI: 10.1038/s41378-023-00552-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023]
Abstract
Microfluidic systems are widely used in fundamental research and industrial applications due to their unique behavior, enhanced control, and manipulation opportunities of liquids in constrained geometries. In micrometer-sized channels, electric fields are efficient mechanisms for manipulating liquids, leading to deflection, injection, poration or electrochemical modification of cells and droplets. While PDMS-based microfluidic devices are used due to their inexpensive fabrication, they are limited in terms of electrode integration. Using silicon as the channel material, microfabrication techniques can be used to create nearby electrodes. Despite the advantages that silicon provides, its opacity has prevented its usage in most important microfluidic applications that need optical access. To overcome this barrier, silicon-on-insulator technology in microfluidics is introduced to create optical viewports and channel-interfacing electrodes. More specifically, the microfluidic channel walls are directly electrified via selective, nanoscale etching to introduce insulation segments inside the silicon device layer, thereby achieving the most homogeneous electric field distributions and lowest operation voltages feasible across microfluidic channels. These ideal electrostatic conditions enable a drastic energy reduction, as effectively shown via picoinjection and fluorescence-activated droplet sorting applications at voltages below 6 and 15 V, respectively, facilitating low-voltage electric field applications in next-generation microfluidics.
Collapse
Affiliation(s)
- Diego Monserrat Lopez
- IBM Research Europe - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Philipp Rottmann
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Gabriel Puebla-Hellmann
- IBM Research Europe - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Ute Drechsler
- IBM Research Europe - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | - Marcel Mayor
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
- Institute for Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
| | - Sven Panke
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Martin Fussenegger
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
- University of Basel, Faculty of Life Science, Basel, Switzerland
| | - Emanuel Lörtscher
- IBM Research Europe - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| |
Collapse
|
14
|
Gantz M, Neun S, Medcalf EJ, van Vliet LD, Hollfelder F. Ultrahigh-Throughput Enzyme Engineering and Discovery in In Vitro Compartments. Chem Rev 2023; 123:5571-5611. [PMID: 37126602 PMCID: PMC10176489 DOI: 10.1021/acs.chemrev.2c00910] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Indexed: 05/03/2023]
Abstract
Novel and improved biocatalysts are increasingly sourced from libraries via experimental screening. The success of such campaigns is crucially dependent on the number of candidates tested. Water-in-oil emulsion droplets can replace the classical test tube, to provide in vitro compartments as an alternative screening format, containing genotype and phenotype and enabling a readout of function. The scale-down to micrometer droplet diameters and picoliter volumes brings about a >107-fold volume reduction compared to 96-well-plate screening. Droplets made in automated microfluidic devices can be integrated into modular workflows to set up multistep screening protocols involving various detection modes to sort >107 variants a day with kHz frequencies. The repertoire of assays available for droplet screening covers all seven enzyme commission (EC) number classes, setting the stage for widespread use of droplet microfluidics in everyday biochemical experiments. We review the practicalities of adapting droplet screening for enzyme discovery and for detailed kinetic characterization. These new ways of working will not just accelerate discovery experiments currently limited by screening capacity but profoundly change the paradigms we can probe. By interfacing the results of ultrahigh-throughput droplet screening with next-generation sequencing and deep learning, strategies for directed evolution can be implemented, examined, and evaluated.
Collapse
Affiliation(s)
| | | | | | | | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| |
Collapse
|
15
|
Jiang J, Yang G, Ma F. Fluorescence coupling strategies in fluorescence-activated droplet sorting (FADS) for ultrahigh-throughput screening of enzymes, metabolites, and antibodies. Biotechnol Adv 2023; 66:108173. [PMID: 37169102 DOI: 10.1016/j.biotechadv.2023.108173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
Fluorescence-activated droplet sorting (FADS) has emerged as a powerful tool for ultrahigh-throughput screening of enzymes, metabolites, and antibodies. Fluorescence coupling strategies (FCSs) are key to the development of new FADS methods through their coupling of analyte properties such as concentration, activities, and affinity with fluorescence signals. Over the last decade, a series of FCSs have been developed, greatly expanding applications of FADS. Here, we review recent advances in FCS for different analyte types, providing a critical comparison of the available FCSs and further classification into four categories according to their principles. We also summarize successful FADS applications employing FCSs in enzymes, metabolites, and antibodies. Further, we outline possible future developments in this area.
Collapse
Affiliation(s)
- Jingjie Jiang
- Medical Enzyme Engineering Center, CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Guangyu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Fuqiang Ma
- Medical Enzyme Engineering Center, CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| |
Collapse
|
16
|
Fernández De Santaella J, Ren J, Vanella R, Nash MA. Enzyme Cascade with Horseradish Peroxidase Readout for High-Throughput Screening and Engineering of Human Arginase-1. Anal Chem 2023; 95:7150-7157. [PMID: 37094096 DOI: 10.1021/acs.analchem.2c05429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
We report an enzyme cascade with horseradish peroxidase-based readout for screening human arginase-1 (hArg1) activity. We combined the four enzymes hArg1, ornithine decarboxylase, putrescine oxidase, and horseradish peroxidase in a reaction cascade that generated colorimetric or fluorescent signals in response to hArg1 activity and used this cascade to assay wild-type and variant hArg1 sequences as soluble enzymes and displayed on the surface of Escherichia coli. We screened a curated 13-member hArg1 library covering mutations that modified the electrostatic environment surrounding catalytic residues D128 and H141, and identified the R21E variant with a 13% enhanced catalytic turnover rate compared to wild type. Our scalable one-pot single-step arginase assay with continuous kinetic readout is amenable to high-throughput screening and directed evolution of arginase libraries and testing drug candidates for arginase inhibition.
Collapse
Affiliation(s)
- Jaime Fernández De Santaella
- Department of Chemistry, Institute of Physical Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- National Center for Competence in Research (NCCR), Molecular Systems Engineering, 4058 Basel, Switzerland
| | - Jin Ren
- Department of Chemistry, Institute of Physical Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Rosario Vanella
- Department of Chemistry, Institute of Physical Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Michael A Nash
- Department of Chemistry, Institute of Physical Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- National Center for Competence in Research (NCCR), Molecular Systems Engineering, 4058 Basel, Switzerland
- Swiss Nanoscience Institute, 4056 Basel, Switzerland
| |
Collapse
|
17
|
Medcalf EJ, Gantz M, Kaminski TS, Hollfelder F. Ultra-High-Throughput Absorbance-Activated Droplet Sorting for Enzyme Screening at Kilohertz Frequencies. Anal Chem 2023; 95:4597-4604. [PMID: 36848587 PMCID: PMC10018449 DOI: 10.1021/acs.analchem.2c04144] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Droplet microfluidics is a valuable method to "beat the odds" in high throughput screening campaigns such as directed evolution, where valuable hits are infrequent and large library sizes are required. Absorbance-based sorting expands the range of enzyme families that can be subjected to droplet screening by expanding possible assays beyond fluorescence detection. However, absorbance-activated droplet sorting (AADS) is currently ∼10-fold slower than typical fluorescence-activated droplet sorting (FADS), meaning that, in comparison, a larger portion of sequence space is inaccessible due to throughput constraints. Here we improve AADS to reach kHz sorting speeds in an order of magnitude increase over previous designs, with close-to-ideal sorting accuracy. This is achieved by a combination of (i) the use of refractive index matching oil that improves signal quality by removal of side scattering (increasing the sensitivity of absorbance measurements); (ii) a sorting algorithm capable of sorting at this increased frequency with an Arduino Due; and (iii) a chip design that transmits product detection better into sorting decisions without false positives, namely a single-layered inlet to space droplets further apart and injections of "bias oil" providing a fluidic barrier preventing droplets from entering the incorrect sorting channel. The updated ultra-high-throughput absorbance-activated droplet sorter increases the effective sensitivity of absorbance measurements through better signal quality at a speed that matches the more established fluorescence-activated sorting devices.
