1
|
Zhu Y, Liu X, Tang Y, Xu K, Tang X, Zhu L, Xiong B. Recent Advances in the Synthesis of Commercially Available Phosphite Antioxidants. ChemistryOpen 2024:e202400135. [PMID: 39538976 DOI: 10.1002/open.202400135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Phosphite antioxidants exhibit superior anti-aging and color-stabilizing properties when incorporated into polymer materials. Their synergistic antioxidative effects are particularly noteworthy when used in combination with hindered phenol antioxidants and other primary antioxidants, serving as effective secondary antioxidants, displaying noteworthy synergistic antioxidation effects. This review systematically classifies the synthetic methods for phosphite antioxidants into three distinct categories based on the types of starting materials: synthesis from phosphorus trichloride, phosphorus-containing esters, and white phosphorus. Additionally, it delineates the reaction mechanisms associated with these approaches and provides an overview of future potential research directions and applications for organophosphorus antioxidants.
Collapse
Affiliation(s)
- Yuliang Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Xinyue Liu
- School of Economics and Management, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Ying Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Kexin Xu
- School of Economics and Management, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Xin Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Longzhi Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| |
Collapse
|
2
|
Peng J, Wang A, Liu Y, Chen F, Tang G, Zhao Y. Selective Functionalization of White Phosphorus with Alkyl Bromides under Photocatalytic Conditions: A Chlorine-Free Protocol to Dialkyl and Trialkyl Phosphine Oxides. Org Lett 2024; 26:9316-9321. [PMID: 39445636 DOI: 10.1021/acs.orglett.4c03494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A novel and efficient method for the direct selective alkylation of white phosphorus (P4) with alkyl bromides has been developed, utilizing 4DPAIPN as the photocatalyst and Hantzsch ester as the reductant. This method facilitates the synthesis of structurally diverse dialkyl phosphine oxides in good yields, offering a streamlined alternative to the traditional stepwise approach of chlorinating P4 with Cl2 and subsequently displacing the chlorine atom. Noteworthy features of this reaction include excellent product selectivity, remarkable functional group tolerance, and a broad substrate scope. Additionally, this method is effective for the synthesis of trialkyl phosphine oxides.
Collapse
Affiliation(s)
- Jialiang Peng
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - An Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Yan Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Fushan Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Guo Tang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| | - Yufen Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
3
|
Cammarata J, Westermair FF, Coburger P, Duvinage D, Janssen M, Uttendorfer MK, Beckmann J, Gschwind RM, Wolf R, Scott DJ. Unravelling White Phosphorus: Experimental and Computational Studies Reveal the Mechanisms of P 4 Hydrostannylation. Angew Chem Int Ed Engl 2024; 63:e202408423. [PMID: 38946592 DOI: 10.1002/anie.202408423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
The hydrostannylation of white phosphorus (P4) allows this crucial industrial precursor to be easily transformed into useful P1 products via direct, 'one pot' (or even catalytic) procedures. However, a thorough mechanistic understanding of this transformation has remained elusive, hindering attempts to use this rare example of successful, direct P4 functionalization as a model for further reaction development. Here, we provide a deep and generalizable mechanistic picture for P4 hydrostannylation by combining DFT calculations with in situ 31P NMR reaction monitoring and kinetic trapping of previously unobservable reaction intermediates using bulky tin hydrides. The results offer important insights into both how this reaction proceeds and why it is successful and provide implicit guidelines for future research in the field of P4 activation.
Collapse
Affiliation(s)
- Jose Cammarata
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Franz F Westermair
- Institute of Organic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Peter Coburger
- TU Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Daniel Duvinage
- Institute of Inorganic Chemistry and Crystallography, University of Bremen, Leobener Straße 7, 28359, Bremen, Germany
| | - Marvin Janssen
- Institute of Inorganic Chemistry and Crystallography, University of Bremen, Leobener Straße 7, 28359, Bremen, Germany
| | - Maria K Uttendorfer
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Jens Beckmann
- Institute of Inorganic Chemistry and Crystallography, University of Bremen, Leobener Straße 7, 28359, Bremen, Germany
| | - Ruth M Gschwind
- Institute of Organic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Robert Wolf
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Daniel J Scott
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
4
|
Wang C, Tang M, Wang Y, Huang S, Xie LG. Photoinduced, Redox-Neutral Decyanative and Defluorinative Phosphination of (Hetero)Arenes. Org Lett 2024; 26:8154-8158. [PMID: 39283008 DOI: 10.1021/acs.orglett.4c03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Triarylphosphines play a crucial role in organic synthesis as versatile components serving as ligands, catalysts, and reactants. This study introduces a metal-free, visible-light-induced method for the cross-coupling of cyanopyridines or polyfluoroarenes with diarylphosphines. This approach facilitates the formation of C(sp2)-P bonds through redox-neutral decyanative or defluorinative process, enabling the convenient synthesis of diverse triarylphosphines.
Collapse
Affiliation(s)
- Conghui Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Meizhong Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yating Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lan-Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
5
|
Gan Z, Chen J, Wang H, Xue Z, Chen Z, Zhang Y, Wang L, Zi H, Liu S, Shi L, Jin Y. Photoinduced Phosphoniumation of Aryl Halides and Arylthianthrenium Salts via an Electron Donor-Acceptor Complex. Org Lett 2024; 26:7751-7756. [PMID: 39235211 DOI: 10.1021/acs.orglett.4c02909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Owing to their remarkable practicality and utility, phosphonium salts have attracted substantial interest and are widely applied in critical areas, such as medicine, materials science, and catalysis. Herein, we developed a facile and photocatalyst/metal-free synthetic strategy for the preparation of phosphonium salts utilizing aryl halides/arylthianthrenium salts as aryl radical precursors. This approach is disclosed to undergo an efficient light-induced electron donor-acceptor pathway, facilitating the synthesis of a structurally diverse range of phosphonium salts.
Collapse
Affiliation(s)
- Ziyu Gan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Jiajin Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Han Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Zhiyan Xue
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Ziyang Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Yongqiang Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Lifang Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Hui Zi
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Shuyang Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| |
Collapse
|
6
|
Gawron M, Rückel J, Wolf R. Photocatalytic functionalization of white phosphorus with aryl bromides and chlorides. Chem Commun (Camb) 2024; 60:9777-9780. [PMID: 39158222 DOI: 10.1039/d4cc02891k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
We report the implementation of a consecutive photoinduced electron transfer (conPET) strategy for the functionalization of white phosphorus (P4) with inexpensive and widely available aryl bromides and chlorides. By employing a well-known acridinium-based photocatalyst under near-UV irradiation, this protocol gives direct access to valuable triarylphosphines and tetraarylphosphonium salts. The reaction mechanism is elucidated by NMR spectroscopic studies and model reactions.
