1
|
Zhang J, Huang L, Tjiu WW, Wu C, Zhang M, Bin Dolmanan S, Wang S, Wang M, Xi S, Aabdin Z, Lum Y. Evidence for Distinct Active Sites on Oxide-Derived Cu for Electrochemical Nitrate Reduction. J Am Chem Soc 2024; 146:30708-30714. [PMID: 39440633 DOI: 10.1021/jacs.4c13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Cu is a promising catalyst for electrochemical nitrate (NO3-) reduction. However, desorption of the nitrite (NO2-) intermediate can occur, leading to lowered ammonia productivity and Faradaic efficiency. Here, we discovered that this does not occur with oxide-derived Cu due to the presence of at least two distinct types of cooperative active sites: one for NO3- → NO2- and another for NO2- → NH3. As a result, oxide-derived Cu exhibits enhanced ammonia productivity with a mixed NO3-/NO2- feed relative to pure NO3- or NO2-. In contrast, this was not observed with a standard Cu sample, implying the presence of only a single type of active site. Our dual-site hypothesis was supported by attenuated total reflection surface enhanced infrared absorption spectroscopy and isotopic labeling experiments involving co-reduction of 15NO3-/14NO2-. We also successfully simulated our experimental results using a mathematical model involving two different adsorption sites. These findings motivate the need for further study and rational design of such active sites.
Collapse
Affiliation(s)
- Jiguang Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585 ,Republic of Singapore
- Institute of Materials Research and Engineering,Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Linrong Huang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585 ,Republic of Singapore
| | - Weng Weei Tjiu
- Institute of Materials Research and Engineering,Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Chao Wu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2),Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore
| | - Mingsheng Zhang
- Institute of Materials Research and Engineering,Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Surani Bin Dolmanan
- Institute of Materials Research and Engineering,Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Sibo Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585 ,Republic of Singapore
| | - Meng Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585 ,Republic of Singapore
- Institute of Materials Research and Engineering,Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2),Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore
| | - Zainul Aabdin
- Institute of Materials Research and Engineering,Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yanwei Lum
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585 ,Republic of Singapore
- Institute of Materials Research and Engineering,Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Centre for Hydrogen Innovations, National University of Singapore, Singapore 117580, Republic of Singapore
| |
Collapse
|
2
|
Crandall BS, Qi Z, Foucher AC, Weitzner SE, Akhade SA, Liu X, Kashi AR, Buckley AK, Ma S, Stach EA, Varley JB, Jiao F, Biener J. Cu Based Dilute Alloys for Tuning the C 2+ Selectivity of Electrochemical CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401656. [PMID: 38994827 DOI: 10.1002/smll.202401656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/14/2024] [Indexed: 07/13/2024]
Abstract
Electrochemical CO2 reduction is a promising technology for replacing fossil fuel feedstocks in the chemical industry but further improvements in catalyst selectivity need to be made. So far, only copper-based catalysts have shown efficient conversion of CO2 into the desired multi-carbon (C2+) products. This work explores Cu-based dilute alloys to systematically tune the energy landscape of CO2 electrolysis toward C2+ products. Selection of the dilute alloy components is guided by grand canonical density functional theory simulations using the calculated binding energies of the reaction intermediates CO*, CHO*, and OCCO* dimer as descriptors for the selectivity toward C2+ products. A physical vapor deposition catalyst testing platform is employed to isolate the effect of alloy composition on the C2+/C1 product branching ratio without interference from catalyst morphology or catalyst integration. Six dilute alloy catalysts are prepared and tested with respect to their C2+/C1 product ratio using different electrolyzer environments including selected tests in a 100-cm2 electrolyzer. Consistent with theory, CuAl, CuB, CuGa and especially CuSc show increased selectivity toward C2+ products by making CO dimerization energetically more favorable on the dominant Cu facets, demonstrating the power of using the dilute alloy approach to tune the selectivity of CO2 electrolysis.
Collapse
Affiliation(s)
- Bradie S Crandall
- Center for Catalytic Science & Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
- Center for Carbon Management, Department of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Zhen Qi
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen E Weitzner
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA
| | - Sneha A Akhade
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA
| | - Xin Liu
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA
| | - Ajay R Kashi
- Twelve Benefit Corporation (formerly Opus 12 Incorporated), 610 Bancroft Way, Berkeley, CA, 94710, USA
| | - Aya K Buckley
- Twelve Benefit Corporation (formerly Opus 12 Incorporated), 610 Bancroft Way, Berkeley, CA, 94710, USA
| | - Sichao Ma
- Twelve Benefit Corporation (formerly Opus 12 Incorporated), 610 Bancroft Way, Berkeley, CA, 94710, USA
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joel B Varley
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA
| | - Feng Jiao
- Center for Catalytic Science & Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
- Center for Carbon Management, Department of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Juergen Biener
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA
| |
Collapse
|
3
|
Nie S, Wu L, Liu Q, Wang X. Entropy-Derived Synthesis of the CuPd Sub-1nm Alloy for CO 2-to-acetate Electroreduction. J Am Chem Soc 2024; 146:29364-29372. [PMID: 39425939 DOI: 10.1021/jacs.4c07711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Bimetallic alloys exhibit remarkable properties in catalysis and energy storage, while their precise synthesis at the subnanoscale remains a formidable challenge due to their immiscible nature in thermodynamics. In this study, we engineer an atomically dispersed CuPd alloy with an average size of 1.5 nm loaded on CuO and phosphomolybdic acid (PMA) coassembly subnanosheets (CuO-PMA SNSs). Driven by the high vibrational entropy, Cu atoms could escape from CuO supports and bond with adjacent Pd single atoms, leading to the in situ formation of CuPd alloys. Furthermore, this strategy can also be utilized for synthesizing the ZnPt alloy with an average size of 1 nm, thereby providing a general pathway for the design of immiscible subnanoalloys. The fully exposed Cu-Pd pairs in CuPd subnanoalloys significantly enhance the adsorption and coverage of surface *CO during the electrochemical reduction of CO2, thereby leading to enhanced stability of ethenone intermediates and facilitating the production of C2 compounds. The resulting CuPd subnanoalloy exhibits a remarkable Faradaic efficiency of 46.5 ± 2.1% for CO2-to-acetate electroreduction and achieves a high acetate productivity of 99 ± 2.8 μmol cm-2 at -0.7 V versus RHE.
Collapse
Affiliation(s)
- Siyang Nie
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Zhang X, Ling C, Ren S, Xi H, Ji L, Wang J, Zhu J. Nickel-Doped Facet-Selective Copper Nanowires for Activating CO-to-Ethanol Electrosynthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413111. [PMID: 39463129 DOI: 10.1002/adma.202413111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/06/2024] [Indexed: 10/29/2024]
Abstract
Ethanol isa promising energy vector for closing the anthropogenic carbon cycle through reversible electrochemical redox. Currently, ethanol electrosynthesissuffers from low product selectivity due to the competitive advantage of ethylene in CO2/CO electroreduction. Here, a facet-selective metal-doping strategy is reported, tuning the reaction kinetics of CO reduction paths and thus enhancing the ethanol selectivity. The theoretical calculations reveal that nickel (Ni)doped Cu(100) surface facilitates water dissociation to form adsorbed hydrogen, which promotesselective electrochemical hydrogenation of a key C2 intermediate (*CHCOH) toward ethanol path over ethylene path. Experimentally, a solution-phase synthesis of a Ni-doped {100}-dominated Copper nanowires (Cu NWs) catalyst is reported, enabling an ethanol Faradaic efficiency of 56% and a selectivity ratio of ethanol to ethylene of 2.7, which are ≈4 and 15 times larger than those of undoped Cu NWs, respectively. The operando spectroscopic characterizations confirm that Ni-doping in Cu NWs can alter the interfacial water activity and thus regulate the C2 product selectivity. With further electrode engineering, a membrane electrode assembly electrolyzer using Ni-doped Cu NWs catalysts demonstrates an ethanol Faradaic efficiency over 50% at 300 mA cm-2 with a full cell voltage of ≈2.7 V and operates stably for over 300 h.
Collapse
Affiliation(s)
- Xing Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Chongyi Ling
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Siyun Ren
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Hanchen Xi
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Liyao Ji
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
5
|
Wu XY, Li ZY, Zhang ML, Lu JF, Zhu ZH, Zhao J, Liu SJ, Wen HR. In Situ Synthesis of Copper-Based Metal-Organic Frameworks with Ligand Defects for Electrochemical Reduction of CO 2 into C 2 Products. Inorg Chem 2024; 63:19897-19905. [PMID: 39373102 DOI: 10.1021/acs.inorgchem.4c03338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Electrochemical reduction of CO2 into high-value-added products is a potential approach to solving environmental problems but is limited by poor product selectivity and low efficiency. Metal-organic framework (MOF) materials have been considered one of the most promising catalysts, but their application is limited by complicated preparation processes, especially during the synthesis of organic ligands. In this work, a new three-dimensional Cu-MOF (JXUST-301) with high porosity was constructed based on the naphthalene diimide (NDI) ligand. Furthermore, JXUST-301 with ligand defects (JXUST-301D) originating from the missing NDI unit was synthesized via an in situ reaction. The presence of ligand defects endows JXUST-301D with a better CO2RR performance with a FEC2 of 56.7% and a jC2 of -162.4 mA cm-2. Mechanistic studies revealed that the hierarchical pore structure and amino sites are created from the absence of the NDI unit, which promotes the exposure of catalytically active sites and CO2 enrichment. Furthermore, the electronic structure of the Cu sites is modulated to upshift the d-band center, facilitating chemical adsorption and activation of key reaction intermediates. This work provides new insight into the in situ preparation of efficient Cu-MOF catalysts by introducing defects for the CO2RR.