Collapse
Affiliation(s)
- Elliot J Medcalf
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| | - Maximilian Gantz
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| | - Tomasz S Kaminski
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom.,Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| |
Collapse
|
18
|
Schnettler JD, Klein OJ, Kaminski TS, Colin PY, Hollfelder F. Ultrahigh-Throughput Directed Evolution of a Metal-Free α/β-Hydrolase with a Cys-His-Asp Triad into an Efficient Phosphotriesterase. J Am Chem Soc 2023; 145:1083-1096. [PMID: 36583539 PMCID: PMC9853848 DOI: 10.1021/jacs.2c10673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Finding new mechanistic solutions for biocatalytic challenges is key in the evolutionary adaptation of enzymes, as well as in devising new catalysts. The recent release of man-made substances into the environment provides a dynamic testing ground for observing biocatalytic innovation at play. Phosphate triesters, used as pesticides, have only recently been introduced into the environment, where they have no natural counterpart. Enzymes have rapidly evolved to hydrolyze phosphate triesters in response to this challenge, converging onto the same mechanistic solution, which requires bivalent cations as a cofactor for catalysis. In contrast, the previously identified metagenomic promiscuous hydrolase P91, a homologue of acetylcholinesterase, achieves slow phosphotriester hydrolysis mediated by a metal-independent Cys-His-Asp triad. Here, we probe the evolvability of this new catalytic motif by subjecting P91 to directed evolution. By combining a focused library approach with the ultrahigh throughput of droplet microfluidics, we increase P91's activity by a factor of ≈360 (to a kcat/KM of ≈7 × 105 M-1 s-1) in only two rounds of evolution, rivaling the catalytic efficiencies of naturally evolved, metal-dependent phosphotriesterases. Unlike its homologue acetylcholinesterase, P91 does not suffer suicide inhibition; instead, fast dephosphorylation rates make the formation of the covalent adduct rather than its hydrolysis rate-limiting. This step is improved by directed evolution, with intermediate formation accelerated by 2 orders of magnitude. Combining focused, combinatorial libraries with the ultrahigh throughput of droplet microfluidics can be leveraged to identify and enhance mechanistic strategies that have not reached high efficiency in nature, resulting in alternative reagents with novel catalytic machineries.
Collapse
Affiliation(s)
- J David Schnettler
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Oskar James Klein
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Tomasz S Kaminski
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Pierre-Yves Colin
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
19
|
A growth selection system for the directed evolution of amine-forming or converting enzymes. Nat Commun 2022; 13:7458. [PMID: 36460668 PMCID: PMC9718777 DOI: 10.1038/s41467-022-35228-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Fast screening of enzyme variants is crucial for tailoring biocatalysts for the asymmetric synthesis of non-natural chiral chemicals, such as amines. However, most existing screening methods either are limited by the throughput or require specialized equipment. Herein, we report a simple, high-throughput, low-equipment dependent, and generally applicable growth selection system for engineering amine-forming or converting enzymes and apply it to improve biocatalysts belonging to three different enzyme classes. This results in (i) an amine transaminase variant with 110-fold increased specific activity for the asymmetric synthesis of the chiral amine intermediate of Linagliptin; (ii) a 270-fold improved monoamine oxidase to prepare the chiral amine intermediate of Cinacalcet by deracemization; and (iii) an ammonia lyase variant with a 26-fold increased activity in the asymmetric synthesis of a non-natural amino acid. Our growth selection system is adaptable to different enzyme classes, varying levels of enzyme activities, and thus a flexible tool for various stages of an engineering campaign.
Collapse
|
20
|
Alfonzo E, Das A, Arnold FH. New Additions to the Arsenal of Biocatalysts for Noncanonical Amino Acid Synthesis. CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY 2022; 38:100701. [PMID: 36561208 PMCID: PMC9770695 DOI: 10.1016/j.cogsc.2022.100701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Noncanonical amino acids (ncAAs) merge the conformational behavior and native interactions of proteinogenic amino acids with nonnative chemical motifs and have proven invaluable in developing modern therapeutics. This blending of native and nonnative characteristics has resulted in essential drugs like nirmatrelvir, which comprises three ncAAs and is used to treat COVID-19. Enzymes are appearing prominently in recent syntheses of ncAAs, where they demonstrate impressive control over the stereocenters and functional groups found therein. Here we review recent efforts to expand the biocatalyst arsenal for synthesizing ncAAs with natural enzymes. We also discuss how new-to-nature enzymes can contribute to this effort by catalyzing reactions inspired by the vast repertoire of chemical catalysis and acting on substrates that would otherwise not be used in synthesizing ncAAs. Abiotic enzyme-catalyzed reactions exploit the selectivity afforded by a macromolecular catalyst to access molecules not available to natural enzymes and perhaps not even chemical catalysis.
Collapse
Affiliation(s)
- Edwin Alfonzo
- Division of Chemistry and Chemical Engineering, 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, USA
| | - Anuvab Das
- Division of Chemistry and Chemical Engineering, 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, USA
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, USA
| |
Collapse
|
21
|
Wittmund M, Cadet F, Davari MD. Learning Epistasis and Residue Coevolution Patterns: Current Trends and Future Perspectives for Advancing Enzyme Engineering. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marcel Wittmund
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Frederic Cadet
- Laboratory of Excellence LABEX GR, DSIMB, Inserm UMR S1134, University of Paris city & University of Reunion, Paris 75014, France
| | - Mehdi D. Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| |
Collapse
|
22
|
Abstract
The ability to design efficient enzymes from scratch would have a profound effect on chemistry, biotechnology and medicine. Rapid progress in protein engineering over the past decade makes us optimistic that this ambition is within reach. The development of artificial enzymes containing metal cofactors and noncanonical organocatalytic groups shows how protein structure can be optimized to harness the reactivity of nonproteinogenic elements. In parallel, computational methods have been used to design protein catalysts for diverse reactions on the basis of fundamental principles of transition state stabilization. Although the activities of designed catalysts have been quite low, extensive laboratory evolution has been used to generate efficient enzymes. Structural analysis of these systems has revealed the high degree of precision that will be needed to design catalysts with greater activity. To this end, emerging protein design methods, including deep learning, hold particular promise for improving model accuracy. Here we take stock of key developments in the field and highlight new opportunities for innovation that should allow us to transition beyond the current state of the art and enable the robust design of biocatalysts to address societal needs.