Collapse
Affiliation(s)
- Martin Gawron
- Universität Regensburg, Institut für Anorganische Chemie, 93040 Regensburg, Germany.
| | - Jannes Rückel
- Universität Regensburg, Institut für Anorganische Chemie, 93040 Regensburg, Germany.
| | - Robert Wolf
- Universität Regensburg, Institut für Anorganische Chemie, 93040 Regensburg, Germany.
| |
Collapse
|
7
|
Mei P, Ma Z, Chen Y, Wu Y, Hao W, Fan QH, Zhang WX. Chiral bisphosphine Ph-BPE ligand: a rising star in asymmetric synthesis. Chem Soc Rev 2024; 53:6735-6778. [PMID: 38826108 DOI: 10.1039/d3cs00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Chiral 1,2-bis(2,5-diphenylphospholano)ethane (Ph-BPE) is a class of optimal organic bisphosphine ligands with C2-symmetry. Ph-BPE with its excellent catalytic performance in asymmetric synthesis has attracted much attention of chemists with increasing popularity and is growing into one of the most commonly used organophosphorus ligands, especially in asymmetric catalysis. Over two hundred examples have been reported since 2012. This review presents how Ph-BPE is utilized in asymmetric synthesis and how powerful it is as a chiral ligand or even a catalyst in a wide range of reactions including applications in the total synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Peifeng Mei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zibin Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yu Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Wei Hao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
8
|
Elsayed Moussa M, Shelyganov PA, Seidl M, Zimmermann L, Scheer M. Supramolecular compounds assembled from the heteroleptic tetrahedral complex [{CpMo(CO) 2} 2(μ,η 2-AsSb)] and metal salts. Chem Commun (Camb) 2024; 60:4703-4706. [PMID: 38596847 DOI: 10.1039/d4cc01001a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The reaction of the tetrahedral complex [{CpMo(CO)2}2(μ,η2-AsSb)] with CuI and AgI salts is presented which gives unprecedented neutral and cationic supramolecular aggregates featuring mixed As/Sb-donor molecules as ligands/linkers between metal ions.
Collapse
Affiliation(s)
- Mehdi Elsayed Moussa
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany.
| | - Pavel A Shelyganov
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany.
| | - Michael Seidl
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany.
- Institut für Allgemeine, Anorganische und Theoretische Chemie Universität Innsbruck, Centrum für Chemie und Biomedizin (CCB), Innrain 80-82, 6020 Innsbruck, Austria
| | - Lisa Zimmermann
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany.
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
9
|
Chen Y, Liu W, Huangfu X, Wei J, Yu J, Zhang WX. Direct Synthesis of Phosphoryltriacetates from White Phosphorus via Visible Light Catalysis. Chemistry 2024; 30:e202302289. [PMID: 37927193 DOI: 10.1002/chem.202302289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/01/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
Organophosphorus compounds (OPCs) are widely used in many fields. However, traditional synthetic routes in the industry usually involve multistep and hazardous procedures. Therefore, it's of great significance to construct such compounds in an environmentally-friendly and facile way. Herein, a photoredox catalytic method has been developed to construct novel phosphoryltriacetates. Using fac-Ir(ppy)3 (ppy=2-phenylpyridine) as the photocatalyst and blue LEDs (456 nm) as the light source, white phosphorus can react with α-bromo esters smoothly to generate phosphoryltriacetates in moderate to good yields. This one-step approach features mild reaction conditions and simple operational process without chlorination.
Collapse
Affiliation(s)
- Yu Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xinlei Huangfu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiangxi Yu
- Hunan Provincial Key Laboratory of Functional Metal-Organic Compounds, Key Laboratory of Organometallic New Materials (Hengyang Normal University), College of Hunan Province, Hengyang Normal University, Hengyang, 421008, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
10
|
Liu Y, Chen X, Yu B. Sustainable Photo- and Electrochemical Transformation of White Phosphorous (P 4 ) into P 1 Organo-Compounds. Chemistry 2023; 29:e202302142. [PMID: 37671623 DOI: 10.1002/chem.202302142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023]
Abstract
Elemental white phosphorous (P4 ) is a crucial feedstock for the entire phosphorus-derived chemical industry, serving as a common precursor for the ultimate preparation of high-grade monophosphorus (P1 ) fine chemicals. However, the corresponding manufacturing processes generally suffer from a deep reliance on hazardous reagents, inputs of immense energy, emissions of toxic pollutants, and the generation of substantial waste, which have negative impacts on the environment. In this context, sustainability and safety concerns provide a consistent impetus for the urgent overall improvement of phosphorus cycles. In this Concept, we present an overview of the most recent growth in photo- and electrochemical synthesis of P1 organo-compounds from P4 , with special emphasis on sustainable features. The key aspects of innovations regarding activation mode and mechanism have been comprehensively analyzed. A preliminary look at the possible future direction of development is also provided.
Collapse
Affiliation(s)
- Yan Liu
- Henan International Joint Laboratory of Rare Earth Composite Material, College of Materials Engineering, Henan University of Engineering, Zhengzhou, 451191, P. R. China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
- National Key Laboratory of Cotton Bio Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, P. R. China
| | - Xiaolan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
11
|
Arkhypchuk AI, Tran TT, Charaf R, Hammarström L, Ott S. Mechanistic Insights and Synthetic Explorations of the Photoredox-Catalyzed Activation of Halophosphines. Inorg Chem 2023; 62:18391-18398. [PMID: 37853683 PMCID: PMC10647117 DOI: 10.1021/acs.inorgchem.3c01946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 10/20/2023]
Abstract
The light-driven activation of halophosphines R2PX (R = alkyl- or aryl, X = Cl, Br) by an IrIII-based photocatalyst is described. It is shown that initially formed secondary phosphines R2PH react readily with the remaining R2PX in a parent-child reaction to form diphosphines R2P-PR2. Aryl-containing diphosphines can be further reduced to secondary phosphines RAr2PH under identical photoredox conditions. Dihalophosphines RPX2 are also activated by the photoredox protocol, giving rise to unusual 3-, 4-, and 5-membered cyclophosphines. Transient absorption studies show that the excited state of the Ir photocatalyst is reductively quenched by the DIPEA (N,N-di-iso-propylethylamine) electron donor. Electron transfer to R2PX is however unexpectedly slow and cannot compete with recombination with the oxidized donor DIPEA•+. As DIPEA is not a perfectly reversible donor, a small proportion of the total IrII population escapes recombination, providing the reductant for the observed transformations.
Collapse
Affiliation(s)
- Anna I. Arkhypchuk
- Department of Chemistry—Ångström, Laboratory Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden
| | - Thuan T. Tran
- Department of Chemistry—Ångström, Laboratory Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden
| | - Rima Charaf
- Department of Chemistry—Ångström, Laboratory Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden
| | - Leif Hammarström
- Department of Chemistry—Ångström, Laboratory Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden
| | - Sascha Ott
- Department of Chemistry—Ångström, Laboratory Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden
| |
Collapse
|
12
|
Huangfu X, Liu W, Xu H, Wang Z, Wei J, Zhang WX. Photochemical Benzylation of White Phosphorus. Inorg Chem 2023; 62:12009-12017. [PMID: 37458455 DOI: 10.1021/acs.inorgchem.3c01475] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Organophosphorus compounds (OPCs) have wide application in organic synthesis, material sciences, and drug discovery. Generally, the vast majority of phosphorus atoms in OPCs are derived from white phosphorus (P4). However, the large-scale preparation of OPCs mainly proceeds through the multistep and environmentally toxic chlorine route from P4. Herein, we report the direct benzylation of P4 promoted by visible light. The cheap and readily available benzyl bromide was used as a benzylation reagent, and tetrabenzylphosphonium bromide was directly synthesized from P4. In addition, the metallaphotoredox catalysis strategy was applied to functionalize P4 for the first time, which significantly improved the application range of the substituted benzyl bromide.