Collapse
Affiliation(s)
- Xin-Yu Wu
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Zhi-Yuan Li
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Man-Lian Zhang
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Jian-Feng Lu
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Zi-Hao Zhu
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, P. R. China
- China Tin Grp Co Ltd, Liuzhou 545000, P. R. China
| | - Jian Zhao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, P. R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| |
Collapse
|
6
|
Sun B, Cheng H, Shi C, Guan J, Jiang Z, Ma S, Song K, Hu H. Metal-organic framework-derived silver/copper-oxide catalyst for boosting the productivity of carbon dioxide electrocatalysis to ethylene. J Colloid Interface Sci 2024; 679:615-623. [PMID: 39388948 DOI: 10.1016/j.jcis.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Electrochemical reduction of CO2 into valuable multi-carbon (C2) chemicals holds promise for mitigating CO2 emissions and enabling artificial carbon cycling. However, achieving high selectivity remains challenging due to the limited activity and active sites of CC coupling catalysts. Herein, we report an Ag-modified Cu-oxide catalyst (CuO/Ag@C) derived from metal-organic frameworks (MOF), capable of efficiently converting CO2 to C2H4. The MOF-derived porous carbon confines the size of metal nanoparticles, ensuring sufficient exposure of active sites. Remarkably, the CuO/Ag@C catalyst achieves an impressive Faradaic efficiency of 48.6% for C2H4 at -0.7 V vs. RHE, demonstrating excellent stability. Both experimental results and theoretical calculations indicate that Ag sites promote the production of CO, enhancing the coverage of *CO on Cu sites. Furthermore, the reconfiguration of charge density at the Cu-Ag interface optimizes the electronic states of the reaction sites, reducing the formation energy of the key intermediate *OCCHO, thereby favoring C2H4 production effectively. This work provides insight into structurally rational catalyst design for highly active and selective multiphase catalysts.
Collapse
Affiliation(s)
- Bo Sun
- Collaborative Innovation Center of Nonferrous Metals, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Haoyan Cheng
- Collaborative Innovation Center of Nonferrous Metals, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Changrui Shi
- Collaborative Innovation Center of Nonferrous Metals, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jiangyi Guan
- Collaborative Innovation Center of Nonferrous Metals, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhonghan Jiang
- Collaborative Innovation Center of Nonferrous Metals, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Shuaiyu Ma
- Collaborative Innovation Center of Nonferrous Metals, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Kexing Song
- Collaborative Innovation Center of Nonferrous Metals, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China; Material Research Institute, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Hao Hu
- Collaborative Innovation Center of Nonferrous Metals, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
7
|
Ramadhany P, Luong Q, Zhang Z, Leverett J, Samorì P, Corrie S, Lovell E, Canbulat I, Daiyan R. State of Play of Critical Mineral-Based Catalysts for Electrochemical E-Refinery to Synthetic Fuels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405029. [PMID: 38838055 DOI: 10.1002/adma.202405029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/17/2024] [Indexed: 06/07/2024]
Abstract
The pursuit of decarbonization involves leveraging waste CO2 for the production of valuable fuels and chemicals (e.g., ethanol, ethylene, and urea) through the electrochemical CO2 reduction reactions (CO2RR). The efficacy of this process heavily depends on electrocatalyst performance, which is generally reliant on high loading of critical minerals. However, the supply of these minerals is susceptible to shortage and disruption, prompting concerns regarding their usage, particularly in electrocatalysis, requiring swift innovations to mitigate the supply risks. The reliance on critical minerals in catalyst fabrication can be reduced by implementing design strategies that improve the available active sites, thereby increasing the mass activity. This review seeks to discuss and analyze potential strategies, challenges, and opportunities for improving catalyst activity in CO2RR with a special attention to addressing the risks associated with critical mineral scarcity. By shedding light onto these aspects of critical mineral-based catalyst systems, this review aims to inspire the development of high-performance catalysts and facilitates the practical application of CO2RR technology, whilst mitigating adverse economic, environmental, and community impacts.
Collapse
Affiliation(s)
- Putri Ramadhany
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Quang Luong
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Ziling Zhang
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Josh Leverett
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| | - Simon Corrie
- Chemical and Biological Engineering Department, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Clayton, VIC 3800, Australia
| | - Emma Lovell
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ismet Canbulat
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Rahman Daiyan
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Wang J, Zhang Y, Bai H, Deng H, Pan B, Li Y, Wang Y. Trilayer Polymer Electrolytes Enable Carbon-Efficient CO 2 to Multicarbon Product Conversion in Alkaline Electrolyzers. Angew Chem Int Ed Engl 2024; 63:e202404110. [PMID: 39031640 DOI: 10.1002/anie.202404110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) is an appealing method for carbon utilization. Alkaline CO2 electrolyzers exhibit high CO2RR activity, low full-cell voltages, and cost-effectiveness. However, the issue of CO2 loss caused by (bi)carbonate formation leads to excessive energy consumption, rendering the process economically impractical. In this study, we propose a trilayer polymer electrolyte (TPE) comprising a perforated anion exchange membrane (PAEM) and a bipolar membrane (BPM) to facilitate alkaline CO2RR. This TPE enables the coexistence of high alkalinity near the catalyst surface and the H+ flux at the interface between the PAEM and the cation exchange layer (CEL) of the BPM, conditions favoring both CO2 reduction to multicarbon products and (bi)carbonate removal in KOH-fed membrane electrode assembly (MEA) reactors. As a result, we achieve a Faradaic efficiency (FE) of approximately 46 % for C2H4, corresponding to a C2+ FE of 64 % at 260 mA cm-2, with a CO2-to-C2H4 single-pass conversion (SPC) of approximately 32 % at 140 mA cm-2-nearly 1.3 times the limiting SPC in conventional AEM-MEA electrolyzers. Furthermore, coupling CO2 reduction with formaldehyde oxidation reaction (FOR) in the TPE-MEA electrolyzer reduces the full-cell voltage to 2.3 V at 100 mA cm-2 without compromising the C2H4 FE.
Collapse
Affiliation(s)
- Jundong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yuesheng Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Haoxiang Bai
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Huiying Deng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Binbin Pan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yanguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yuhang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| |
Collapse
|
9
|
Wang C, Sun Y, Chen Y, Zhang Y, Yue L, Han L, Zhao L, Zhu X, Zhan D. In Situ Electropolymerizing Toward EP-CoP/Cu Tandem Catalyst for Enhanced Electrochemical CO 2-to-Ethylene Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404053. [PMID: 38973357 PMCID: PMC11425910 DOI: 10.1002/advs.202404053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Indexed: 07/09/2024]
Abstract
Electrochemical CO2 reduction has garnered significant interest in the conversion of sustainable energy to valuable fuels and chemicals. Cu-based bimetallic catalysts play a crucial role in enhancing *CO concentration on Cu sites for efficient C─C coupling reactions, particularly for C2 product generation. To enhance Cu's electronic structure and direct its selectivity toward C2 products, a novel strategy is proposed involving the in situ electropolymerization of a nano-thickness cobalt porphyrin polymeric network (EP-CoP) onto a copper electrode, resulting in the creation of a highly effective EP-CoP/Cu tandem catalyst. The even distribution of EP-CoP facilitates the initial reduction of CO2 to *CO intermediates, which then transition to Cu sites for efficient C─C coupling. DFT calculations confirm that the *CO enrichment from Co sites boosts *CO coverage on Cu sites, promoting C─C coupling for C2+ product formation. The EP-CoP/Cu gas diffusion electrode achieves an impressive current density of 726 mA cm-2 at -0.9 V versus reversible hydrogen electrode (RHE), with a 76.8% Faraday efficiency for total C2+ conversion and 43% for ethylene, demonstrating exceptional long-term stability in flow cells. These findings mark a significant step forward in developing a tandem catalyst system for the effective electrochemical production of ethylene.
Collapse
Affiliation(s)
- Chao Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yifan Sun
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yuzhuo Chen
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Yiting Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Liangliang Yue
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Lianhuan Han
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Liubin Zhao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xunjin Zhu
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Dongping Zhan
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
10
|
Xie Z, Wang Q, Yang H, Feng J, Chen J, Song S, Meng C, Wang K, Tong Y. Surface Facets Reconstruction in Copper-Based Materials for Enhanced Electrochemical CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401530. [PMID: 38751307 DOI: 10.1002/smll.202401530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Indexed: 10/01/2024]
Abstract
The unavoidable and unpredictable surface reconstruction of metallic copper (Cu) during the electrocatalytic carbon dioxide (CO2) reduction process is a double-edged sword affecting the production of high-value-added hydrocarbon products. It is crucial to control the surface facet reconstruction and regulate the targeted facets/facet interfaces, and further understand the mechanism between activity/selectivity and the reconstructed structure of Cu for CO2 reduction. Based on the current catalyst design methods, a facile strategy combining chemical reduction and electro-reduction is proposed to achieve specified Cu(111) facets and the Cu(110)/(111) interfaces in reconstructed Cu derived from cuprous oxide (Cu2O). The surface facet reconstruction significantly boosted the electrocatalytic conversion of CO2 into multi-carbon (C2+) products comparing to the unmodified catalyst. Theoretical and experimental analyses show that the Cu(110)/(111)s interface between Cu(110) and a small amount of Cu(111) can tailor the reaction routes and lower the reaction energy barrier of C-C coupling to ethylene (C2H4). The work will guide the surface facets reconstruction strategy for Cu-based CO2 electrocatalysts, providing a promising paradigm to understand the structural variation in catalysts.
Collapse
Affiliation(s)
- Zezhong Xie
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry. The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Qiushi Wang
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry. The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, P. R. China
| | - Hao Yang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry & Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Jin Feng
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry. The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jian Chen
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry. The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shuqin Song
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry. The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Changgong Meng
- School of Chemistry, Dalian University, Dalian, 116024, P. R. China
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Kun Wang
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry. The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yexiang Tong
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry. The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
11
|
Wang H, Lu R, Dong C, Du X, Liang H. Glycine modified copper promotes CO 2 electroreduction to multi-carbon products: a computational study. Phys Chem Chem Phys 2024; 26:22314-22318. [PMID: 39143891 DOI: 10.1039/d4cp02285h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Molecular modification strategy exhibits great potential for electrocatalytic CO2 reduction. Here, DFT calculations were applied to study the mechanism of CO2 electroreduction on glycine modified copper. The results indicate that the interaction between the modified molecule and the intermediate could change the reaction energy of CO2 electroreduction.