Collapse
|
23
|
Wang J, Qu G, Xie L, Gao C, Jiang Y, Zhang YHPJ, Sun Z, You C. Engineering of a thermophilic dihydroxy-acid dehydratase toward glycerate dehydration for in vitro biosystems. Appl Microbiol Biotechnol 2022; 106:3625-3637. [PMID: 35546366 DOI: 10.1007/s00253-022-11936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/04/2022] [Accepted: 04/21/2022] [Indexed: 12/01/2022]
Abstract
Dihydroxy-acid dehydratase (DHAD) plays an important role in the utilization of glycerol or glucose for the production of value-added chemicals in the in vitro synthetic enzymatic biosystem. The low activity of DHAD in the dehydration of glycerate to pyruvate hampers its applications in biosystems. Protein engineering of a thermophilic DHAD from Sulfolobus solfataricus (SsDHAD) was performed to increase its dehydration activity. A triple mutant (I161M/Y145S/G205K) with a 10-fold higher activity on glycerate dehydration was obtained after three rounds of iterative saturation mutagenesis (ISM) based on computational analysis. The shrunken substrate-binding pocket and newly formed hydrogen bonds were the reason for the activity improvement of the mutant. For the in vitro synthetic enzymatic biosystems of converting glucose or glycerol to L-lactate, the biosystems with the mutant SsDHAD showed 3.32- and 2.34-fold higher reaction rates than the wild type, respectively. This study demonstrates the potential of protein engineering to improve the efficiency of in vitro synthetic enzymatic biosystems by enhancing the enzyme activity of rate-limited enzymes. KEY POINTS: • A screening method was established for the protein engineering of SsDHAD. • A R3 mutant of SsDHAD with 10-fold higher activity was obtained. • The R3 mutant exhibits higher productivity in the in vitro biosystems.
Collapse
Affiliation(s)
- Juan Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Leipeng Xie
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shandanan Road, Jinan, 250100, China
| | - Yingying Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Yi-Heng P Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China. .,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China. .,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
| |
Collapse
|
24
|
Gimeno‐Pérez M, Finnigan JD, Echeverria C, Charnock SJ, Hidalgo A, Mate DM. A Coupled Ketoreductase-Diaphorase Assay for the Detection of Polyethylene Terephthalate-Hydrolyzing Activity. CHEMSUSCHEM 2022; 15:e202102750. [PMID: 35315974 PMCID: PMC9321771 DOI: 10.1002/cssc.202102750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/22/2022] [Indexed: 06/14/2023]
Abstract
In the last two decades, several PET-degrading enzymes from already known microorganisms or metagenomic sources have been discovered to face the growing environmental concern of polyethylene terephthalate (PET) accumulation. However, there is a limited number of high-throughput screening protocols for PET-hydrolyzing activity that avoid the use of surrogate substrates. Herein, a microplate fluorescence screening assay was described. It was based on the coupled activity of ketoreductases (KREDs) and diaphorase to release resorufin in the presence of the products of PET degradation. Six KREDs were identified in a commercial panel that were able to use the PET building block, ethylene glycol, as substrate. The most efficient KRED, KRED61, was combined with the diaphorase from Clostridium kluyveri to monitor the PET degradation reaction catalyzed by the thermostable variant of the cutinase-type polyesterase from Saccharomonospora viridis AHK190. The PET degradation products were measured both fluorimetrically and by HPLC, with excellent correlation between both methods.
Collapse
Affiliation(s)
- María Gimeno‐Pérez
- Department of Molecular BiologyUniversidad Autónoma de MadridCampus de CantoblancoMadrid28049Spain
- Center of Molecular Biology “Severo Ochoa” (UAM-CSIC)Nicolás Cabrera 1Madrid28049Spain
- Institute for Molecular Biology-IUBMUniversidad Autónoma de MadridCampus de CantoblancoMadrid28049Spain
| | | | - Coro Echeverria
- Institute of Polymer Science and TechnologySpanish Research CouncilJuan de la Cierva 328006MadridSpain
| | | | - Aurelio Hidalgo
- Department of Molecular BiologyUniversidad Autónoma de MadridCampus de CantoblancoMadrid28049Spain
- Center of Molecular Biology “Severo Ochoa” (UAM-CSIC)Nicolás Cabrera 1Madrid28049Spain
- Institute for Molecular Biology-IUBMUniversidad Autónoma de MadridCampus de CantoblancoMadrid28049Spain
| | - Diana M. Mate
- Department of Molecular BiologyUniversidad Autónoma de MadridCampus de CantoblancoMadrid28049Spain
- Center of Molecular Biology “Severo Ochoa” (UAM-CSIC)Nicolás Cabrera 1Madrid28049Spain
- Institute for Molecular Biology-IUBMUniversidad Autónoma de MadridCampus de CantoblancoMadrid28049Spain
| |
Collapse
|
25
|
Alcántara AR, Domínguez de María P, Littlechild JA, Schürmann M, Sheldon RA, Wohlgemuth R. Biocatalysis as Key to Sustainable Industrial Chemistry. CHEMSUSCHEM 2022; 15:e202102709. [PMID: 35238475 DOI: 10.1002/cssc.202102709] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Indexed: 06/14/2023]
Abstract
The role and power of biocatalysis in sustainable chemistry has been continuously brought forward step by step to its present outstanding position. The problem-solving capabilities of biocatalysis have been realized by numerous substantial achievements in biology, chemistry and engineering. Advances and breakthroughs in the life sciences and interdisciplinary cooperation with chemistry have clearly accelerated the implementation of biocatalytic synthesis in modern chemistry. Resource-efficient biocatalytic manufacturing processes have already provided numerous benefits to sustainable chemistry as well as customer-centric value creation in the pharmaceutical, food, flavor, fragrance, vitamin, agrochemical, polymer, specialty, and fine chemical industries. Biocatalysis can make significant contributions not only to manufacturing processes, but also to the design of completely new value-creation chains. Biocatalysis can now be considered as a key enabling technology to implement sustainable chemistry.