Collapse
Affiliation(s)
- Xinlei Huangfu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hanhua Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhongzhen Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Xia GD, Liu ZK, Zhao YL, Jia FC, Hu XQ. Radical Phosphorylation of Aliphatic C-H Bonds via Iron Photocatalysis. Org Lett 2023; 25:5279-5284. [PMID: 37431881 DOI: 10.1021/acs.orglett.3c01824] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The synthesis of tertiary phosphines(III) has been a long-standing challenge in synthetic chemistry because of inevitable issues including harsh conditions, sensitive organometallic reagents, and prefunctionalized substrates in traditional synthesis. Herein, we report a strategically novel C(sp3)-H bond phosphorylation that enables the assembly of structurally diverse tertiary phosphines(III) from industrial phosphine(III) sources under mild photocatalytic conditions. The merger of ligand-to-metal charge transfer (LMCT) of FeCl3 with the hydrogen atom-transfer (HAT) process is the key for the generation of alkyl radicals from hydrocarbons. Strikingly, this catalytic system can be successfully applied for the polymerization of electron-deficient alkenes.
Collapse
Affiliation(s)
- Guang-Da Xia
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Zi-Kui Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yu-Lian Zhao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Feng-Cheng Jia
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
14
|
Horsewill S, Hierlmeier G, Farasat Z, Barham JP, Scott DJ. Shining Fresh Light on Complex Photoredox Mechanisms through Isolation of Intermediate Radical Anions. ACS Catal 2023; 13:9392-9403. [PMID: 37497378 PMCID: PMC10367049 DOI: 10.1021/acscatal.3c02515] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/20/2023] [Indexed: 07/28/2023]
Abstract
Photoredox catalysis (PRC) has gained enormous and wide-ranging interest in recent years but has also been subject to significant mechanistic uncertainty, even controversy. To provide a method by which the missing understanding can begin to be filled in, we demonstrate herein that it is possible to isolate as authentic materials the one-electron reduction products of representative PRC catalysts (PCs). Specifically, KC8 reduction of both 9,10-dicyanoanthracene and a naphthalene monoamide derivative in the presence of a cryptand provides convenient access to the corresponding [K(crypt)+][PC·-] salts as clean materials that can be fully characterized by techniques including EPR and XRD. Because PC·- states are key intermediates in PRC reactions, such isolation allows for highly controlled study of these anions' specific reactivity and hence their mechanistic roles. As a demonstration of this principle, we show that these salts can be used to conveniently interrogate the mechanisms of recent, high-profile "conPET" and "e-PRC" reactions, which are currently the subject of both significant interest and acute controversy. Using very simple experiments, we are able to provide striking insights into these reactions' underlying mechanisms and to observe surprising levels of hidden complexity that would otherwise have been very challenging to identify and that emphasize the care and control that are needed when interrogating and interpreting PRC mechanisms. These studies provide a foundation for the study of a far broader range of questions around conPET, e-PRC, and other PRC reaction mechanisms in the future, using the same strategy of PC·- isolation.
Collapse
Affiliation(s)
- Samuel
J. Horsewill
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Gabriele Hierlmeier
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Zahra Farasat
- Professor
Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry,
College of Sciences, Shiraz University, Shiraz, Fars 71467-13565, Iran
| | - Joshua P. Barham
- Institute
of Organic Chemistry, University of Regensburg, Universitätsstr. 31, Regensburg, Bayern 93053, Germany
| | - Daniel J. Scott
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
15
|
Zhou Y, Elliott SR, Deringer VL. Structure and Bonding in Amorphous Red Phosphorus. Angew Chem Int Ed Engl 2023; 62:e202216658. [PMID: 36916828 PMCID: PMC10952455 DOI: 10.1002/anie.202216658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/07/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
Amorphous red phosphorus (a-P) is one of the remaining puzzling cases in the structural chemistry of the elements. Here, we elucidate the structure, stability, and chemical bonding in a-P from first principles, combining machine-learning and density-functional theory (DFT) methods. We show that a-P structures exist with a range of energies slightly higher than those of phosphorus nanorods, to which they are closely related, and that the stability of a-P is linked to the degree of structural relaxation and medium-range order. We thus complete the stability range of phosphorus allotropes [Angew. Chem. Int. Ed. 2014, 53, 11629] by now including the previously poorly understood amorphous phase, and we quantify the covalent and van der Waals interactions in all main phases of phosphorus. We also study the electronic densities of states, including those of hydrogenated a-P. Beyond the present study, our structural models are expected to enable wider-ranging first-principles investigations-for example, of a-P-based battery materials.
Collapse
Affiliation(s)
- Yuxing Zhou
- Department of ChemistryInorganic Chemistry LaboratoryUniversity of OxfordOxfordOX1 3QRUK
| | - Stephen R. Elliott
- Department of ChemistryPhysical and Theoretical Chemistry LaboratoryUniversity of OxfordOxfordOX1 3QZUK
| | - Volker L. Deringer
- Department of ChemistryInorganic Chemistry LaboratoryUniversity of OxfordOxfordOX1 3QRUK
| |
Collapse
|
16
|
Luo H, Li M, Wang XC, Quan ZJ. Direct synthesis of phosphorotrithioates from [TBA][P(SiCl 3) 2] and disulfides. Org Biomol Chem 2023; 21:2499-2503. [PMID: 36880434 DOI: 10.1039/d2ob02285k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Sulfur-containing organophosphorus molecules have played a pivotal role in organic synthesis, pharmaceutical pesticides and functional materials, thereby motivating researchers worldwide to establish S-P bonds from more environmentally friendly phosphorus sources. In this study, a novel method was developed for constructing S-P bonds, specifically by reacting the inorganic phosphorus derivative TBA[P(SiCl3)2] with sulfur-containing compounds under mild conditions. This method demonstrates the advantages of low energy consumption, mild reaction conditions and environmental friendliness. Moreover, this protocol-as a green synthesis method to replace the use of white phosphorus in the production of organophosphorus compounds (OPCs)-achieved the functional conversion of "inorganic phosphorus to organic phosphorus", in line with the national green development strategy.
Collapse
Affiliation(s)
- Hui Luo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| |
Collapse
|
17
|
Ma Y, Zhang X, Ma C, Xia W, Hu L, Dong X, Xiong Y. Electrochemically Oxidative Phosphating of Aldehydes and Ketones. J Org Chem 2023; 88:4264-4272. [PMID: 36916510 DOI: 10.1021/acs.joc.2c02826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Disclosed herein is the first protocol for the electrochemically oxidative phosphating of aldehydes and ketones to generate α-hydroxyphosphine oxides with diphenylphosphine as the phosphine source. Various phosphating products containing P-C bonds are basically assembled in modest to excellent yields. This electrochemical phosphating was achieved by utilizing a simple undivided cell with foam nickel electrodes at room temperature without the addition of any oxidant or metal catalyst. The prepared α-hydroxyphosphine oxides possess potential application in pharmacological research.