Collapse
Affiliation(s)
- Haibin Wang
- School of Materials Science and Engineering and Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, Tianjin 300350, P. R. China.
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Ruihu Lu
- School of Chemical Sciences, the University of Auckland, Auckland, 1010, New Zealand
| | - Cunku Dong
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiwen Du
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hongyan Liang
- School of Materials Science and Engineering and Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, Tianjin 300350, P. R. China.
| |
Collapse
|
12
|
Vieira F, Marcasuzaa P, Curet L, Billon L, Viterisi A, Palomares E. Selectivity of a Copper Oxide CO 2 Reduction Electrocatalyst Shifted by a Bioinspired pH-Sensitive Polymer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45038-45048. [PMID: 39162339 DOI: 10.1021/acsami.4c11927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A bioinspired polymeric membrane capable of shifting the selectivity of a copper oxide electrocatalyst in the CO2 reduction reaction is described. The membrane is deposited on top of copper oxide thin films from wet deposition techniques under controlled conditions of humidity and self-assembles into an arranged network of micrometer-sized pores throughout the polymer cross-section. The membrane was composed of a block copolymer with a precisely controlled ratio of poly-4-vinylpyridine and poly(methyl methacrylate) blocks (PMMA-b-P4VP). The intrinsic hydrophobicity, together with the porous nature of the membrane's surface, induces a Cassie-Baxter wetting transition above neutral pH, resulting in water repulsion from the catalyst surface. As a consequence, the catalyst's surface is shielded from surrounding water molecules under CO2 electroreduction reaction conditions, and CO2 molecules are preferentially located in the vicinity of the catalytically active area. The CO2 reduction reaction is therefore kinetically favored over the hydrogen evolution reaction (HER).
Collapse
Affiliation(s)
- Fábio Vieira
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Technopole Hélioparc, 2 Avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France
- Bio-inspired Materials Group: Functionalities & Self-Assembly, E2S UPPA, IPREM, Hélioparc, 2 Avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France
- Institute of Chemical Research of Catalonia (ICIQ), Avenida Països Catalans, 16, 43007 Tarragona, Spain
| | - Pierre Marcasuzaa
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Technopole Hélioparc, 2 Avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France
- Bio-inspired Materials Group: Functionalities & Self-Assembly, E2S UPPA, IPREM, Hélioparc, 2 Avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France
| | - Leonard Curet
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Technopole Hélioparc, 2 Avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France
- Bio-inspired Materials Group: Functionalities & Self-Assembly, E2S UPPA, IPREM, Hélioparc, 2 Avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France
| | - Laurent Billon
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Technopole Hélioparc, 2 Avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France
- Bio-inspired Materials Group: Functionalities & Self-Assembly, E2S UPPA, IPREM, Hélioparc, 2 Avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France
| | - Aurélien Viterisi
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Technopole Hélioparc, 2 Avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France
- Bio-inspired Materials Group: Functionalities & Self-Assembly, E2S UPPA, IPREM, Hélioparc, 2 Avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France
| | - Emilio Palomares
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Technopole Hélioparc, 2 Avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France
- Institute of Chemical Research of Catalonia (ICIQ), Avenida Països Catalans, 16, 43007 Tarragona, Spain
| |
Collapse
|
13
|
Ma D, Zhi C, Zhang Y, Chen J, Zhang Y, Shi JW. A Review on the Influence of Crystal Facets on the Product Selectivity of CO 2RR over Cu Metal Catalysts. ACS NANO 2024; 18:21714-21746. [PMID: 39126711 DOI: 10.1021/acsnano.4c05326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
The electrocatalytic carbon dioxide reduction reaction (ECRR) is promising in converting environmentally harmful CO2 into useful chemicals, but the large-scale application of this technology is seriously limited by its low efficiency and selectivity. Cu-based electrocatalysts displayed attractive ability in converting CO2 to multiple products, and the product selectivity can be manipulated through various approaches. Among them, exposing specific crystal facets through crystal facet engineering has been proven to be highly effective in obtaining specific products and has attracted numerous researchers. However, to our knowledge, few reports have systematically summarized the relationship between the crystal facet control of Cu catalysts and the catalytic products. This review begins by outlining the general mechanism of CO2 electrocatalytic reduction on Cu-based catalysts, and then summarizes the preferences of low-index and high-index Cu facets regarding product selectivity and delves into the synergistic effects between facets (including different Cu facets and interactions between Cu and non-Cu facets) and their impact on CO2 reduction reaction (CO2RR). In addition, the study of the recently developed Cu single-atom catalysts in ECRR was also introduced. Finally, we provide an outlook on the development of high-performance Cu-based catalysts for applications in CO2RR. The purpose of this review is to provide a clear vein and meaningful guidance for the following studies over the crystal facet control of Cu-based electrocatalysts.
Collapse
Affiliation(s)
- Dandan Ma
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chuanqi Zhi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yimeng Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiantao Chen
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yi Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
14
|
Yang R, Cai Y, Qi Y, Tang Z, Zhu JJ, Li J, Zhu W, Chen Z. How local electric field regulates C-C coupling at a single nanocavity in electrocatalytic CO 2 reduction. Nat Commun 2024; 15:7140. [PMID: 39164320 PMCID: PMC11336232 DOI: 10.1038/s41467-024-51397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024] Open
Abstract
C-C coupling is of utmost importance in the electrocatalytic reduction of CO2, as it governs the selectivity of diverse product formation. Nevertheless, the difficulties to directly observe C-C coupling pathways at a specific nanocavity hinder the advances in catalysts and electrolyzer design for efficient high-value hydrocarbon production. Here we develop a nano-confined Raman technology to elucidate the influence of the local electric field on the evolution of C-C coupling intermediates. Through precise adjustments to the Debye length in nanocavities of a copper catalyst, the overlapping of electrical double layers drives a transition in the C-C coupling pathway at a specific nanocavity from *CHO-*CO coupling to the direct dimerization of *CO species. Experimental evidence and simulations validate that a reduced potential drop across the compact layer promotes a higher yield of CO and promotes the direct dimerization of *CO species. Our findings provide insights for the development of highly selective catalyst materials tailored to promote specific products.
Collapse
Affiliation(s)
- Ruixin Yang
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China
| | - Yanming Cai
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China
| | - Yongbing Qi
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China
| | - Zhuodong Tang
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China
| | - Jinxiang Li
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China
| | - Wenlei Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China.
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China.
| |
Collapse
|
15
|
Chen H, Mo P, Zhu J, Xu X, Cheng Z, Yang F, Xu Z, Liu J, Wang L. Anionic Coordination Control in Building Cu-Based Electrocatalytic Materials for CO 2 Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400661. [PMID: 38597688 DOI: 10.1002/smll.202400661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Renewable energy-driven conversion of CO2 to value-added fuels and chemicals via electrochemical CO2 reduction reaction (CO2RR) technology is regarded as a promising strategy with substantial environmental and economic benefits to achieve carbon neutrality. Because of its sluggish kinetics and complex reaction paths, developing robust catalytic materials with exceptional selectivity to the targeted products is one of the core issues, especially for extensively concerned Cu-based materials. Manipulating Cu species by anionic coordination is identified as an effective way to improve electrocatalytic performance, in terms of modulating active sites and regulating structural reconstruction. This review elaborates on recent discoveries and progress of Cu-based CO2RR catalytic materials enhanced by anionic coordination control, regarding reaction paths, functional mechanisms, and roles of different non-metallic anions in catalysis. Finally, the review concludes with some personal insights and provides challenges and perspectives on the utilization of this strategy to build desirable electrocatalysts.
Collapse
Affiliation(s)
- Hanxia Chen
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Pengpeng Mo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Junpeng Zhu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Xiaoxue Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhixiang Cheng
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Feng Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhongfei Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Juzhe Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| |
Collapse
|
16
|
Wu H, Yu H, Chow YL, Webley PA, Zhang J. Toward Durable CO 2 Electroreduction with Cu-Based Catalysts via Understanding Their Deactivation Modes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403217. [PMID: 38845132 DOI: 10.1002/adma.202403217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/23/2024] [Indexed: 06/18/2024]
Abstract
The technology of CO2 electrochemical reduction (CO2ER) provides a means to convert CO2, a waste greenhouse gas, into value-added chemicals. Copper is the most studied element that is capable of catalyzing CO2ER to obtain multicarbon products, such as ethylene, ethanol, acetate, etc., at an appreciable rate. Under the operating condition of CO2ER, the catalytic performance of Cu decays because of several factors that alters the surface properties of Cu. In this review, these factors that cause the degradation of Cu-based CO2ER catalysts are categorized into generalized deactivation modes, that are applicable to all electrocatalytic systems. The fundamental principles of each deactivation mode and the associated effects of each on Cu-based catalysts are discussed in detail. Structure- and composition-activity relationship developed from recent in situ/operando characterization studies are presented as evidence of related deactivation modes in operation. With the aim to address these deactivation modes, catalyst design and reaction environment engineering rationales are suggested. Finally, perspectives and remarks built upon the recent advances in CO2ER are provided in attempts to improve the durability of CO2ER catalysts.