Collapse
Affiliation(s)
- Andrés R Alcántara
- Department of Chemistry in Pharmaceutical Sciences (QUICIFARM), Complutense University of Madrid (UCM), 28040-, Madrid, Spain
| | - Pablo Domínguez de María
- Sustainable Momentum, SL, Av. Ansite 3, 4-6, 35011, Las Palmas de Gran Canaria, Canary Is., Spain
| | - Jennifer A Littlechild
- Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | | | - Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Braamfontein, Johannesburg, South Africa
| | - Roland Wohlgemuth
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 90-537, Lodz, Poland
- Swiss Coordination Committee for Biotechnology, 8021, Zurich, Switzerland
| |
Collapse
|
26
|
Alvarado JIM, Meinhardt JM, Lin S. Working at the interfaces of data science and synthetic electrochemistry. TETRAHEDRON CHEM 2022; 1. [PMID: 35441154 PMCID: PMC9014485 DOI: 10.1016/j.tchem.2022.100012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemistry is quickly entering the mainstream of synthetic organic chemistry. The diversity of new transformations enabled by electrochemistry is to a large extent a consequence of the unique features and reaction parameters in electrochemical systems including redox mediators, applied potential, electrode material, and cell construction. While offering chemists new means to control reactivity and selectivity, these additional features also increase the dimensionalities of a reaction system and complicate its optimization. This challenge, however, has spawned increasing adoption of data science tools to aid reaction discovery as well as development of high-throughput screening platforms that facilitate the generation of high quality datasets. In this Perspective, we provide an overview of recent advances in data-science driven electrochemistry with an emphasis on the opportunities and challenges facing this growing subdiscipline.
Collapse
|
27
|
Vanella R, Kovacevic G, Doffini V, Fernández de Santaella J, Nash MA. High-throughput screening, next generation sequencing and machine learning: advanced methods in enzyme engineering. Chem Commun (Camb) 2022; 58:2455-2467. [PMID: 35107442 PMCID: PMC8851469 DOI: 10.1039/d1cc04635g] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/23/2022] [Indexed: 12/29/2022]
Abstract
Enzyme engineering is an important biotechnological process capable of generating tailored biocatalysts for applications in industrial chemical conversion and biopharma. Typical enhancements sought in enzyme engineering and in vitro evolution campaigns include improved folding stability, catalytic activity, and/or substrate specificity. Despite significant progress in recent years in the areas of high-throughput screening and DNA sequencing, our ability to explore the vast space of functional enzyme sequences remains severely limited. Here, we review the currently available suite of modern methods for enzyme engineering, with a focus on novel readout systems based on enzyme cascades, and new approaches to reaction compartmentalization including single-cell hydrogel encapsulation techniques to achieve a genotype-phenotype link. We further summarize systematic scanning mutagenesis approaches and their merger with deep mutational scanning and massively parallel next-generation DNA sequencing technologies to generate mutability landscapes. Finally, we discuss the implementation of machine learning models for computational prediction of enzyme phenotypic fitness from sequence. This broad overview of current state-of-the-art approaches for enzyme engineering and evolution will aid newcomers and experienced researchers alike in identifying the important challenges that should be addressed to move the field forward.
Collapse
Affiliation(s)
- Rosario Vanella
- Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
| | - Gordana Kovacevic
- Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
| | - Vanni Doffini
- Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
| | - Jaime Fernández de Santaella
- Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
| | - Michael A Nash
- Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
| |
Collapse
|
28
|
Wu X, Li Z, Lin J, Huang Z, Chen F. Engineered Cyclohexylamine Oxidase with Improved Activity and Stereoselectivity for Asymmetric Synthesis of a Bulky Dextromethorphan Precursor and Its Analogues. ChemCatChem 2022. [DOI: 10.1002/cctc.202101970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaofan Wu
- Fudan University Department of Chemistry CHINA
| | - Zhining Li
- Fudan University Department of Chemistry CHINA
| | - Juan Lin
- Fuzhou University College of Chemical Engineering CHINA
| | - Zedu Huang
- Fudan University Chemistry Department 220 Handan Road 200433 Shanghai CHINA
| | - Fener Chen
- Fudan University Department of Chemistry CHINA
| |
Collapse
|
29
|
Cecchini DA, Sánchez-Costa M, Orrego AH, Fernández-Lucas J, Hidalgo A. Ultrahigh-Throughput Screening of Metagenomic Libraries Using Droplet Microfluidics. Methods Mol Biol 2022; 2397:19-32. [PMID: 34813057 DOI: 10.1007/978-1-0716-1826-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Droplet microfluidics enables the ultrahigh-throughput screening of the natural or man-made genetic diversity for industrial enzymes, with reduced reagent consumption and lower costs than conventional robotic alternatives. Here we describe an example of metagenomic screening for nucleoside 2'-deoxyribosyl transferases using FACS as a more widespread and accessible alternative than microfluidic on-chip sorters. This protocol can be easily adapted to directed evolution libraries by replacing the library construction steps and to other enzyme activities, e.g., oxidases, by replacing the proposed coupled assay.
Collapse
Affiliation(s)
- Davide Agostino Cecchini
- Department of Molecular Biology, Center for Molecular Biology "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Mercedes Sánchez-Costa
- Department of Molecular Biology, Center for Molecular Biology "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Alejandro H Orrego
- Department of Molecular Biology, Center for Molecular Biology "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Aurelio Hidalgo
- Department of Molecular Biology, Center for Molecular Biology "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
30
|
Simić S, Zukić E, Schmermund L, Faber K, Winkler CK, Kroutil W. Shortening Synthetic Routes to Small Molecule Active Pharmaceutical Ingredients Employing Biocatalytic Methods. Chem Rev 2021; 122:1052-1126. [PMID: 34846124 DOI: 10.1021/acs.chemrev.1c00574] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biocatalysis, using enzymes for organic synthesis, has emerged as powerful tool for the synthesis of active pharmaceutical ingredients (APIs). The first industrial biocatalytic processes launched in the first half of the last century exploited whole-cell microorganisms where the specific enzyme at work was not known. In the meantime, novel molecular biology methods, such as efficient gene sequencing and synthesis, triggered breakthroughs in directed evolution for the rapid development of process-stable enzymes with broad substrate scope and good selectivities tailored for specific substrates. To date, enzymes are employed to enable shorter, more efficient, and more sustainable alternative routes toward (established) small molecule APIs, and are additionally used to perform standard reactions in API synthesis more efficiently. Herein, large-scale synthetic routes containing biocatalytic key steps toward >130 APIs of approved drugs and drug candidates are compared with the corresponding chemical protocols (if available) regarding the steps, reaction conditions, and scale. The review is structured according to the functional group formed in the reaction.