Collapse
Affiliation(s)
- Youcai Ma
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, Sichuan 401331, China
| | - Xiaohui Zhang
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, Sichuan 401331, China
| | - Chenglong Ma
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, Sichuan 401331, China
| | - Wen Xia
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, Sichuan 401331, China
| | - Liangzhen Hu
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, Sichuan 401331, China
| | - Xiaoyu Dong
- School of Chemical and Environmental Engineering, and Collaborative Innovation Center for High Value Transformation of Coal Chemical Process By-products, Xinjiang Institute of Engineering, Xinjiang 830091, China
| | - Yan Xiong
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, Sichuan 401331, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.,School of Chemical and Environmental Engineering, and Collaborative Innovation Center for High Value Transformation of Coal Chemical Process By-products, Xinjiang Institute of Engineering, Xinjiang 830091, China
| |
Collapse
|
18
|
Hu J, Chai Z, Liu W, Wei J, Lv ZJ, Zhang WX. Direct and chlorine-free synthesis of phosphafluorenes or their oxides from white phosphorus. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
19
|
Cammarata J, Scott DJ, Wolf R. Hydrostannylation of Red Phosphorus: A Convenient Route to Monophosphines. Chemistry 2022; 28:e202202456. [PMID: 36044241 PMCID: PMC10092039 DOI: 10.1002/chem.202202456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 11/11/2022]
Abstract
The preparation of valuable and industrially relevant organophosphorus compounds currently depends on indirect multistep procedures involving difficult-to-handle white phosphorus as a common P atom source. Herein, we report a practical and versatile method for the synthesis of a variety of monophosphorus compounds directly from the bench-stable allotrope red phosphorus (Pred ). The relatively inert Pred was productively functionalised by using the cheap and readily available radical reagent tri-n-butyltin hydride, and subsequent treatment with electrophiles yields useful P1 compounds. Remarkably, these transformations require only modest inert-atmosphere techniques and use only reagents that are inexpensive and commercially available, making this a convenient and practical methodology accessible in most laboratory settings.
Collapse
Affiliation(s)
- Jose Cammarata
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | | | - Robert Wolf
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| |
Collapse
|
20
|
Kuchkaev AM, Kuchkaev AM, Khayarov KR, Zueva EM, Dobrynin AB, Islamov DR, Yakhvarov DG. PNP Ligands in Cobalt‐Mediated Activation and Functionalization of White Phosphorus. Angew Chem Int Ed Engl 2022; 61:e202210973. [DOI: 10.1002/anie.202210973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Airat M. Kuchkaev
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of RAS Arbuzov Street 8 Kazan 420088 Russian Federation
- Alexander Butlerov Institute of Chemistry Kazan Federal University Kremlyovskaya Street 18 Kazan 420008 Russian Federation
| | - Aidar M. Kuchkaev
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of RAS Arbuzov Street 8 Kazan 420088 Russian Federation
- Alexander Butlerov Institute of Chemistry Kazan Federal University Kremlyovskaya Street 18 Kazan 420008 Russian Federation
| | - Khasan R. Khayarov
- Institute of Physics Kazan Federal University Kremlyovskaya Street 18 Kazan 420008 Russian Federation
| | - Ekaterina M. Zueva
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of RAS Arbuzov Street 8 Kazan 420088 Russian Federation
- Department of Inorganic Chemistry Kazan National Research Technological University Karl Marx Street 68 Kazan 420015 Russian Federation
| | - Alexey B. Dobrynin
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of RAS Arbuzov Street 8 Kazan 420088 Russian Federation
| | - Daut R. Islamov
- Laboratory for Structural Studies of Biomacromolecules FRC Kazan Scientific Center of RAS Lobachevskogo Street 2/31 Kazan 420111 Russian Federation
| | - Dmitry G. Yakhvarov
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of RAS Arbuzov Street 8 Kazan 420088 Russian Federation
- Alexander Butlerov Institute of Chemistry Kazan Federal University Kremlyovskaya Street 18 Kazan 420008 Russian Federation
| |
Collapse
|
21
|
Piesch M, Nicolay A, Haimerl M, Seidl M, Balázs G, Don Tilley T, Scheer M. Binding, Release and Functionalization of Intact Pnictogen Tetrahedra Coordinated to Dicopper Complexes. Chemistry 2022; 28:e202201144. [PMID: 35575052 PMCID: PMC9541576 DOI: 10.1002/chem.202201144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 01/07/2023]
Abstract
The bridging MeCN ligand in the dicopper(I) complexes [(DPFN)Cu2 (μ,η1 : η1 -MeCN)][X]2 (X=weakly coordinating anion, NTf2 (1 a), FAl[OC6 F10 (C6 F5 )]3 (1 b), Al[OC(CF3 )3 ]4 (1 c)) was replaced by white phosphorus (P4 ) or yellow arsenic (As4 ) to yield [(DPFN)Cu2 (μ,η2 : η2 -E4 )][X]2 (E=P (2 a-c), As (3 a-c)). The molecular structures in the solid state reveal novel coordination modes for E4 tetrahedra bonded to coinage metal ions. Experimental data and quantum chemical computations provide information concerning perturbations to the bonding in coordinated E4 tetrahedra. Reactions with N-heterocyclic carbenes (NHCs) led to replacement of the E4 tetrahedra with release of P4 or As4 and formation of [(DPFN)Cu2 (μ,η1 : η1 -Me NHC)][X]2 (4 a,b) or to an opening of one E-E bond leading to an unusual E4 butterfly structural motif in [(DPFN)Cu2 (μ,η1 : η1 -E4 Dipp NHC)][X]2 (E=P (5 a,b), E=As (6)). With a cyclic alkyl amino carbene (Et CAAC), cleavage of two As-As bonds was observed to give two isomers of [(DPFN)Cu2 (μ,η2 : η2 -As4 Et CAAC)][X]2 (7 a,b) with an unusual As4 -triangle+1 unit.
Collapse
Affiliation(s)
- Martin Piesch
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Amélie Nicolay
- Department of ChemistryUniversity of California, BerkeleyBerkeleyCA 94720–1460United States
- Chemical Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia94720United States
| | - Maria Haimerl
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Michael Seidl
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Gábor Balázs
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - T. Don Tilley
- Department of ChemistryUniversity of California, BerkeleyBerkeleyCA 94720–1460United States
- Chemical Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia94720United States
| | - Manfred Scheer
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| |
Collapse
|
22
|
Direct Synthesis of Dialkylphosphites from White Phosphorus. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Till M, Cammarata J, Wolf R, Scott DJ. Photocatalytic stannylation of white phosphorus. Chem Commun (Camb) 2022; 58:8986-8989. [PMID: 35861572 PMCID: PMC9362875 DOI: 10.1039/d2cc03474c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organophosphorus compounds (OPCs) are highly important chemicals, finding numerous applications in both academia and industry. Herein we describe a simple photocatalytic method for the stannylation of white phosphorus (P4) using a cheap, commercially-available distannane, (Bu3Sn)2, and anthraquinone as a simple photocatalyst. Subsequent ‘one pot’ transformation of the resulting stannylated monophosphine intermediate (Bu3Sn)3P provides direct, convenient and versatile access to valuable OPCs such as acylated phosphines and tetraalkylphosphonium salts. A simple, mechanistically unique photochemical procedure is reported for the efficient, direct, catalytic stannylation of P4 and ‘one pot’ transformation into valuable monophosphorus compounds.![]()
Collapse
Affiliation(s)
- Marion Till
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany.