Collapse
Affiliation(s)
- Hsiwen Wu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Haoming Yu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, 330031, China
| | - Yuen-Leong Chow
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Paul A Webley
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC, 3800, Australia
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC, 3800, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
17
|
Xia C, Wang X, He C, Qi R, Zhu D, Lu R, Li FM, Chen Y, Chen S, You B, Yao T, Guo W, Song F, Wang Z, Xia BY. Highly Selective Electrocatalytic CO 2 Conversion to Tailored Products through Precise Regulation of Hydrogenation and C-C Coupling. J Am Chem Soc 2024; 146:20530-20538. [PMID: 38991189 DOI: 10.1021/jacs.4c07502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The electrochemical reduction reaction of carbon dioxide (CO2RR) into valuable products offers notable economic benefits and contributes to environmental sustainability. However, precisely controlling the reaction pathways and selectively converting key intermediates pose considerable challenges. In this study, our theoretical calculations reveal that the active sites with different states of copper atoms (1-3-5-7-9) play a pivotal role in the adsorption behavior of the *CHO critical intermediate. This behavior dictates the subsequent hydrogenation and coupling steps, ultimately influencing the formation of the desired products. Consequently, we designed two model electrocatalysts comprising Cu single atoms and particles supported on CeO2. This design enables controlled *CHO intermediate transformation through either hydrogenation with *H or coupling with *CO, leading to a highly selective CO2RR. Notably, our selective control strategy tunes the Faradaic efficiency from 61.1% for ethylene (C2H4) to 61.2% for methane (CH4). Additionally, the catalyst demonstrated a high current density and remarkable stability, exceeding 500 h of operation. This work not only provides efficient catalysts for selective CO2RR but also offers valuable insights into tailoring surface chemistry and designing catalysts for precise control over catalytic processes to achieve targeted product generation in CO2RR technology.
Collapse
Affiliation(s)
- Chenfeng Xia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China
| | - Xiu Wang
- School of Chemical Sciences, University of Aucklan, Auckland 1010, New Zealand
| | - Chaohui He
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China
| | - Ruijuan Qi
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Deyu Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China
| | - Ruihu Lu
- School of Chemical Sciences, University of Aucklan, Auckland 1010, New Zealand
| | - Fu-Min Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Shenghua Chen
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bo You
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Wei Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China
| | - Fei Song
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, China
| | - Ziyun Wang
- School of Chemical Sciences, University of Aucklan, Auckland 1010, New Zealand
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China
| |
Collapse
|
18
|
Kong Y, Yang H, Jia X, Wan D, Zhang Y, Hu Q, He C. Constructing Favorable Microenvironment on Copper Grain Boundaries for CO 2 Electro-conversion to Multicarbon Products. NANO LETTERS 2024. [PMID: 39011983 DOI: 10.1021/acs.nanolett.4c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The electrochemical CO2 reduction reaction (eCO2RR) to multicarbon chemicals provides a promising avenue for storing renewable energy. Herein, we synthesized small Cu nanoparticles featuring enriched tiny grain boundaries (RGBs-Cu) through spatial confinement and in situ electroreduction. In-situ spectroscopy and theoretical calculations demonstrate that small-sized Cu grain boundaries significantly enhance the adsorption of the *CO intermediate, owing to the presence of abundant low-coordinated and disordered atoms. Furthermore, these grain boundaries, generated in situ under high current conditions, exhibit excellent stability during the eCO2RR process, thereby creating a stable *CO-rich microenvironment. This high local *CO concentration around the catalyst surface can reduce the energy barrier for C-C coupling and significantly increase the Faradaic efficiency (FE) for multicarbon products across both neutral and alkaline electrolytes. Specifically, the developed RGBs-Cu electrocatalyst achieved a peak FE of 77.3% for multicarbon products and maintained more than 134 h stability at a constant current density of -500 mA cm-2.
Collapse
Affiliation(s)
- Yan Kong
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xinmei Jia
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Da Wan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Yilei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| |
Collapse
|
19
|
Wang Y, Sun J, Sun N, Zhang M, Liu X, Zhang A, Wang L. The spin polarization strategy regulates heterogeneous catalytic activity performance: from fundamentals to applications. Chem Commun (Camb) 2024; 60:7397-7413. [PMID: 38946499 DOI: 10.1039/d4cc02012j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In recent years, there has been significant attention towards the development of catalysts that exhibit superior performance and environmentally friendly attributes. This surge in interest is driven by the growing demands for energy utilization and storage as well as environmental preservation. Spin polarization plays a crucial role in catalyst design, comprehension of catalytic mechanisms, and reaction control, offering novel insights for the design of highly efficient catalysts. However, there are still some significant research gaps in the current study of spin catalysis. Therefore, it is urgent to understand how spin polarization impacts catalytic reactions to develop superior performance catalysts. Herein, we present a comprehensive summary of the application of spin polarization in catalysis. Firstly, we summarize the fundamental mechanism of spin polarization in catalytic reactions from two aspects of kinetics and thermodynamics. Additionally, we review the regulation mechanism of spin polarization in various catalytic applications and several approaches to modulate spin polarization. Moreover, we discuss the future development of spin polarization in catalysis and propose several potential avenues for further progress. We aim to improve current catalytic systems through implementing a novel and distinctive spin engineering strategy.
Collapse
Affiliation(s)
- Yan Wang
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Junkang Sun
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Ning Sun
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Mengyang Zhang
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Xianya Liu
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Anlei Zhang
- College of Science, Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Longlu Wang
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| |
Collapse
|
20
|
Chen J, Qiu H, Zhao Y, Yang H, Fan L, Liu Z, Xi S, Zheng G, Chen J, Chen L, Liu Y, Guo L, Wang L. Selective and stable CO 2 electroreduction at high rates via control of local H 2O/CO 2 ratio. Nat Commun 2024; 15:5893. [PMID: 39003258 PMCID: PMC11246503 DOI: 10.1038/s41467-024-50269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024] Open
Abstract
Controlling the concentrations of H2O and CO2 at the reaction interface is crucial for achieving efficient electrochemical CO2 reduction. However, precise control of these variables during catalysis remains challenging, and the underlying mechanisms are not fully understood. Herein, guided by a multi-physics model, we demonstrate that tuning the local H2O/CO2 concentrations is achievable by thin polymer coatings on the catalyst surface. Beyond the often-explored hydrophobicity, polymer properties of gas permeability and water-uptake ability are even more critical for this purpose. With these insights, we achieve CO2 reduction on copper with Faradaic efficiency exceeding 87% towards multi-carbon products at a high current density of -2 A cm-2. Encouraging cathodic energy efficiency (>50%) is also observed at this high current density due to the substantially reduced cathodic potential. Additionally, we demonstrate stable CO2 reduction for over 150 h at practically relevant current densities owning to the robust reaction interface. Moreover, this strategy has been extended to membrane electrode assemblies and other catalysts for CO2 reduction. Our findings underscore the significance of fine-tuning the local H2O/CO2 balance for future CO2 reduction applications.
Collapse
Affiliation(s)
- Junmei Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore, 117585, Singapore
| | - Haoran Qiu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore, 117585, Singapore
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yilin Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore, 117585, Singapore
| | - Haozhou Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore, 117585, Singapore
| | - Lei Fan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhihe Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore, 117585, Singapore
| | - ShiBo Xi
- Institute of Sustainability for Chemicals, Energy & Environment, A*STAR, 1 Pesek Rd, 627833, Singapore, Singapore
| | - Guangtai Zheng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore, 117585, Singapore
| | - Jiayi Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore, 117585, Singapore
| | - Lei Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore, 117585, Singapore
| | - Ya Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Liejin Guo
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore, 117585, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, 1 Engineering Drive 3, 117585, Singapore, Singapore.
| |
Collapse
|
21
|
Chen Z, Ma Z, Fan G, Li F. Critical Role of Cu Nanoparticle-Loaded Cu(100) Surface Structures on Structured Copper-Based Catalysts in Boosting Ethanol Generation in CO 2 Electroreduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35143-35154. [PMID: 38943565 DOI: 10.1021/acsami.4c05973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Presently, realizing high ethanol selectivity in CO2 electroreduction remains challenging due to difficult C-C coupling and fierce product competition. In this work, we report an innovative approach for improving the efficiency of Cu-based electrocatalysts in ethanol generation from electrocatalytic CO2 reduction using a crystal plane modification strategy. These novel Cu-based electrocatalysts were fabricated by electrochemically activating three-dimensional (3D) flower-like CuO micro/nanostructures grown in situ on copper foils and modifying with surfactants. It was demonstrated that the fabricated Cu-based electrocatalyst featured a predominantly exposed Cu(100) surface loaded with high-density Cu nanoparticles (NPs). The optimal Cu-based electrocatalyst displayed considerably improved CO2 electroreduction performance, with a Faraday efficiency of 37.9% for ethanol and a maximum Faraday efficiency of 68.0% for C2+ products at -1.4 V vs RHE in an H-cell, accompanied by a high current density of 69.9 mA·cm-2, much better than the particulate Cu-based electrocatalyst. It was unveiled that the Cu(100)-rich surface of nanoscale petals with abundant under-coordinated copper atoms from CuNPs was conducive to the formation and stabilization of key *CH3CHO and *OC2H5 intermediates, thereby promoting ethanol generation. This study highlighted the critical role of CuNP-loaded Cu(100) surface structures on structured Cu-based electrocatalysts in enhancing ethanol production for the CO2 electroreduction process.
Collapse
Affiliation(s)
- Zhijian Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenghui Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guoli Fan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
22
|
Mao Y, Zhang M, Zhai G, Si S, Liu D, Song K, Liu Y, Wang Z, Zheng Z, Wang P, Dai Y, Cheng H, Huang B. Asymmetric Cu(I)─W Dual-Atomic Sites Enable C─C Coupling for Selective Photocatalytic CO 2 Reduction to C 2H 4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401933. [PMID: 38666482 PMCID: PMC11267401 DOI: 10.1002/advs.202401933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/10/2024] [Indexed: 07/25/2024]
Abstract
Solar-driven CO2 reduction into value-added C2+ chemical fuels, such as C2H4, is promising in meeting the carbon-neutral future, yet the performance is usually hindered by the high energy barrier of the C─C coupling process. Here, an efficient and stabilized Cu(I) single atoms-modified W18O49 nanowires (Cu1/W18O49) photocatalyst with asymmetric Cu─W dual sites is reported for selective photocatalytic CO2 reduction to C2H4. The interconversion between W(V) and W(VI) in W18O49 ensures the stability of Cu(I) during the photocatalytic process. Under light irradiation, the optimal Cu1/W18O49 (3.6-Cu1/W18O49) catalyst exhibits concurrent high activity and selectivity toward C2H4 production, reaching a corresponding yield rate of 4.9 µmol g-1 h-1 and selectivity as high as 72.8%, respectively. Combined in situ spectroscopies and computational calculations reveal that Cu(I) single atoms stabilize the *CO intermediate, and the asymmetric Cu─W dual sites effectively reduce the energy barrier for the C─C coupling of two neighboring CO intermediates, enabling the highly selective C2H4 generation from CO2 photoreduction. This work demonstrates leveraging stabilized atomically-dispersed Cu(I) in asymmetric dual-sites for selective CO2-to-C2H4 conversion and can provide new insight into photocatalytic CO2 reduction to other targeted C2+ products through rational construction of active sites for C─C coupling.