Collapse
Affiliation(s)
- Stefan Simić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Erna Zukić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Kurt Faber
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Christoph K Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria.,Field of Excellence BioHealth─University of Graz, 8010 Graz, Austria.,BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
31
|
Gantz M, Aleku GA, Hollfelder F. Ultrahigh-throughput screening in microfluidic droplets: a faster route to new enzymes. Trends Biochem Sci 2021; 47:451-452. [PMID: 34848125 DOI: 10.1016/j.tibs.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Affiliation(s)
- Maximilian Gantz
- Department of Biochemistry, University of Cambridge, 80 Tennis Ct Rd, Cambridge CB2 1GA, UK
| | - Godwin A Aleku
- Department of Biochemistry, University of Cambridge, 80 Tennis Ct Rd, Cambridge CB2 1GA, UK
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Ct Rd, Cambridge CB2 1GA, UK.
| |
Collapse
|
32
|
Manteca A, Gadea A, Van Assche D, Cossard P, Gillard-Bocquet M, Beneyton T, Innis CA, Baret JC. Directed Evolution in Drops: Molecular Aspects and Applications. ACS Synth Biol 2021; 10:2772-2783. [PMID: 34677942 PMCID: PMC8609573 DOI: 10.1021/acssynbio.1c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 11/29/2022]
Abstract
The process of optimizing the properties of biological molecules is paramount for many industrial and medical applications. Directed evolution is a powerful technique for modifying and improving biomolecules such as proteins or nucleic acids (DNA or RNA). Mimicking the mechanism of natural evolution, one can enhance a desired property by applying a suitable selection pressure and sorting improved variants. Droplet-based microfluidic systems offer a high-throughput solution to this approach by helping to overcome the limiting screening steps and allowing the analysis of variants within increasingly complex libraries. Here, we review cases where successful evolution of biomolecules was achieved using droplet-based microfluidics, focusing on the molecular processes involved and the incorporation of microfluidics to the workflow. We highlight the advantages and limitations of these microfluidic systems compared to low-throughput methods and show how the integration of these systems into directed evolution workflows can open new avenues to discover or improve biomolecules according to user-defined conditions.
Collapse
Affiliation(s)
- Aitor Manteca
- Univ.
Bordeaux, Institut National de la Santé et de la Recherche
Médicale, Centre National de la Recherche Scientifique, ARNA,
U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600 Pessac, France
| | - Alejandra Gadea
- Univ.
Bordeaux, CNRS, CRPP, UMR 5031, F-33610, Pessac, France
| | | | - Pauline Cossard
- Univ.
Bordeaux, Institut National de la Santé et de la Recherche
Médicale, Centre National de la Recherche Scientifique, ARNA,
U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600 Pessac, France
| | - Mélanie Gillard-Bocquet
- Univ.
Bordeaux, Institut National de la Santé et de la Recherche
Médicale, Centre National de la Recherche Scientifique, ARNA,
U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600 Pessac, France
| | - Thomas Beneyton
- Univ.
Bordeaux, CNRS, CRPP, UMR 5031, F-33610, Pessac, France
| | - C. Axel Innis
- Univ.
Bordeaux, Institut National de la Santé et de la Recherche
Médicale, Centre National de la Recherche Scientifique, ARNA,
U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600 Pessac, France
| | - Jean-Christophe Baret
- Univ.
Bordeaux, CNRS, CRPP, UMR 5031, F-33610, Pessac, France
- Institut
Universitaire de France, F-75231 Paris, France
| |
Collapse
|
33
|
Kardashliev T, Weingartner A, Romero E, Schwaneberg U, Fraaije M, Panke S, Held M. Whole-cell screening of oxidative enzymes using genetically encoded sensors. Chem Sci 2021; 12:14766-14772. [PMID: 34820092 PMCID: PMC8597865 DOI: 10.1039/d1sc02578c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
Biocatalysis is increasingly used for synthetic purposes in the chemical and especially the pharmaceutical industry. Enzyme discovery and optimization which is frequently needed to improve biocatalytic performance rely on high-throughput methods for activity determination. These methods should ideally be generic and applicable to entire enzyme families. Hydrogen peroxide (H2O2) is a product of several biocatalytic oxidations and its formation can serve as a proxy for oxidative activity. We designed a genetically encoded sensor for activity measurement of oxidative biocatalysts via the amount of intracellularly-formed H2O2. A key component of the sensor is an H2O2-sensitive transcriptional regulator, OxyR, which is used to control the expression levels of fluorescent proteins. We employed the OxyR sensor to monitor the oxidation of glycerol to glyceraldehyde and of toluene to o-cresol catalysed by recombinant E. coli expressing an alcohol oxidase and a P450 monooxygenase, respectively. In case of the P450 BM3-catalysed reaction, we additionally monitored o-cresol formation via a second genetically encoded sensor based on the phenol-sensitive transcriptional activator, DmpR, and an orthogonal fluorescent reporter protein. Single round screens of mutant libraries by flow cytometry or by visual inspection of colonies on agar plates yielded significantly improved oxidase and oxygenase variants thus exemplifying the suitability of the sensor system to accurately assess whole-cell oxidations in a high-throughput manner.
Collapse
Affiliation(s)
- Tsvetan Kardashliev
- Department of Biosystems Science and Engineering ETH Zurich, Mattenstrasse 26 4058 Basel Switzerland
| | - Alexandra Weingartner
- Institute of Biotechnology, RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Elvira Romero
- Faculty of Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Marco Fraaije
- Faculty of Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Sven Panke
- Department of Biosystems Science and Engineering ETH Zurich, Mattenstrasse 26 4058 Basel Switzerland
| | - Martin Held
- Department of Biosystems Science and Engineering ETH Zurich, Mattenstrasse 26 4058 Basel Switzerland
| |
Collapse
|
34
|
Stucki A, Vallapurackal J, Ward TR, Dittrich PS. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey. Angew Chem Int Ed Engl 2021; 60:24368-24387. [PMID: 33539653 PMCID: PMC8596820 DOI: 10.1002/anie.202016154] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Evolution is essential to the generation of complexity and ultimately life. It relies on the propagation of the properties, traits, and characteristics that allow an organism to survive in a challenging environment. It is evolution that shaped our world over about four billion years by slow and iterative adaptation. While natural evolution based on selection is slow and gradual, directed evolution allows the fast and streamlined optimization of a phenotype under selective conditions. The potential of directed evolution for the discovery and optimization of enzymes is mostly limited by the throughput of the tools and methods available for screening. Over the past twenty years, versatile tools based on droplet microfluidics have been developed to address the need for higher throughput. In this Review, we provide a chronological overview of the intertwined development of microfluidics droplet-based compartmentalization methods and in vivo directed evolution of enzymes.