| | - Jose Cammarata
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany.
| | - Robert Wolf
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany.
| | - Daniel J Scott
- University of Oxford, Department of Chemistry, OX1 3TA, Oxford, UK.
| |
Collapse
|
24
|
Scott DJ. Recent Breakthroughs in P 4 Chemistry: Towards Practical, Direct Transformations into P 1 Compounds. Angew Chem Int Ed Engl 2022; 61:e202205019. [PMID: 35482300 PMCID: PMC9401861 DOI: 10.1002/anie.202205019] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 01/11/2023]
Abstract
For several decades, academic researchers have been intensively studying the chemistry of white phosphorus (P4 ) in the hope of developing direct methods for its transformation into useful P-containing products. This would bypass the hazardous, multistep procedures currently relied on by industry. However, while academically interesting P4 activation reactions have become well established, their elaboration into useful, general synthetic procedures has remained out of reach. Very recently, however, a series of independent reports has begun to change this state of affairs. Each shows how relatively simple and practical synthetic methods can be used to access academically or industrially relevant P1 compounds from P4 directly, in "one pot" or even in a catalytic fashion. These reports mark a step change in the field of P4 chemistry, and suggest its possible transition from an area of largely academic interest to one with the promise of true synthetic relevance.
Collapse
Affiliation(s)
- Daniel J. Scott
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
25
|
Zhang Y, Cao Y, Chi Y, Chen S, Zeng X, Liu Y, Tang G, Zhao Y. Formation of N−P(O)−S Bonds from White Phosphorus via a Four‐Component Reaction. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yue Zhang
- Department of Chemistry College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Yinwei Cao
- Department of Chemistry College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Yangyang Chi
- Department of Chemical Biology College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Shuanghui Chen
- Department of Chemistry College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Xiangzhe Zeng
- Department of Chemistry College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Yan Liu
- Department of Chemical Biology College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Guo Tang
- Department of Chemistry College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Yufen Zhao
- Department of Chemistry College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
- Department of Chemical Biology College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| |
Collapse
|
26
|
Hu J, Liu W, Zhang WX. Direct functionalization of white phosphorus by organolithium reagents to organophosphorus compounds. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.2008933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jingyuan Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
27
|
Scott DJ. Recent Breakthroughs in P4 Chemistry: Towards Practical, Direct Transformations into P1 Compounds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Daniel J Scott
- University of Oxford Department of Chemistry Chemistry Research Laboratory12 Mansfield Road OX1 3TA OXFORD UNITED KINGDOM
| |
Collapse
|
28
|
Donath M, Schwedtmann K, Schneider T, Hennersdorf F, Bauzá A, Frontera A, Weigand JJ. Direct conversion of white phosphorus to versatile phosphorus transfer reagents via oxidative onioation. Nat Chem 2022; 14:384-391. [PMID: 35379968 DOI: 10.1038/s41557-022-00913-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/18/2022] [Indexed: 01/09/2023]
Abstract
The main feedstock for the value-added phosphorus chemicals used in industry and research is white phosphorus (P4), from which the key intermediate for forming P(III) compounds is PCl3. Owing to its high reactivity, syntheses based on PCl3 are often accompanied by product mixtures and laborious work-up procedures, so an alternative process to form a viable P(III) transfer reagent is desirable. Our concept of oxidative onioation, where white phosphorus is selectively converted into triflate salts of versatile P1 transfer reagents such as [P(LN)3][OTf]3 (LN is a cationic, N-based substituent; that is, 4-dimethylaminopyridinio), provides a convenient alternative for the implementation of P-O, P-N and P-C bonds while circumventing the use of PCl3. We use p-block element compounds of type RnE (for example, Ph3As or PhI) to access weak adducts between nitrogen Lewis bases LN and the corresponding dications [RnELN]2+. The proposed equilibrium between [RnELN]2+ + LN and [RnE(LN)2]2+ allows for the complete oxidative onioation of all six P-P bonds in P4 to yield highly reactive and versatile trications [P(LN)3]3+.
Collapse
Affiliation(s)
- Maximilian Donath
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Kai Schwedtmann
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Tobias Schneider
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Felix Hennersdorf
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Jan J Weigand
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
29
|
Mei Y, Yan Z, Liu LL. Facile Synthesis of the Dicyanophosphide Anion via Electrochemical Activation of White Phosphorus: An Avenue to Organophosphorus Compounds. J Am Chem Soc 2022; 144:1517-1522. [PMID: 35041429 DOI: 10.1021/jacs.1c11087] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organophosphorus compounds (OPCs) have gained tremendous interest in the past decades due to their wide applications ranging from synthetic chemistry to materials and biological sciences. We describe herein a practical and versatile approach for the transformation of white phosphorus (P4) into useful OPCs with high P atom economy via a key bridging anion [P(CN)2]-. This anion can be prepared on a gram scale directly from P4 through an electrochemical process. A variety of OPCs involving phosphinidenes, cyclophosphanes, and phospholides have been made readily accessible from P4 in a two-step manner. Our approach has a significant impact on the future preparation of OPCs in laboratory and industrial settings.
Collapse
Affiliation(s)
- Yanbo Mei
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zeen Yan
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Leo Liu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
30
|
Roy MMD, Heilmann A, Ellwanger MA, Aldridge S. Generation of a π-Bonded Isomer of [P 4 ] 4- by Aluminyl Reduction of White Phosphorus and its Ammonolysis to PH 3. Angew Chem Int Ed Engl 2021; 60:26550-26554. [PMID: 34677901 DOI: 10.1002/anie.202112515] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/20/2021] [Indexed: 11/12/2022]
Abstract
By employing the highly reducing aluminyl complex [K{(NON)Al}]2 (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene), we demonstrate the controlled formation of P4 2- and P4 4- complexes from white phosphorus, and chemically reversible inter-conversion between them. The tetra-anion features a unique planar π-bonded structure, with the incorporation of the K+ cations implicit in the use of the anionic nucleophile offering additional stabilization of the unsaturated isomer of the P4 4- fragment. This complex is extremely reactive, acting as a source of P3- : exposure to ammonia leads to the release of phosphine (PH3 ) under mild conditions (room temperature and pressure), which contrast with those necessitated for the direct combination of P4 and NH3 (>5 kbar and >250 °C).
Collapse
Affiliation(s)
- Matthew M D Roy
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Andreas Heilmann
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Mathias A Ellwanger
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
31
|
Till M, Streitferdt V, Scott DJ, Mende M, Gschwind RM, Wolf R. Photochemical transformation of chlorobenzenes and white phosphorus into arylphosphines and phosphonium salts. Chem Commun (Camb) 2021; 58:1100-1103. [PMID: 34889916 PMCID: PMC8788315 DOI: 10.1039/d1cc05691c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chlorobenzenes are important starting materials for the preparation of commercially valuable triarylphosphines and tetraarylphosphonium salts, but their use for the direct arylation of elemental phosphorus has been elusive. Here we describe a simple photochemical route toward such products. UV-LED irradiation (365 nm) of chlorobenzenes, white phosphorus (P4) and the organic superphotoreductant tetrakis(dimethylamino)ethylene (TDAE) affords the desired arylphosphorus compounds in a single reaction step.