Collapse
Affiliation(s)
- Yuyin Mao
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Minghui Zhang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Guangyao Zhai
- School of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaHefei230026China
| | - Shenghe Si
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Dong Liu
- School of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaHefei230026China
| | - Kepeng Song
- School of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Zeyan Wang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Peng Wang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Ying Dai
- School of PhysicsShandong UniversityJinan250100China
| | - Hefeng Cheng
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Baibiao Huang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| |
Collapse
|
23
|
Zhang YC, Zhang XL, Wu ZZ, Niu ZZ, Chi LP, Gao FY, Yang PP, Wang YH, Yu PC, Duanmu JW, Sun SP, Gao MR. Facet-switching of rate-determining step on copper in CO 2-to-ethylene electroreduction. Proc Natl Acad Sci U S A 2024; 121:e2400546121. [PMID: 38857407 PMCID: PMC11194607 DOI: 10.1073/pnas.2400546121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/26/2024] [Indexed: 06/12/2024] Open
Abstract
Reduction of carbon dioxide (CO2) by renewable electricity to produce multicarbon chemicals, such as ethylene (C2H4), continues to be a challenge because of insufficient Faradaic efficiency, low production rates, and complex mechanistic pathways. Here, we report that the rate-determining steps (RDS) on common copper (Cu) surfaces diverge in CO2 electroreduction, leading to distinct catalytic performances. Through a combination of experimental and computational studies, we reveal that C─C bond-making is the RDS on Cu(100), whereas the protonation of *CO with adsorbed water becomes rate-limiting on Cu(111) with a higher energy barrier. On an oxide-derived Cu(100)-dominant Cu catalyst, we reach a high C2H4 Faradaic efficiency of 72%, partial current density of 359 mA cm-2, and long-term stability exceeding 100 h at 500 mA cm-2, greatly outperforming its Cu(111)-rich counterpart. We further demonstrate constant C2H4 selectivity of >60% over 70 h in a membrane electrode assembly electrolyzer with a full-cell energy efficiency of 23.4%.
Collapse
Affiliation(s)
- Yu-Cai Zhang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Xiao-Long Zhang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Zhi-Zheng Wu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Zhuang-Zhuang Niu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Li-Ping Chi
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Fei-Yue Gao
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Peng-Peng Yang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Ye-Hua Wang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Peng-Cheng Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Jing-Wen Duanmu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Shu-Ping Sun
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Min-Rui Gao
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
24
|
Sun J, Liu Z, Zhou H, Cao M, Cai W, Xu C, Xu J, Huang Z. Ionic Liquids Modulating Local Microenvironment of Ni-Fe Binary Single Atom Catalyst for Efficient Electrochemical CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308522. [PMID: 38161261 DOI: 10.1002/smll.202308522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Indexed: 01/03/2024]
Abstract
The Ni and Fe dual-atom catalysts still undergo strikingly attenuation under high current density and high overpotential. To ameliorate the issue, the ionic liquids with different cations or anions are used in this work to regulate the micro-surface of nitrogen-doped carbon supported Ni and Fe dual-atom sites catalyst (NiFe-N-C) by an impregnation method. The experimental data reveals the dual function of ionic liquids, which enhances CO2 adsorption ability and modulates electronic structure, facilitating CO2 anion radical (CO2 •¯) stabilization and decreasing onset potential. The theoretical calculation results prove that the attachment of ionic liquids modulates electronic structure, reduces energy barrier of CO2 •¯ formation, and enhances overall ECR performance. Based on these merits, BMImPF6 modified NiFe-N-C (NiFe-N-C/BMImPF6) achieves the high CO faradaic efficiency of 91.9% with a CO partial current density of -120 mA cm-2 at -1.0 V. When the NiFe-N-C/BMImPF6 is assembled as cathode of Zn-CO2 battery, it delivers the highest power density of 2.61 mW cm-2 at 2.57 mA cm-2 and superior cycling stability. This work will afford a direction to modify the microenvironment of other dual-atom catalysts for high-performance CO2 electroreduction.
Collapse
Affiliation(s)
- Jiale Sun
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhen Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Haihui Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Mengxue Cao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Weiming Cai
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chenxi Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Junwei Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhongyuan Huang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 510000, P. R. China
| |
Collapse
|
25
|
Yu H, Govindarajan N, Weitzner SE, Serra-Maia RF, Akhade SA, Varley JB. Theoretical Investigation of the Adsorbate and Potential-Induced Stability of Cu Facets During Electrochemical CO 2 and CO Reduction. Chemphyschem 2024; 25:e202300959. [PMID: 38409629 DOI: 10.1002/cphc.202300959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The activity and product selectivity of electrocatalysts for reactions like the carbon dioxide reduction reaction (CO2RR) are intimately dependent on the catalyst's structure and composition. While engineering catalytic surfaces can improve performance, discovering the key sets of rational design principles remains challenging due to limitations in modeling catalyst stability under operating conditions. Herein, we perform first-principles density functional calculations adopting implicit solvation methods with potential control to study the influence of adsorbates and applied potential on the stability of different facets of model Cu electrocatalysts. Using coverage dependencies extracted from microkinetic models, we describe an approach for calculating potential and adsorbate-dependent contributions to surface energies under reaction conditions, where Wulff constructions are used to understand the morphological evolution of Cu electrocatalysts under CO2RR conditions. We identify that CO*, a key reaction intermediate, exhibits higher kinetically and thermodynamically accessible coverages on (100) relative to (111) facets, which can translate into an increased relative stabilization of the (100) facet during CO2RR. Our results support the known tendency for increased (111) faceting of Cu nanoparticles under more reducing conditions and that the relative increase in (100) faceting observed under CO2RR conditions is likely attributed to differences in CO* coverage between these facets.
Collapse
Affiliation(s)
- Henry Yu
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- Laboratory for Energy Applications for the Future, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Nitish Govindarajan
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- Laboratory for Energy Applications for the Future, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Stephen E Weitzner
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- Laboratory for Energy Applications for the Future, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Rui F Serra-Maia
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sneha A Akhade
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- Laboratory for Energy Applications for the Future, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Joel B Varley
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- Laboratory for Energy Applications for the Future, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| |
Collapse
|
26
|
Li Q, Wu J, Lv L, Zheng L, Zheng Q, Li S, Yang C, Long C, Chen S, Tang Z. Efficient CO 2 Electroreduction to Multicarbon Products at CuSiO 3/CuO Derived Interfaces in Ordered Pores. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305508. [PMID: 37725694 DOI: 10.1002/adma.202305508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Electrochemical CO2 conversion to value-added multicarbon (C2+) chemicals holds promise for reducing CO2 emissions and advancing carbon neutrality. However, achieving both high conversion rate and selectivity remains challenging due to the limited active sites on catalysts for carbon-carbon (C─C) coupling. Herein, porous CuO is coated with amorphous CuSiO3 (p-CuSiO3/CuO) to maximize the active interface sites, enabling efficient CO2 reduction to C2+ products. Significantly, the p-CuSiO3/CuO catalyst exhibits impressive C2+ Faradaic efficiency (FE) of 77.8% in an H-cell at -1.2 V versus reversible hydrogen electrode in 0.1 M KHCO3 and remarkable C2H4 and C2+ FEs of 82% and 91.7% in a flow cell at a current density of 400 mA cm-2 in 1 M KOH. In situ characterizations and theoretical calculations reveal that the active interfaces facilitate CO2 activation and lower the formation energy of the key intermediate *OCCOH, thus promoting CO2 conversion to C2+. This work provides a rational design for steering the active sites toward C2+ products.
Collapse
Affiliation(s)
- Qun Li
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jiabin Wu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Lv
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiang Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Centre for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Siyang Li
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Caoyu Yang
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Chang Long
- Lab of Molecular Electrochemistry Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Sheng Chen
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| |
Collapse
|
27
|
Han J, Tu B, An P, Zhang J, Yan Z, Zhang X, Long C, Zhu Y, Yuan Y, Qiu X, Yang Z, Huang X, Yan S, Tang Z. Structuring Cu Membrane Electrode for Maximizing Ethylene Yield from CO 2 Electroreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313926. [PMID: 38376851 DOI: 10.1002/adma.202313926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Indexed: 02/21/2024]
Abstract
Electrocatalytic ethylene (C2H4) evolution from CO2 reduction is an intriguing route to mitigate both the energy and environmental crises; however, to acquire industrially relevant high productivity and selectivity at low energy cost remains to be challenging. Membrane assembly electrode has shown great prospect and tailoring its architecture for maximizing C2H4 yield at minimum voltage with long-term stability becomes critical. Here a freestanding Cu membrane cathode is designed and constructed by electrochemically depositing mesoporous Cu film on Cu foam to simultaneously manage CO2, electron, water, and product transport, which shows an extraordinary C2H4 Faradaic efficiency of 85.6% with a full cell power conversion efficiency of 33% at a current density of 368 mA cm-2, heading the techno-economic viability for electrocatalytic C2H4 production.