Collapse
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Jaicy Vallapurackal
- Department of ChemistryUniversity of BaselMattenstrasse 24aCH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Thomas R. Ward
- Department of ChemistryUniversity of BaselMattenstrasse 24aCH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| |
Collapse
|
35
|
Klaus M, Zurek PJ, Kaminski TS, Pushpanath A, Neufeld K, Hollfelder F. Ultrahigh-Throughput Detection of Enzymatic Alcohol Dehydrogenase Activity in Microfluidic Droplets with a Direct Fluorogenic Assay. Chembiochem 2021; 22:3292-3299. [PMID: 34643305 PMCID: PMC9291573 DOI: 10.1002/cbic.202100322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/13/2021] [Indexed: 12/02/2022]
Abstract
The exploration of large DNA libraries of metagenomic or synthetic origin is greatly facilitated by ultrahigh‐throughput assays that use monodisperse water‐in‐oil emulsion droplets as sequestered reaction compartments. Millions of samples can be generated and analysed in microfluidic devices at kHz speeds, requiring only micrograms of reagents. The scope of this powerful platform for the discovery of new sequence space is, however, hampered by the limited availability of assay substrates, restricting the functions and reaction types that can be investigated. Here, we broaden the scope of detectable biochemical transformations in droplet microfluidics by introducing the first fluorogenic assay for alcohol dehydrogenases (ADHs) in this format. We have synthesized substrates that release a pyranine fluorophore (8‐hydroxy‐1,3,6‐pyrenetrisulfonic acid, HPTS) when enzymatic turnover occurs. Pyranine is well retained in droplets for >6 weeks (i. e. 14‐times longer than fluorescein), avoiding product leakage and ensuring excellent assay sensitivity. Product concentrations as low as 100 nM were successfully detected, corresponding to less than one turnover per enzyme molecule on average. The potential of our substrate design was demonstrated by efficient recovery of a bona fide ADH with an >800‐fold enrichment. The repertoire of droplet screening is enlarged by this sensitive and direct fluorogenic assay to identify dehydrogenases for biocatalytic applications.
Collapse
Affiliation(s)
- Miriam Klaus
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK.,Current address: ICB Nuvisan GmbH, Müllerstraße 178, 13353, Berlin, Germany
| | - Paul Jannis Zurek
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK.,Johnson Matthey Plc, 260 Cambridge Science Park, CB4 0WE, Cambridge, UK.,Current address: BioNTech Cell & Gene Therapies GmbH, An der Goldgrube 12, 55131, Mainz, Germany
| | - Tomasz S Kaminski
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK.,Current address: Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Ahir Pushpanath
- Johnson Matthey Plc, 260 Cambridge Science Park, CB4 0WE, Cambridge, UK
| | - Katharina Neufeld
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK.,Johnson Matthey Plc, 260 Cambridge Science Park, CB4 0WE, Cambridge, UK.,Current address: Janssen Pharmaceutica, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK
| |
Collapse
|
36
|
Maxel S, Saleh S, King E, Aspacio D, Zhang L, Luo R, Li H. Growth-Based, High-Throughput Selection for NADH Preference in an Oxygen-Dependent Biocatalyst. ACS Synth Biol 2021; 10:2359-2370. [PMID: 34469126 PMCID: PMC10362907 DOI: 10.1021/acssynbio.1c00258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclohexanone monooxygenases (CHMO) consume molecular oxygen and NADPH to catalyze the valuable oxidation of cyclic ketones. However, CHMO usage is restricted by poor stability and stringent specificity for NADPH. Efforts to engineer CHMO have been limited by the sensitivity of the enzyme to perturbations in conformational dynamics and long-range interactions that cannot be predicted. We demonstrate an aerobic, high-throughput growth selection platform in Escherichia coli for oxygenase evolution based on NADH redox balance. We applied this NADH-dependent selection to alter the cofactor specificity of CHMO to accept NADH, a less expensive cofactor than NADPH. We first identified the variant CHMO DTNP (S208D-K326T-K349N-L143P) with a ∼1200-fold relative cofactor specificity switch from NADPH to NADH compared to the wild type through semirational design. Molecular modeling suggests CHMO DTNP activity is driven by cooperative fine-tuning of cofactor contacts. Additional evolution of CHMO DTNP through random mutagenesis yielded the variant CHMO DTNPY with a ∼2900-fold relative specificity switch compared to the wild type afforded by an additional distal mutation, H163Y. These results highlight the difficulty in engineering functionally innovative variants from static models and rational designs, and the need for high throughput selection methods. Our introduced tools for oxygenase engineering accelerate the advancements of characteristics essential for industrial feasibility.
Collapse
Affiliation(s)
- Sarah Maxel
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| | - Samer Saleh
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| | - Edward King
- Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Derek Aspacio
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| | - Linyue Zhang
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| | - Ray Luo
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
- Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
- Biomedical Engineering, University of California, Irvine, California 92697, United States
| | - Han Li
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
- Biomedical Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
37
|
Heath RS, Ruscoe RE, Turner NJ. The beauty of biocatalysis: sustainable synthesis of ingredients in cosmetics. Nat Prod Rep 2021; 39:335-388. [PMID: 34879125 DOI: 10.1039/d1np00027f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2015 up to July 2021The market for cosmetics is consumer driven and the desire for green, sustainable and natural ingredients is increasing. The use of isolated enzymes and whole-cell organisms to synthesise these products is congruent with these values, especially when combined with the use of renewable, recyclable or waste feedstocks. The literature of biocatalysis for the synthesis of ingredients in cosmetics in the past five years is herein reviewed.
Collapse
Affiliation(s)
- Rachel S Heath
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Rebecca E Ruscoe
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nicholas J Turner
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
38
|
Yi D, Bayer T, Badenhorst CPS, Wu S, Doerr M, Höhne M, Bornscheuer UT. Recent trends in biocatalysis. Chem Soc Rev 2021; 50:8003-8049. [PMID: 34142684 PMCID: PMC8288269 DOI: 10.1039/d0cs01575j] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Biocatalysis has undergone revolutionary progress in the past century. Benefited by the integration of multidisciplinary technologies, natural enzymatic reactions are constantly being explored. Protein engineering gives birth to robust biocatalysts that are widely used in industrial production. These research achievements have gradually constructed a network containing natural enzymatic synthesis pathways and artificially designed enzymatic cascades. Nowadays, the development of artificial intelligence, automation, and ultra-high-throughput technology provides infinite possibilities for the discovery of novel enzymes, enzymatic mechanisms and enzymatic cascades, and gradually complements the lack of remaining key steps in the pathway design of enzymatic total synthesis. Therefore, the research of biocatalysis is gradually moving towards the era of novel technology integration, intelligent manufacturing and enzymatic total synthesis.
Collapse
Affiliation(s)
- Dong Yi
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Thomas Bayer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Shuke Wu
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Mark Doerr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Matthias Höhne
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| |
Collapse
|
39
|
Stucki A, Vallapurackal J, Ward TR, Dittrich PS. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and Engineering ETH Zurich Mattenstrasse 26 CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Jaicy Vallapurackal
- Department of Chemistry University of Basel Mattenstrasse 24a CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Thomas R. Ward
- Department of Chemistry University of Basel Mattenstrasse 24a CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering ETH Zurich Mattenstrasse 26 CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| |
Collapse
|
40
|
Bouzetos E, Ganar KA, Mastrobattista E, Deshpande S, van der Oost J. (R)evolution-on-a-chip. Trends Biotechnol 2021; 40:60-76. [PMID: 34049723 DOI: 10.1016/j.tibtech.2021.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 01/17/2023]
Abstract
Billions of years of Darwinian evolution has led to the emergence of highly sophisticated and diverse life forms on Earth. Inspired by natural evolution, similar principles have been adopted in laboratory evolution for the fast optimization of genes and proteins for specific applications. In this review, we highlight state-of-the-art laboratory evolution strategies for protein engineering, with a special emphasis on in vitro strategies. We further describe how recent progress in microfluidic technology has allowed the generation and manipulation of artificial compartments for high-throughput laboratory evolution experiments. Expectations for the future are high: we foresee a revolution on-a-chip.