Collapse
Affiliation(s)
- Marion Till
- Universität Regensburg, Institut für Anorganische Chemie, Regensburg 93040, Germany.
| | - Verena Streitferdt
- Universität Regensburg, Institut für Organische Chemie, Regensburg 93040, Germany
| | - Daniel J Scott
- Universität Regensburg, Institut für Anorganische Chemie, Regensburg 93040, Germany.
| | - Michael Mende
- Universität Regensburg, Institut für Anorganische Chemie, Regensburg 93040, Germany.
| | - Ruth M Gschwind
- Universität Regensburg, Institut für Organische Chemie, Regensburg 93040, Germany
| | - Robert Wolf
- Universität Regensburg, Institut für Anorganische Chemie, Regensburg 93040, Germany.
| |
Collapse
|
32
|
Zagidullin A, Grigoreva E, Burganov T, Katsyuba S, Li Y, Leung PH, Miluykov V. A rational synthetic approach to 2,3,4,5-tetraphenyl-1-monophosphole and its derivatives. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Zagidullin A, Khrizanforov M, Bezkishko I, Lönnecke P, Hey-Hawkins E, Miluykov V. One-pot synthesis of sodium 3,4,5-triphenyl-1,2-diphospholide through direct functionalization of white phosphorus. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Phosphafluorenyl lithiums: direct synthesis from white phosphorus, structure and diversified synthons. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1139-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
35
|
Roy MMD, Heilmann A, Ellwanger MA, Aldridge S. Generation of a π‐Bonded Isomer of [P
4
]
4−
by Aluminyl Reduction of White Phosphorus and its Ammonolysis to PH
3. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Matthew M. D. Roy
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| | - Andreas Heilmann
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| | - Mathias A. Ellwanger
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| | - Simon Aldridge
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| |
Collapse
|
36
|
Rothfelder R, Streitferdt V, Lennert U, Cammarata J, Scott DJ, Zeitler K, Gschwind RM, Wolf R. Photocatalytic Arylation of P 4 and PH 3 : Reaction Development Through Mechanistic Insight. Angew Chem Int Ed Engl 2021; 60:24650-24658. [PMID: 34473879 PMCID: PMC8596700 DOI: 10.1002/anie.202110619] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Indexed: 01/25/2023]
Abstract
Detailed 31 P{1 H} NMR spectroscopic investigations provide deeper insight into the complex, multi-step mechanisms involved in the recently reported photocatalytic arylation of white phosphorus (P4 ). Specifically, these studies have identified a number of previously unrecognized side products, which arise from an unexpected non-innocent behavior of the commonly employed terminal reductant Et3 N. The different rate of formation of these products explains discrepancies in the performance of the two most effective catalysts, [Ir(dtbbpy)(ppy)2 ][PF6 ] (dtbbpy=4,4'-di-tert-butyl-2,2'-bipyridine) and 3DPAFIPN. Inspired by the observation of PH3 as a minor intermediate, we have developed the first catalytic procedure for the arylation of this key industrial compound. Similar to P4 arylation, this method affords valuable triarylphosphines or tetraarylphosphonium salts depending on the steric profile of the aryl substituents.
Collapse
Affiliation(s)
- Robin Rothfelder
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Verena Streitferdt
- Institute of Organic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Ulrich Lennert
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Jose Cammarata
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Daniel J. Scott
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Kirsten Zeitler
- Institute of Organic ChemistryUniversity of Leipzig04103LeipzigGermany
| | - Ruth M. Gschwind
- Institute of Organic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Robert Wolf
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| |
Collapse
|
37
|
Riu MLY, Ye M, Cummins CC. Alleviating Strain in Organic Molecules by Incorporation of Phosphorus: Synthesis of Triphosphatetrahedrane. J Am Chem Soc 2021; 143:16354-16357. [PMID: 34606717 DOI: 10.1021/jacs.1c07959] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Phosphatetrahedranes (tBuCP)2 and (tBuC)3P were recently reported and represent the first tetrahedranes containing a mixed carbon/phosphorus core. Herein, we report that tetrahydrofuran (THF) solutions of the parent triphosphatetrahedrane HCP3 may be generated in 31% yield (NMR internal standard yield) by combining [Na(THF)3][P3Nb(ODipp)3] (Dipp = 2,6-diisopropylphenyl), INb(ODipp)3(THF), and bromodichloromethane in thawing THF. While HCP3 was found to be stable in dilute THF solutions for extended periods of time, the concentration of the solution at -40 °C led to the formation of a black precipitate, which has been tentatively assigned as a polymerized form of HCP3. HCP3 reacts readily with (dppe)Fe(Cp*)Cl (dppe = 1,2-bis(diphenylphosphino)ethane, Cp*= η5-C5Me5) in the presence of Na[BPh4] to form a purple cationic iron complex of triphosphatetrahedrane (50% yield), which was structurally characterized in a single-crystal X-ray diffraction experiment. Additionally, we present a series of homodesmotic equations analyzed via quantum chemical calculations that suggest triphosphatetrahedrane is the least strained of the mixed C/P phosphatetrahedranes.
Collapse
Affiliation(s)
- Martin-Louis Y Riu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mengshan Ye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher C Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Rothfelder R, Streitferdt V, Lennert U, Cammarata J, Scott DJ, Zeitler K, Gschwind RM, Wolf R. Photocatalytic Arylation of P
4
and PH
3
: Reaction Development Through Mechanistic Insight. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Robin Rothfelder
- Institute of Inorganic Chemistry University of Regensburg 93040 Regensburg Germany
| | - Verena Streitferdt
- Institute of Organic Chemistry University of Regensburg 93040 Regensburg Germany
| | - Ulrich Lennert
- Institute of Inorganic Chemistry University of Regensburg 93040 Regensburg Germany
| | - Jose Cammarata
- Institute of Inorganic Chemistry University of Regensburg 93040 Regensburg Germany
| | - Daniel J. Scott
- Institute of Inorganic Chemistry University of Regensburg 93040 Regensburg Germany
| | - Kirsten Zeitler
- Institute of Organic Chemistry University of Leipzig 04103 Leipzig Germany
| | - Ruth M. Gschwind
- Institute of Organic Chemistry University of Regensburg 93040 Regensburg Germany
| | - Robert Wolf
- Institute of Inorganic Chemistry University of Regensburg 93040 Regensburg Germany
| |
Collapse
|
39
|
Yadav R, Weber M, Singh AK, Münzfeld L, Gramüller J, Gschwind RM, Scheer M, Roesky PW. A Structural Diversity of Molecular Alkaline-Earth-Metal Polyphosphides: From Supramolecular Wheel to Zintl Ion. Chemistry 2021; 27:14128-14137. [PMID: 34403183 PMCID: PMC8518058 DOI: 10.1002/chem.202102355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 01/31/2023]
Abstract
A series of molecular group 2 polyphosphides has been synthesized by using air-stable [Cp*Fe(η5 -P5 )] (Cp*=C5 Me5 ) or white phosphorus as polyphosphorus precursors. Different types of group 2 reagents such as organo-magnesium, mono-valent magnesium, and molecular calcium hydride complexes have been investigated to activate these polyphosphorus sources. The organo-magnesium complex [(Dipp BDI-Mg(CH3 ))2 ] (Dipp BDI={[2,6-i Pr2 C6 H3 NCMe]2 CH}- ) reacts with [Cp*Fe(η5 -P5 )] to give an unprecedented Mg/Fe-supramolecular wheel. Kinetically controlled activation of [Cp*Fe(η5 -P5 )] by different mono-valent magnesium complexes allowed the isolation of Mg-coordinated formally mono- and di-reduced products of [Cp*Fe(η5 -P5 )]. To obtain the first examples of molecular calcium-polyphosphides, a molecular calcium hydride complex was used to reduce the aromatic cyclo-P5 ring of [Cp*Fe(η5 -P5 )]. The Ca-Fe-polyphosphide is also characterized by quantum chemical calculations and compared with the corresponding Mg complex. Moreover, a calcium coordinated Zintl ion (P7 )3- was obtained by molecular calcium hydride mediated P4 reduction.