Collapse
Affiliation(s)
- Jianyu Han
- School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Bin Tu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Pengfei An
- Institute of High Energy Physics Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Zhang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, P. R. China
| | - Zhuang Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaofei Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Chang Long
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yanfei Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yi Yuan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xueying Qiu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Zhongjie Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xuewei Huang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Shuhao Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
28
|
Ye C, Liu B, Li Q, Yu M, Liu Y, Tai Z, Pan Z, Qiu Y. Activating Inert Crystal Face via Facet-Dependent Quench-Engineering for Electrocatalytic Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309856. [PMID: 38100241 DOI: 10.1002/smll.202309856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Indexed: 05/25/2024]
Abstract
Developing a facile strategy to activate the inert crystal face of an electrocatalyst is critical to full-facet utilization, yet still challenging. Herein, the electrocatalytic activity of the inert crystal face is activated by quenching Co3O4 cubes and hexagonal plates with different crystal faces in Fe(NO3)3 solution, and the regulation mechanism of facet-dependent quench-engineering is further revealed. Compared to the Co3O4 cube with exposed {100} facet, the Co3O4 hexagonal plate with exposed {111} facet is more responsive to quenching, accompanied by a rougher surface, richer defect, and more Fe doping. Theoretical calculations indicate that the {111} facet has a more open structure with lower defect formation energy and Fe doping energy, ensuring its electronic and coordination structure is easier to optimize. Therefore, quench-engineering largely increases the catalytic activity of {111) facet for oxygen evolution reaction by 13.2% (the overpotential at 10 mA cm-2 decreases from 380 to 330 mV), while {100} facet only increases by 7.6% (from 393 to 363 mV). The quenched Co3O4 hexagonal plate exhibits excellent electrocatalytic activity and stability in both zinc-air battery and water-splitting. The work reveals the influence mechanism of crystal face on quench-engineering and inspires the activation of the inert crystal face.
Collapse
Affiliation(s)
- Changchun Ye
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510000, China
- Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong, 529100, China
| | - Bo Liu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Qian Li
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Minxing Yu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Yajie Liu
- Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong, 529100, China
| | - Zhixing Tai
- Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong, 529100, China
| | - Zhenghui Pan
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Yongcai Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510000, China
| |
Collapse
|
29
|
Li Y, Yao Z, Gao W, Shang W, Deng T, Wu J. Nanoscale Design for High Entropy Alloy Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310006. [PMID: 38088529 DOI: 10.1002/smll.202310006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Indexed: 05/25/2024]
Abstract
Due to their distinctive physical and chemical characteristics, high entropy alloys (HEAs), a class of alloys comprising multiple elements, have garnered a lot of attention. It is demonstrated recently that HEA electrocatalysts increase the activity and stability of several processes. In this paper, the most recent developments in HEA electrocatalysts research are reviewed, and the performance of HEAs in catalyzing key reactions in water electrolysis and fuel cells is summarized. In addition, the design strategies for HEA electrocatalysts optimization is introduced, which include component selection, size optimization, morphology control, structural engineering, crystal phase regulation, and theoretical prediction, which can guide component selection and structural design of HEA electrocatalysts.
Collapse
Affiliation(s)
- Yanjie Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhenpeng Yao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Wenpei Gao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
- Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
30
|
Ding J, Li F, Ren X, Liu Y, Li Y, Shen Z, Wang T, Wang W, Wang YG, Cui Y, Yang H, Zhang T, Liu B. Molecular tuning boosts asymmetric C-C coupling for CO conversion to acetate. Nat Commun 2024; 15:3641. [PMID: 38684736 PMCID: PMC11059391 DOI: 10.1038/s41467-024-47913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Electrochemical carbon dioxide/carbon monoxide reduction reaction offers a promising route to synthesize fuels and value-added chemicals, unfortunately their activities and selectivities remain unsatisfactory. Here, we present a general surface molecular tuning strategy by modifying Cu2O with a molecular pyridine-derivative. The surface modified Cu2O nanocubes by 4-mercaptopyridine display a high Faradaic efficiency of greater than 60% in electrochemical carbon monoxide reduction reaction to acetate with a current density as large as 380 mA/cm2 in a liquid electrolyte flow cell. In-situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy reveals stronger *CO signal with bridge configuration and stronger *OCCHO signal over modified Cu2O nanocubes by 4-mercaptopyridine than unmodified Cu2O nanocubes during electrochemical CO reduction. Density function theory calculations disclose that local molecular tuning can effectively regulate the electronic structure of copper catalyst, enhancing *CO and *CHO intermediates adsorption by the stabilization effect through hydrogen bonding, which can greatly promote asymmetric *CO-*CHO coupling in electrochemical carbon monoxide reduction reaction.
Collapse
Affiliation(s)
- Jie Ding
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Fuhua Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xinyi Ren
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yuhang Liu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yifan Li
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Zheng Shen
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Tian Wang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Weijue Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yang-Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China
| | - Yi Cui
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Hongbin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
| | - Tianyu Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
31
|
Fang W, Lu R, Li FM, He C, Wu D, Yue K, Mao Y, Guo W, You B, Song F, Yao T, Wang Z, Xia BY. Low-coordination Nanocrystalline Copper-based Catalysts through Theory-guided Electrochemical Restructuring for Selective CO 2 Reduction to Ethylene. Angew Chem Int Ed Engl 2024; 63:e202319936. [PMID: 38372428 DOI: 10.1002/anie.202319936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into ethylene (C2H4), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed density functional theory (DFT) and molecular dynamics (MD) simulations to elucidate the restructuring behavior of a catalyst under electrochemical conditions and delineated its restructuring patterns. Leveraging insights into this restructuring behavior, we devised an efficient, low-coordination copper-based catalyst. The resulting synthesized catalyst demonstrated an impressive Faradaic efficiency (FE) exceeding 70 % for ethylene generation at a current density of 800 mA cm-2. Furthermore, it showed robust stability, maintaining consistent performance for 230 hours at a cell voltage of 3.5 V in a full-cell system. Our research not only deepens the understanding of the active sites involved in designing efficient carbon dioxide reduction reaction (CO2RR) catalysts but also advances CO2 electrolysis technologies for industrial application.
Collapse
Affiliation(s)
- Wensheng Fang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Ruihu Lu
- School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Fu-Min Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Chaohui He
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Dan Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Kaihang Yue
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), Shanghai, 200050, China
| | - Yu Mao
- School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Wei Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Bo You
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Fei Song
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Ziyun Wang
- School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| |
Collapse
|
32
|
Zheng M, Zhang J, Wang P, Jin H, Zheng Y, Qiao SZ. Recent Advances in Electrocatalytic Hydrogenation Reactions on Copper-Based Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307913. [PMID: 37756435 DOI: 10.1002/adma.202307913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Hydrogenation reactions play a critical role in the synthesis of value-added products within the chemical industry. Electrocatalytic hydrogenation (ECH) using water as the hydrogen source has emerged as an alternative to conventional thermocatalytic processes for sustainable and decentralized chemical synthesis under mild conditions. Among the various ECH catalysts, copper-based (Cu-based) nanomaterials are promising candidates due to their earth-abundance, unique electronic structure, versatility, and high activity/selectivity. Herein, recent advances in the application of Cu-based catalysts in ECH reactions for the upgrading of valuable chemicals are systematically analyzed. The unique properties of Cu-based catalysts in ECH are initially introduced, followed by design strategies to enhance their activity and selectivity. Then, typical ECH reactions on Cu-based catalysts are presented in detail, including carbon dioxide reduction for multicarbon generation, alkyne-to-alkene conversion, selective aldehyde conversion, ammonia production from nitrogen-containing substances, and amine production from organic nitrogen compounds. In these catalysts, the role of catalyst composition and nanostructures toward different products is focused. The co-hydrogenation of two substrates (e.g., CO2 and NOx n, SO3 2-, etc.) via C─N, C─S, and C─C cross-coupling reactions are also highlighted. Finally, the critical issues and future perspectives of Cu-catalyzed ECH are proposed to accelerate the rational development of next-generation catalysts.
Collapse
Affiliation(s)
- Min Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Junyu Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Pengtang Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Huanyu Jin
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
33
|
Chen Y, Lyu N, Zhang J, Yan S, Peng C, Yang C, Lv X, Hu C, Kuang M, Zheng G. Tailoring the *CO and *H Coverage for Selective CO 2 Electroreduction to CH 4 or C 2H 4. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308004. [PMID: 37992242 DOI: 10.1002/smll.202308004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/27/2023] [Indexed: 11/24/2023]
Abstract
In the electrochemical CO2 reduction reaction (CO2RR), the coverages of *CO and *H intermediates on a catalyst surface are critical for the selective generation of C1 or C2 products. In this work, we have synthesized several CuxZnyMnz ternary alloy electrocatalysts, including Cu8ZnMn, Cu8Zn6Mn, and Cu8ZnMn2, by varying the doping compositions of Zn and Mn, which are efficient in binding *CO and *H adsorbates in the CO2 electroreduction process, respectively. The increase of *H coverage allows to promotion of the CH4 and H2 formation, while the increase of the *CO coverage facilitates the production of C2H4 and CO. As a result, the Cu8ZnMn catalyst presented a high CO2-to-CH4 partial current density (-418 ± 22 mA cm-2) with a Faradaic efficiency of 55 ± 2.8%, while the Cu8Zn6Mn catalyst exhibited a CO2-to-C2H4 partial current density (-440 ± 41 mA cm-2) with a Faradaic efficiency of 58 ± 4.5%. The study suggests a useful strategy for rational design and fabrication of Cu electrocatalysts with different doping for tailoring the reduction products.