Collapse
Affiliation(s)
- Evgenios Bouzetos
- Laboratory of Microbiology, Wageningen University and Research, 6708, WE, Wageningen, The Netherlands
| | - Ketan Ashok Ganar
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, 6708, WE, Wageningen, The Netherlands
| | - Enrico Mastrobattista
- Pharmaceutics Division, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Siddharth Deshpande
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, 6708, WE, Wageningen, The Netherlands.
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, 6708, WE, Wageningen, The Netherlands.
| |
Collapse
|
41
|
Coulther TA, Pott M, Zeymer C, Hilvert D, Ondrechen MJ. Analysis of electrostatic coupling throughout the laboratory evolution of a designed retroaldolase. Protein Sci 2021; 30:1617-1627. [PMID: 33938058 PMCID: PMC8284568 DOI: 10.1002/pro.4099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
The roles of local interactions in the laboratory evolution of a highly active, computationally designed retroaldolase (RA) are examined. Partial Order Optimum Likelihood (POOL) is used to identify catalytically important amino acid interactions in several RA95 enzyme variants. The series RA95.5, RA95.5–5, RA95.5–8, and RA95.5–8F, representing progress along an evolutionary trajectory with increasing activity, is examined. Computed measures of coupling between charged states of residues show that, as evolution proceeds and higher activities are achieved, electrostatic coupling between the biochemically active amino acids and other residues is increased. In silico residue scanning suggests multiple coupling partners for the catalytic lysine K83. The effects of two predicted partners, Y51 and E85, are tested using site‐directed mutagenesis and kinetic analysis of the variants Y51F and E85Q. The Y51F variants show decreases in kcat relative to wild type, with the greatest losses observed for the more evolved constructs; they also exhibit significant decreases in kcat/KM across the series. Only modest decreases in kcat/KM are observed for the E85Q variants with little effect on kcat. Computed metrics of the degree of coupling between protonation states rise significantly as evolution proceeds and catalytic turnover rate increases. Specifically, the charge state of the catalytic lysine K83 becomes more strongly coupled to those of other amino acids as the enzyme evolves to a better catalyst.
Collapse
Affiliation(s)
- Timothy A Coulther
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA.,Genome Center, University of California, Davis, California, USA
| | - Moritz Pott
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Cathleen Zeymer
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland.,Department of Chemistry, Technische Universität München, Garching, Germany
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Mary Jo Ondrechen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Fu X, Zhang Y, Xu Q, Sun X, Meng F. Recent Advances on Sorting Methods of High-Throughput Droplet-Based Microfluidics in Enzyme Directed Evolution. Front Chem 2021; 9:666867. [PMID: 33996758 PMCID: PMC8114877 DOI: 10.3389/fchem.2021.666867] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022] Open
Abstract
Droplet-based microfluidics has been widely applied in enzyme directed evolution (DE), in either cell or cell-free system, due to its low cost and high throughput. As the isolation principles are based on the labeled or label-free characteristics in the droplets, sorting method contributes mostly to the efficiency of the whole system. Fluorescence-activated droplet sorting (FADS) is the mostly applied labeled method but faces challenges of target enzyme scope. Label-free sorting methods show potential to greatly broaden the microfluidic application range. Here, we review the developments of droplet sorting methods through a comprehensive literature survey, including labeled detections [FADS and absorbance-activated droplet sorting (AADS)] and label-free detections [electrochemical-based droplet sorting (ECDS), mass-activated droplet sorting (MADS), Raman-activated droplet sorting (RADS), and nuclear magnetic resonance-based droplet sorting (NMR-DS)]. We highlight recent cases in the last 5 years in which novel enzymes or highly efficient variants are generated by microfluidic DE. In addition, the advantages and challenges of different sorting methods are briefly discussed to provide an outlook for future applications in enzyme DE.
Collapse
Affiliation(s)
- Xiaozhi Fu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Yueying Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qiang Xu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaomeng Sun
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Fanda Meng
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
43
|
Chen HM, Nasseri SA, Rahfeld P, Wardman JF, Kohsiek M, Withers SG. Synthesis and evaluation of sensitive coumarin-based fluorogenic substrates for discovery of α-N-acetyl galactosaminidases through droplet-based screening. Org Biomol Chem 2021; 19:789-793. [PMID: 33411870 DOI: 10.1039/d0ob02484h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As part of a search for a substrate for droplet-based microfluidic screening assay of α-N-acetylgalactosaminidases, spectral and physical characteristics of a series of coumarin derivatives were measured. From among these a new coumarin-based fluorophore, Jericho Blue, was selected as having optimal characteristics for our screen. A reliable method for the challenging synthesis of coumarin glycosides of α-GalNAc was then developed and demonstrated with nine examples. The α-GalNAc glycoside of Jericho Blue prepared in this way was shown to function well under screening conditions.
Collapse
Affiliation(s)
- Hong-Ming Chen
- Department of Chemistry, University of British Columbia, 2016 Main Mall, Vancouver, B.C., Canada.
| | | | - Peter Rahfeld
- Department of Chemistry, University of British Columbia, 2016 Main Mall, Vancouver, B.C., Canada.
| | - Jacob F Wardman
- Department of Chemistry, University of British Columbia, 2016 Main Mall, Vancouver, B.C., Canada.
| | - Maurits Kohsiek
- Department of Chemistry, University of British Columbia, 2016 Main Mall, Vancouver, B.C., Canada.
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, 2016 Main Mall, Vancouver, B.C., Canada.
| |
Collapse
|
44
|
Lu H, Yu S, Qin F, Ning W, Ma X, Tian K, Li Z, Zhou K. A secretion-based dual fluorescence assay for high-throughput screening of alcohol dehydrogenases. Biotechnol Bioeng 2021; 118:1624-1635. [PMID: 33492694 DOI: 10.1002/bit.27677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/10/2020] [Accepted: 12/31/2020] [Indexed: 11/05/2022]
Abstract
Alcohol dehydrogenases (ADHs) play key roles in the production of various chemical precursors that are essential in pharmaceutical and fine chemical industries. To achieve a practical application of ADHs in industrial processes, tailoring enzyme properties through rational design or directed evolution is often required. Here, we developed a secretion-based dual fluorescence assay (SDFA) for high-throughput screening of ADHs. In SDFA, an ADH of interest is fused to a mutated superfolder green fluorescent protein (MsfGFP), which could result in the secretion of the fusion protein to culture broth. After a simple centrifugation step to remove the cells, the supernatant can be directly used to measure the activity of ADH based on a red fluorescence signal, whose increase is coupled to the formation of NADH (a redox cofactor of ADHs) in the reaction. SDFA allows easy quantification of ADH concentration based on the green fluorescence signal of MsfGFP. This feature is useful in determining specific activity and may improve screening accuracy. Out of five ADHs we have tested with SDFA, four ADHs can be secreted and characterized. We successfully screened a combinatorial library of an ADH from Pichia finlandica and identified a variant with a 197-fold higher kcat /km value toward (S)-2-octanol compared to its wild type.