Collapse
Affiliation(s)
- Ravi Yadav
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Martin Weber
- Institute of Inorganic ChemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany).
| | - Akhil K. Singh
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Luca Münzfeld
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Johannes Gramüller
- Institute of Organic ChemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | - Ruth M. Gschwind
- Institute of Organic ChemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | - Manfred Scheer
- Institute of Inorganic ChemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany).
| | - Peter W. Roesky
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| |
Collapse
|
40
|
Reichl S, Mädl E, Riedlberger F, Piesch M, Balázs G, Seidl M, Scheer M. Pentaphosphaferrocene-mediated synthesis of asymmetric organo-phosphines starting from white phosphorus. Nat Commun 2021; 12:5774. [PMID: 34599185 PMCID: PMC8486752 DOI: 10.1038/s41467-021-26002-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/13/2021] [Indexed: 11/09/2022] Open
Abstract
The synthesis of phosphines is based on white phosphorus, which is usually converted to PCl3, to be afterwards substituted step by step in a non-atomic efficient manner. Herein, we describe an alternative efficient transition metal-mediated process to form asymmetrically substituted phosphines directly from white phosphorus (P4). Thereby, P4 is converted to [Cp*Fe(η5-P5)] (1) (Cp* = η5-C5(CH3)5) in which one of the phosphorus atoms is selectively functionalized to the 1,1-diorgano-substituted complex [Cp*Fe(η4-P5R'R″)] (3). In a subsequent step, the phosphine PR'R″R‴ (R' ≠ R″ ≠ R‴ = alky, aryl) (4) is released by reacting it with a nucleophile R‴M (M = alkali metal) as racemates. The starting material 1 can be regenerated with P4 and can be reused in multiple reaction cycles without isolation of the intermediates, and only the phosphine is distilled off.
Collapse
Affiliation(s)
- Stephan Reichl
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Eric Mädl
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Felix Riedlberger
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Martin Piesch
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Gábor Balázs
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Michael Seidl
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
41
|
Giusti L, Landaeta VR, Vanni M, Kelly JA, Wolf R, Caporali M. Coordination chemistry of elemental phosphorus. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213927] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
42
|
Zhang Y, Cai Z, Chi Y, Zeng X, Chen S, Liu Y, Tang G, Zhao Y. Diphenyl Diselenide-Catalyzed Synthesis of Triaryl Phosphites and Triaryl Phosphates from White Phosphorus. Org Lett 2021; 23:5158-5163. [PMID: 34152156 DOI: 10.1021/acs.orglett.1c01695] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Industrially important triaryl phosphites, traditionally prepared from PCl3, have been synthesized by a diphenyl diselenide-catalyzed one-step procedure involving white phosphorus and phenols, which provides a halogen- and transition metal-free way to these compounds. Subsequent oxidation of triaryl phosphites produces triaryl phosphates and triaryl thiophosphates. Phosphorotrithioates are also prepared efficiently from aromatic thiols and aliphatic thiols.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Ziman Cai
- Department of Chemistry, College of Chemistry and Chemical Engineering, and Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Yangyang Chi
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, and Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiangzhe Zeng
- Department of Chemistry, College of Chemistry and Chemical Engineering, and Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Shuanghui Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, and Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Yan Liu
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, and Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Guo Tang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Yufen Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, and Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China.,Department of Chemical Biology, College of Chemistry and Chemical Engineering, and Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
43
|
Boronski JT, Seed JA, Wooles AJ, Liddle ST. Fragmentation, catenation, and direct functionalisation of white phosphorus by a uranium(IV)-silyl-phosphino-carbene complex. Chem Commun (Camb) 2021; 57:5090-5093. [PMID: 33899851 DOI: 10.1039/d1cc01741a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Room temperature reaction of the uranium(iv)-carbene [U{C(SiMe3)(PPh2)}(BIPMTMS)(μ-Cl)Li(TMEDA)(μ-TMEDA)0.5]2 (1, BIPMTMS = C(PPh2NSiMe3)2) with white phosphorus (P4) produces the organo-P5 compound [P5{C(SiMe3)(PPh2)}2][Li(TMEDA)2] (2) and the uranium(iv)-methanediide [U{BIPMTMS}{Cl}{μ-Cl}2{Li(TMEDA)}] (3). This is an unprecedented example of cooperative metal-carbene P4 activation/insertion into a metal-carbon double bond and also an actinide complex reacting with P4 to directly form an organophosphorus species. Conducting the reaction at low temperature permits the isolation of the diuranium(iv) complex [{U(BIPMTMS)([μ-η2:η2-P2]C[SiMe3][PPh2])}2] (4), which then converts to 2 and 3. Thus, surprisingly, in contrast to all other actinide P4 reactivity, although this reaction produces catenation overall it proceeds via P4 cleavage to functionalised P2 units. Hence, this work establishes a proof of concept synthetic cycle for direct fragmentation, catenation, and functionalisation of P4.
Collapse
Affiliation(s)
- Josef T Boronski
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - John A Seed
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
44
|
Synthesis of monophosphines directly from white phosphorus. Nat Chem 2021; 13:458-464. [PMID: 33820964 DOI: 10.1038/s41557-021-00657-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 02/10/2021] [Indexed: 02/01/2023]
Abstract
Monophosphorus compounds are of enormous industrial importance due to the crucial roles they play in applications such as pharmaceuticals, photoinitiators and ligands for catalysis, among many others. White phosphorus (P4) is the key starting material for the preparation of all such chemicals. However, current production depends on indirect and inefficient, multi-step procedures. Here, we report a simple, effective 'one-pot' synthesis of a wide range of organic and inorganic monophosphorus species directly from P4. Reduction of P4 using tri-n-butyltin hydride and subsequent treatment with various electrophiles affords compounds that are of key importance for the chemical industry, and it requires only mild conditions and inexpensive, easily handled reagents. Crucially, we also demonstrate facile and efficient recycling and ultimately catalytic use of the tributyltin reagent, thereby avoiding the formation of substantial Sn-containing waste. Accessible, industrially relevant products include the fumigant PH3, the reducing agent hypophosphorous acid and the flame-retardant precursor tetrakis(hydroxymethyl)phosphonium chloride.