Collapse
Affiliation(s)
- Yangshen Chen
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Naixin Lyu
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Junbo Zhang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Shuai Yan
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Chen Peng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Chao Yang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Ximeng Lv
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Cejun Hu
- School of Materials Science and Engineering, Fuzhou University, Fujian, 350108, China
| | - Min Kuang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
34
|
Pastor E, Lian Z, Xia L, Ecija D, Galán-Mascarós JR, Barja S, Giménez S, Arbiol J, López N, García de Arquer FP. Complementary probes for the electrochemical interface. Nat Rev Chem 2024; 8:159-178. [PMID: 38388837 DOI: 10.1038/s41570-024-00575-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
The functions of electrochemical energy conversion and storage devices rely on the dynamic junction between a solid and a fluid: the electrochemical interface (EI). Many experimental techniques have been developed to probe the EI, but they provide only a partial picture. Building a full mechanistic understanding requires combining multiple probes, either successively or simultaneously. However, such combinations lead to important technical and theoretical challenges. In this Review, we focus on complementary optoelectronic probes and modelling to address the EI across different timescales and spatial scales - including mapping surface reconstruction, reactants and reaction modulators during operation. We discuss how combining these probes can facilitate a predictive design of the EI when closely integrated with theory.
Collapse
Affiliation(s)
- Ernest Pastor
- CNRS, IPR (Institut de Physique de Rennes), University of Rennes, Rennes, France.
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL2015, The University of Tokyo, Tokyo, Japan.
| | - Zan Lian
- ICIQ-Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - David Ecija
- IMDEA Nanoscience, Campus Universitario de Cantoblanco, Madrid, Spain
| | - José Ramón Galán-Mascarós
- ICIQ-Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
- ICREA, Barcelona, Spain
| | - Sara Barja
- Department of Polymers and Advanced Materials, Centro de Física de Materiales (CFM), University of the Basque Country UPV/EHU, San Sebastián, Spain
- Donostia International Physics Center (DIPC), San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Sixto Giménez
- Institute of Advanced Materials (INAM) Universitat Jaume I, Castelló, Spain
| | - Jordi Arbiol
- ICREA, Barcelona, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Catalonia, Spain
| | - Núria López
- ICIQ-Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - F Pelayo García de Arquer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
35
|
Wen Y, Cheng WH, Wang YR, Shen FC, Lan YQ. Tailoring the Hydrophobic Interface of Core-Shell HKUST-1@Cu 2O Nanocomposites for Efficiently Selective CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307467. [PMID: 37940620 DOI: 10.1002/smll.202307467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/18/2023] [Indexed: 11/10/2023]
Abstract
The electrochemical reduction of carbon dioxide (CO2) to ethylene creates a carbon-neutral approach to converting carbon dioxide into intermittent renewable electricity. Exploring efficient electrocatalysts with potentially high ethylene selectivity is extremely desirable, but still challenging. In this report, a laboratory-designed catalyst HKUST-1@Cu2O/PTFE-1 is prepared, in which the high specific surface area of the composites with improved CO2 adsorption and the abundance of active sites contribute to the increased electrocatalytic activity. Furthermore, the hydrophobic interface constructed by the hydrophobic material polytetrafluoroethylene (PTFE) effectively inhibits the occurrence of hydrogen evolution reactions, providing a significant improvement in the efficiency of CO2 electroreduction. The distinctive structures result in the remarkable hydrocarbon fuels generation with high Faraday efficiency (FE) of 67.41%, particularly for ethylene with FE of 46.08% (-1.0 V vs RHE). The superior performance of the catalyst is verified by DFT calculation with lower Gibbs free energy of the intermediate interactions with improved proton migration and selectivity to emerge the polycarbon(C2+) product. In this work, a promising and effective strategy is presented to configure MOF-based materials with tailored hydrophobic interface, high adsorption selectivity and more exposed active sites for enhancing the efficiency of the electroreduction of CO2 to C2+ products with high added value.
Collapse
Affiliation(s)
- Yan Wen
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Wen-Hui Cheng
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Yi-Rong Wang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Feng-Cui Shen
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
36
|
Yao K, Li J, Ozden A, Wang H, Sun N, Liu P, Zhong W, Zhou W, Zhou J, Wang X, Liu H, Liu Y, Chen S, Hu Y, Wang Z, Sinton D, Liang H. In situ copper faceting enables efficient CO 2/CO electrolysis. Nat Commun 2024; 15:1749. [PMID: 38409130 PMCID: PMC10897386 DOI: 10.1038/s41467-024-45538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
The copper (Cu)-catalyzed electrochemical CO2 reduction provides a route for the synthesis of multicarbon (C2+) products. However, the thermodynamically favorable Cu surface (i.e. Cu(111)) energetically favors single-carbon production, leading to low energy efficiency and low production rates for C2+ products. Here we introduce in situ copper faceting from electrochemical reduction to enable preferential exposure of Cu(100) facets. During the precatalyst evolution, a phosphate ligand slows the reduction of Cu and assists the generation and co-adsorption of CO and hydroxide ions, steering the surface reconstruction to Cu (100). The resulting Cu catalyst enables current densities of > 500 mA cm-2 and Faradaic efficiencies of >83% towards C2+ products from both CO2 reduction and CO reduction. When run at 500 mA cm-2 for 150 hours, the catalyst maintains a 37% full-cell energy efficiency and a 95% single-pass carbon efficiency throughout.
Collapse
Affiliation(s)
- Kaili Yao
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jun Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Adnan Ozden
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
| | - Haibin Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ning Sun
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pengyu Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wen Zhong
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Zhou
- School of Science, Tianjin University, Tianjin, 300350, China
| | - Jieshu Zhou
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xi Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Hanqi Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongchang Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Songhua Chen
- College of Chemistry and Material Science, Longyan University, Longyan, 364012, China
| | - Yongfeng Hu
- Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai, 201208, China
| | - Ziyun Wang
- School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada.
| | - Hongyan Liang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
37
|
Long C, Wan K, Chen Y, Li L, Jiang Y, Yang C, Wu Q, Wu G, Xu P, Li J, Shi X, Tang Z, Cui C. Steering the Reconstruction of Oxide-Derived Cu by Secondary Metal for Electrosynthesis of n-Propanol from CO. J Am Chem Soc 2024; 146:4632-4641. [PMID: 38340061 DOI: 10.1021/jacs.3c11359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
As fuel and an important chemical feedstock, n-propanol is highly desired in electrochemical CO2/CO reduction on Cu catalysts. However, the precise regulation of the Cu localized structure is still challenging and poorly understood, thus hindering the selective n-propanol electrosynthesis. Herein, by decorating Au nanoparticles (NPs) on CuO nanosheets (NSs), we present a counterintuitive transformation of CuO into undercoordinated Cu sites locally around Au NPs during CO reduction. In situ spectroscopic techniques reveal the Au-steered formation of abundant undercoordinated Cu sites during the removal of oxygen on CuO. First-principles accuracy molecular dynamic simulation demonstrates that the localized Cu atoms around Au tend to rearrange into disordered layer rather than a Cu (111) close-packed plane observed on bare CuO NSs. These Au-steered undercoordinated Cu sites facilitate CO binding, enabling selective electroreduction of CO into n-propanol with a high Faradaic efficiency of 48% in a flow cell. This work provides new insight into the regulation of the oxide-derived catalysts reconstruction with a secondary metal component.
Collapse
Affiliation(s)
- Chang Long
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Kaiwei Wan
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Chen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Lei Li
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Yuheng Jiang
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Caoyu Yang
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qianbao Wu
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Guoling Wu
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Peng Xu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Xinghua Shi
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiyong Tang
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| |
Collapse
|
38
|
Yao Y, Shi T, Chen W, Wu J, Fan Y, Liu Y, Cao L, Chen Z. A surface strategy boosting the ethylene selectivity for CO 2 reduction and in situ mechanistic insights. Nat Commun 2024; 15:1257. [PMID: 38341442 DOI: 10.1038/s41467-024-45704-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Electrochemical reduction of carbon dioxide into ethylene, as opposed to traditional industrial methods, represents a more environmentally friendly and promising technical approach. However, achieving high activity of ethylene remains a huge challenge due to the numerous possible reaction pathways. Here, we construct a hierarchical nanoelectrode composed of CuO treated with dodecanethiol to achieve elevated ethylene activity with a Faradaic efficiency reaching 79.5%. Through on in situ investigations, it is observed that dodecanethiol modification not only facilitates CO2 transfer and enhances *CO coverage on the catalyst surfaces, but also stabilizes Cu(100) facet. Density functional theory calculations of activation energy barriers of the asymmetrical C-C coupling between *CO and *CHO further support that the greatly increased selectivity of ethylene is attributed to the thiol-stabilized Cu(100). Our findings not only provide an effective strategy to design and construct Cu-based catalysts for highly selective CO2 to ethylene, but also offer deep insights into the mechanism of CO2 to ethylene.
Collapse
Affiliation(s)
- Yinchao Yao
- Energy & Catalysis Center, Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, PR China
| | - Tong Shi
- Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Wenxing Chen
- Energy & Catalysis Center, Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, PR China
| | - Jiehua Wu
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd, 100013, Beijing, PR China
| | - Yunying Fan
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China
| | - Yichun Liu
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China
| | - Liang Cao
- Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| | - Zhuo Chen
- Energy & Catalysis Center, Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, PR China.
| |
Collapse
|
39
|
Wu H, Wang Z, Tian B, Li Y, Chang Z, Kuang Y, Sun X. Gas-induced controllable synthesis of the Cu(100) crystal facet for the selective electroreduction of CO 2 to multicarbon products. NANOSCALE 2024; 16:3034-3042. [PMID: 38231532 DOI: 10.1039/d3nr05023h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Electrocatalytic CO2 reduction (ECR) to high value-added chemicals is an excellent method to attenuate the impact of greenhouse effect caused by CO2. At the same time, multicarbon products (C2+) get extensive attention in view of their relatively high energy density and market price. At present, Cu is an important metal electrocatalyst to convert CO2 into multicarbon products (e.g. ethylene, ethanol, and n-propanol); however, its poor selectivity impedes its practical application. It is well-known that the Cu(100) crystal facet can enhance the selectivity toward multicarbon products among different Cu crystal facets. Herein, the Cu nanoparticles were firstly prepared using the inductive effect of different gases (CO2, CO, Ar, N2, and air) during the Cu electrodeposition processes, in which the CO2-induced Cu catalyst (Cu-CO2) showed the largest normalized content of the Cu(100) crystal facet and the highest C2+ faradaic efficiency of 69% at a current density of 80 mA cm-2 in ECR. Subsequently, the different CO2 pressures during the Cu electrodepositions were studied to reveal the optimal CO2 pressure in the CO2-induced Cu synthesis for improved Cu(100) content as well as C2+ faradaic efficiency. Finally, density functional theory (DFT) calculations confirmed that CO2 molecules preferred to get adsorbed on the Cu(100) crystal facet, which resulted in not only the presence of dominant Cu(100) during the CO2-induced Cu synthesis but also the good electrocatalytic performance in ECR.