Collapse
Affiliation(s)
- Hongyuan Lu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Shiqin Yu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Fengyu Qin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Wenbo Ning
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Xiaoqiang Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.,Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Kaiyuan Tian
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | | | - Kang Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| |
Collapse
|
45
|
Slagman S, Fessner WD. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem Soc Rev 2021; 50:1968-2009. [DOI: 10.1039/d0cs00763c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An assessment of biocatalytic strategies for the synthesis of anti-viral agents, offering guidelines for the development of sustainable production methods for a future COVID-19 remedy.
Collapse
Affiliation(s)
- Sjoerd Slagman
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| |
Collapse
|
46
|
Sauer DF, Wittwer M, Markel U, Minges A, Spiertz M, Schiffels J, Davari MD, Groth G, Okuda J, Schwaneberg U. Chemogenetic engineering of nitrobindin toward an artificial epoxygenase. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00609f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemogenetic engineering turned the heme protein nitrobindin into an artificial epoxygenase: MnPPIX was introduced and subsequent protein engineering increased the activity in the epoxidation of styrene derivatives by overall 7-fold.
Collapse
Affiliation(s)
- Daniel F. Sauer
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Malte Wittwer
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Markel
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Alexander Minges
- Institute of Biochemical Plant Physiology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Markus Spiertz
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | | | - Mehdi D. Davari
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Georg Groth
- Institute of Biochemical Plant Physiology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI – Leibniz Institute for Interactive Materials
| |
Collapse
|
47
|
Gargiulo S, Soumillion P. Directed evolution for enzyme development in biocatalysis. Curr Opin Chem Biol 2020; 61:107-113. [PMID: 33385931 DOI: 10.1016/j.cbpa.2020.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
As an important sector of the chemical industry, biocatalysis requires the continuous development of enzymes with tailor-made activity, selectivity, stability, or tolerance to unnatural environments. This is now routinely achieved by directed evolution based on iterative cycles of genetic diversification and activity screening. Here, we highlight its recent developments. First, the design of "smarter" libraries by focused mutagenesis may be a crucial start-up for a fast and successful outcome. Then library assembly and expression are also key steps that benefits from modern molecular biology progresses. Finally, various strategies may be considered for library screening depending on the final objective: while low-throughput direct assays have been very successful in generating enzymes for important biocatalytic processes, even in bringing completely new chemistries to the enzyme world, ultrahigh-throughput screening methods are emerging as powerful approaches for engineering the next generation of industrial enzymes.
Collapse
Affiliation(s)
- Serena Gargiulo
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Place Croix du Sud 4-5, 1390 Louvain-la-Neuve, Belgium
| | - Patrice Soumillion
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Place Croix du Sud 4-5, 1390 Louvain-la-Neuve, Belgium.
| |
Collapse
|
48
|
Abstract
Biocatalysis has undergone a remarkable transition in the last two decades, from being considered a niche technology to playing a much more relevant role in organic synthesis today. Advances in molecular biology and bioinformatics, and the decreasing costs for gene synthesis and sequencing contribute to the growing success of engineered biocatalysts in industrial applications. However, the incorporation of biocatalytic process steps in new or established manufacturing routes is not always straightforward. To realize the full synthetic potential of biocatalysis for the sustainable manufacture of chemical building blocks, it is therefore important to regularly analyze the success factors and existing hurdles for the implementation of enzymes in large scale small molecule synthesis. Building on our previous analysis of biocatalysis in the Swiss manufacturing environment, we present a follow-up study on how the industrial biocatalysis situation in Switzerland has evolved in the last four years. Considering the current industrial landscape, we record recent advances in biocatalysis in Switzerland as well as give suggestions where enzymatic transformations may be valuably employed to address some of the societal challenges we face today, particularly in the context of the current Coronavirus disease 2019 (COVID-19) pandemic.
Collapse
|
49
|
King E, Maxel S, Li H. Engineering natural and noncanonical nicotinamide cofactor-dependent enzymes: design principles and technology development. Curr Opin Biotechnol 2020; 66:217-226. [PMID: 32956903 PMCID: PMC7744333 DOI: 10.1016/j.copbio.2020.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/20/2022]
Abstract
Nicotinamide cofactors enable oxidoreductases to catalyze a myriad of important reactions in biomanufacturing. Decades of research has focused on optimizing enzymes which utilize natural nicotinamide cofactors, namely nicotinamide adenine dinucleotide (phosphate) (NAD(P)+). Recent findings reignite the interest in engineering enzymes to utilize noncanonical cofactors, the mimetics of NAD+ (mNADs), which exhibit superior industrial properties in vitro and enable specific electron delivery in vivo. We compare recent advances in engineering natural versus noncanonical cofactor-utilizing enzymes, discuss design principles discovered, and survey emerging high-throughput platforms beyond the traditional 96-well plate-based methods. Obtaining mNAD-dependent enzymes remains challenging with a limited toolkit. To this end, we highlight design principles and technologies which can potentially be translated from engineering natural to noncanonical cofactor-dependent enzymes.
Collapse
Affiliation(s)
- Edward King
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Sarah Maxel
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA
| | - Han Li
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
50
|
Pluchinsky AJ, Wackelin DJ, Huang X, Arnold FH, Mrksich M. High Throughput Screening with SAMDI Mass Spectrometry for Directed Evolution. J Am Chem Soc 2020; 142:19804-19808. [PMID: 33174742 DOI: 10.1021/jacs.0c07828] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Advances in directed evolution have led to an exploration of new and important chemical transformations; however, many of these efforts still rely on the use of low-throughput chromatography-based screening methods. We present a high-throughput strategy for screening libraries of enzyme variants for improved activity. Unpurified reaction products are immobilized to a self-assembled monolayer and analyzed by mass spectrometry, allowing for direct evaluation of thousands of variants in under an hour. The method was demonstrated with libraries of randomly mutated cytochrome P411 variants to identify improved catalysts for C-H alkylation. The technique may be tailored to evolve enzymatic activity for a variety of transformations where higher throughput is needed.
Collapse
Affiliation(s)
| | - Daniel J Wackelin
- Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiongyi Huang
- Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, Pasadena, California 91125, United States
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, Pasadena, California 91125, United States
| | | |
Collapse
|