Collapse
|
45
|
Abstract
A systematic study of diverse halogenation reactions of the tetrahedral Mo2P2 ligand complex [{CpMo(CO)2}2(μ,η2:η2-P2)] (1) is reported. By reacting 1 with different halogenating agents, a series of complexes such as [(CpMo)4(μ4-P)(μ3-PI)2(μ-I)(I)3(I3)] (2), [{CpMo(CO)2}2(μ-PBr2)2] (3a), [{CpMo(CO)2}(CpMoBr2)(μ-PBr2)2] (4a), [{CpMo(CO)2}2(μ-PCl2)2] (3b), and [{CpMo(CO)2}(CpMoCl2)(μ-PCl2)2] (4b) were obtained. Whereas the reaction of 1 toward various bromine and chlorine sources leads to similar results, a different behavior is observed in the reaction with iodine in which 2 is formed. The products were comprehensively characterized by spectroscopic methods and single crystal X-ray diffraction, and the electronic structures of 2, 3a, and 4a were elucidated by DFT calculations.
Collapse
Affiliation(s)
- Anna Garbagnati
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Michael Seidl
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Gábor Balázs
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
46
|
Manca G, Ienco A. Iodine-induced stepwise reactivity of coordinated white phosphorus: A mechanistic overview. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Sarkar D, Weetman C, Munz D, Inoue S. Reversible Activation and Transfer of White Phosphorus by Silyl-Stannylene. Angew Chem Int Ed Engl 2021; 60:3519-3523. [PMID: 33155395 PMCID: PMC7898380 DOI: 10.1002/anie.202013423] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Use of a silyl supported stannylene (Mes TerSn(Sit Bu3 ) [Mes Ter=2,6-(2,4,6-Me3 C6 H2 )2 C6 H3 ] enables activation of white phosphorus under mild conditions, which is reversible under UV light. The reaction of a silylene chloride with the activated P4 complex results in facile P-atom transfer. The computational analysis rationalizes the electronic features and high reactivity of the heteroleptic silyl-substituted stannylene in contrast to the previously reported bis(aryl)stannylene.
Collapse
Affiliation(s)
- Debotra Sarkar
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research CenterTechnische Universität MünchenLichtenbergstraße 485748GarchingGermany
| | - Catherine Weetman
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research CenterTechnische Universität MünchenLichtenbergstraße 485748GarchingGermany
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Dominik Munz
- Department of Chemistry and PharmacyGeneral and Inorganic ChemistryFriedrich-Alexander-University Erlangen-Nuremberg (FAU)Egerlandstraße 191058ErlangenGermany
- Inorganic Chemistry: Coordination ChemistrySaarland University, Geb. C4.166123SaarbrückenGermany
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research CenterTechnische Universität MünchenLichtenbergstraße 485748GarchingGermany
| |
Collapse
|
48
|
Fontana N, Espinosa‐Jalapa NA, Seidl M, Bauer JO. Easy Access to Enantiomerically Pure Heterocyclic Silicon-Chiral Phosphonium Cations and the Matched/Mismatched Case of Dihydrogen Release. Chemistry 2021; 27:2649-2653. [PMID: 33264430 PMCID: PMC7898527 DOI: 10.1002/chem.202005171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 11/17/2022]
Abstract
Phosphonium ions are widely used in preparative organic synthesis and catalysis. The provision of new types of cations that contain both functional and chiral information is a major synthetic challenge and can open up new horizons in asymmetric cation-directed and Lewis acid catalysis. We discovered an efficient methodology towards new Si-chiral four-membered CPSSi* heterocyclic cations. Three synthetic approaches are presented. The stereochemical sequence of anchimerically assisted cation formation with B(C6 F5 )3 and subsequent hydride addition was fully elucidated and proceeds with excellent preservation of the chiral information at the stereogenic silicon atom. Also the mechanism of dihydrogen release from a protonated hydrosilane was studied in detail by the help of Si-centered chirality as stereochemical probe. Chemoselectivity switch (dihydrogen release vs. protodesilylation) can easily be achieved through slight modifications of the solvent. A matched/mismatched case was identified and the intermolecularity of this reaction supported by spectroscopic, kinetic, deuterium-labeling experiments, and quantum chemical calculations.
Collapse
Affiliation(s)
- Nicolò Fontana
- Institut für Anorganische ChemieFakultät für Chemie und PharmazieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Noel Angel Espinosa‐Jalapa
- Institut für Anorganische ChemieFakultät für Chemie und PharmazieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Michael Seidl
- Institut für Anorganische ChemieFakultät für Chemie und PharmazieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Jonathan O. Bauer
- Institut für Anorganische ChemieFakultät für Chemie und PharmazieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| |
Collapse
|
49
|
Hoidn CM, Scott DJ, Wolf R. Transition-Metal-Mediated Functionalization of White Phosphorus. Chemistry 2021; 27:1886-1902. [PMID: 33135828 PMCID: PMC7894350 DOI: 10.1002/chem.202001854] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 12/13/2022]
Abstract
Recently there has been great interest in the reactivity of transition-metal (TM) centers towards white phosphorus (P4 ). This has ultimately been motivated by a desire to find TM-mediated alternatives to the current industrial routes used to transform P4 into myriad useful P-containing products, which are typically indirect, wasteful, and highly hazardous. Such a TM-mediated process can be divided into two steps: activation of P4 to generate a polyphosphorus complex TM-Pn , and subsequent functionalization of this complex to release the desired phosphorus-containing product. The former step has by now become well established, allowing the isolation of many different TM-Pn products. In contrast, productive functionalization of these complexes has proven extremely challenging and has been achieved only in a relative handful of cases. In this review we provide a comprehensive summary of successful TM-Pn functionalization reactions, where TM-Pn must be accessible by reaction of a TM precursor with P4 . We hope that this will provide a useful resource for continuing efforts that are working towards this highly challenging goal of modern synthetic chemistry.
Collapse
Affiliation(s)
- Christian M. Hoidn
- University of RegensburgInstitute of Inorganic Chemistry93040RegensburgGermany
| | - Daniel J. Scott
- University of RegensburgInstitute of Inorganic Chemistry93040RegensburgGermany
| | - Robert Wolf
- University of RegensburgInstitute of Inorganic Chemistry93040RegensburgGermany
| |
Collapse
|
50
|
Sarkar D, Weetman C, Munz D, Inoue S. Reversible Activation and Transfer of White Phosphorus by Silyl‐Stannylene. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Debotra Sarkar
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
| | - Catherine Weetman
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
- Department of Pure and Applied Chemistry University of Strathclyde Glasgow G1 1XL UK
| | - Dominik Munz
- Department of Chemistry and Pharmacy General and Inorganic Chemistry Friedrich-Alexander-University Erlangen-Nuremberg (FAU) Egerlandstraße 1 91058 Erlangen Germany
- Inorganic Chemistry: Coordination Chemistry Saarland University, Geb. C4.1 66123 Saarbrücken Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
| |
Collapse
|