Collapse
Affiliation(s)
- Haoyang Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Zhili Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Benqiang Tian
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Zheng Chang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Yun Kuang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
- Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University, Shenzhen 518057, P.R. China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| |
Collapse
|
40
|
Lu P, Lv J, Chen Y, Ma Y, Wang Y, Lyu W, Yu J, Zhou J, Yin J, Xiong Y, Wang G, Ling C, Xi S, Zhang D, Fan Z. Steering the Selectivity of Carbon Dioxide Electroreduction from Single-Carbon to Multicarbon Products on Metal-Organic Frameworks via Facet Engineering. NANO LETTERS 2024; 24:1553-1562. [PMID: 38266492 DOI: 10.1021/acs.nanolett.3c04092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Although metal-organic frameworks (MOFs) have attracted more attention for the electrocatalytic CO2 reduction reaction (CO2RR), obtaining multicarbon products with a high Faradaic efficiency (FE) remains challenging, especially under neutral conditions. Here, we report the controlled synthesis of stable Cu(I) 5-mercapto-1-methyltetrazole framework (Cu-MMT) nanostructures with different facets by rationally modulating the reaction solvents. Significantly, Cu-MMT nanostructures with (001) facets are acquired using isopropanol as a solvent, which favor multicarbon production with an FE of 73.75% and a multicarbon:single-carbon ratio of 3.93 for CO2RR in a neutral electrolyte. In sharp contrast, Cu-MMT nanostructures with (100) facets are obtained utilizing water, promoting single-carbon generation with an FE of 63.98% and a multicarbon: single-carbon ratio of only 0.18. Furthermore, this method can be extended to other Cu-MMT nanostructures with different facets in tuning the CO2 reduction selectivity. This work opens up new opportunities for the highly selective and efficient CO2 electroreduction to multicarbon products on MOFs via facet engineering.
Collapse
Affiliation(s)
- Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Jia Lv
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies and School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yu Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Weichao Lyu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Jinli Yu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Jinwen Yin
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Guozhi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Chongyi Ling
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore 627833
| | - Daliang Zhang
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies and School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre (NPMM), City University of Hong Kong, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
41
|
Yang X, Rong C, Zhang L, Ye Z, Wei Z, Huang C, Zhang Q, Yuan Q, Zhai Y, Xuan FZ, Xu B, Zhang B, Yang X. Mechanistic insights into C-C coupling in electrochemical CO reduction using gold superlattices. Nat Commun 2024; 15:720. [PMID: 38267404 PMCID: PMC10808111 DOI: 10.1038/s41467-024-44923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
Developing in situ/operando spectroscopic techniques with high sensitivity and reproducibility is of great importance for mechanistic investigations of surface-mediated electrochemical reactions. Herein, we report the fabrication of highly ordered rhombic gold nanocube superlattices (GNSs) as substrates for surface-enhanced infrared absorption spectroscopy (SEIRAS) with significantly enhanced SEIRA effect, which can be controlled by manipulating the randomness of GNSs. Finite difference time domain simulations reveal that the electromagnetic effect accounts for the significantly improved spectroscopic vibrations on the GNSs. In situ SEIRAS results show that the vibrations of CO on the Cu2O surfaces have been enhanced by 2.4 ± 0.5 and 18.0 ± 1.3 times using GNSs as substrates compared to those on traditional chemically deposited gold films in acidic and neutral electrolytes, respectively. Combined with isotopic labeling experiments, the reaction mechanisms for C-C coupling of CO electroreduction on Cu-based catalysts are revealed using the GNSs substrates.
Collapse
Affiliation(s)
- Xiaoju Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Rong
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Li Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenkun Ye
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhiming Wei
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Chengdi Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiao Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Qing Yuan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yueming Zhai
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Fu-Zhen Xuan
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Bowei Zhang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xuan Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
42
|
Wang X, Chen Y, Li F, Miao RK, Huang JE, Zhao Z, Li XY, Dorakhan R, Chu S, Wu J, Zheng S, Ni W, Kim D, Park S, Liang Y, Ozden A, Ou P, Hou Y, Sinton D, Sargent EH. Site-selective protonation enables efficient carbon monoxide electroreduction to acetate. Nat Commun 2024; 15:616. [PMID: 38242870 PMCID: PMC10798983 DOI: 10.1038/s41467-024-44727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024] Open
Abstract
Electrosynthesis of acetate from CO offers the prospect of a low-carbon-intensity route to this valuable chemical--but only once sufficient selectivity, reaction rate and stability are realized. It is a high priority to achieve the protonation of the relevant intermediates in a controlled fashion, and to achieve this while suppressing the competing hydrogen evolution reaction (HER) and while steering multicarbon (C2+) products to a single valuable product--an example of which is acetate. Here we report interface engineering to achieve solid/liquid/gas triple-phase interface regulation, and we find that it leads to site-selective protonation of intermediates and the preferential stabilization of the ketene intermediates: this, we find, leads to improved selectivity and energy efficiency toward acetate. Once we further tune the catalyst composition and also optimize for interfacial water management, we achieve a cadmium-copper catalyst that shows an acetate Faradaic efficiency (FE) of 75% with ultralow HER (<0.2% H2 FE) at 150 mA cm-2. We develop a high-pressure membrane electrode assembly system to increase CO coverage by controlling gas reactant distribution and achieve 86% acetate FE simultaneous with an acetate full-cell energy efficiency (EE) of 32%, the highest energy efficiency reported in direct acetate electrosynthesis.
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuanjun Chen
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Feng Li
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Rui Kai Miao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Jianan Erick Huang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Zilin Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiao-Yan Li
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Roham Dorakhan
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Senlin Chu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jinhong Wu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Sixing Zheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Weiyan Ni
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Dongha Kim
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Sungjin Park
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Yongxiang Liang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Adnan Ozden
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Pengfei Ou
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada.
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada.
| |
Collapse
|
43
|
Zhu Z, Zhu Y, Ren Z, Liu D, Yue F, Sheng D, Shao P, Huang X, Feng X, Yin AX, Xie J, Wang B. Covalent Organic Framework Ionomer Steering the CO 2 Electroreduction Pathway on Cu at Industrial-Grade Current Density. J Am Chem Soc 2024; 146:1572-1579. [PMID: 38170986 DOI: 10.1021/jacs.3c11709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
CO2 electroreduction holds great promise for addressing global energy and sustainability challenges. Copper (Cu) shows great potential for effective conversion of CO2 toward specific value-added and/or high-energy-density products. However, its limitation lies in relatively low product selectivity. Herein, we present that the CO2 reduction reaction (CO2RR) pathway on commercially available Cu can be rationally steered by modulating the microenvironment in the vicinity of the Cu surface with two-dimensional sulfonated covalent organic framework nanosheet (COF-NS)-based ionomers. Specifically, the selectivity toward methane (CH4) can be enhanced to more than 60% with the total current density up to 500 mA cm-2 in flow cells in both acidic (pH = 2) and alkaline (pH = 14) electrolytes. The COF-NS, characterized by abundant apertures, can promote the accumulation of CO2 and K+ near the catalyst surface, alter the adsorption energy and surface coverage of *CO, facilitate the dissociation of H2O, and finally modulate the reaction pathway for the CO2RR. Our approach demonstrates the rational modulation of reaction interfaces for the CO2RR utilizing porous open framework ionomers, showcasing their potential practical applications.
Collapse
Affiliation(s)
- Zhejiaji Zhu
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuhao Zhu
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhixin Ren
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Di Liu
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Feiyu Yue
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Dafei Sheng
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Pengpeng Shao
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiuying Huang
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiao Feng
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - An-Xiang Yin
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jing Xie
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
44
|
Ding Y, Dong Y, Ma M, Luo L, Wang X, Fang B, Li Y, Liu L, Ren F. CO 2 electrocatalytic reduction to ethylene and its application outlook in food science. iScience 2023; 26:108434. [PMID: 38125022 PMCID: PMC10730755 DOI: 10.1016/j.isci.2023.108434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The efficient conversion of CO2 is considered to be an important step toward carbon emissions peak and carbon neutrality. Presently, great efforts have been devoted to the study of efficient nanocatalysts, electrolytic cell, and electrolytes to achieve high reactivity and selectivity in the electrochemical reduction of CO2 to mono- and multi-carbon (C2+) compounds. However, there are very few reviews focusing on highly reactive and selective ethylene production and application in the field of electrochemical carbon dioxide reduction reaction (CO2RR). Ethylene is a class of multi-carbon compounds that are widely applied in industrial, ecological, and agricultural fields. This review focuses especially on the convertibility of CO2 reduction to generate ethylene technology in practical applications and provides a detailed summary of the latest technologies for the efficient production of ethylene by CO2RR and suggests the potential application of CO2RR systems in food science to further expand the application market of CO2RR for ethylene production.
Collapse
Affiliation(s)
- Yuxuan Ding
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yixuan Dong
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Min Ma
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Lili Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xifan Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Bing Fang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yixuan Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Libing Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
45
|
Wang J, Qin Y, Jin S, Yang Y, Zhu J, Li X, Lv X, Fu J, Hong Z, Su Y, Wu HB. Customizing CO 2 Electroreduction by Pulse-Induced Anion Enrichment. J Am Chem Soc 2023; 145:26213-26221. [PMID: 37944031 DOI: 10.1021/jacs.3c08748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Electrochemically converting CO2 into specified high-value products is critical for carbon neutral economics. However, governing the product distribution of the CO2 electroreduction on Cu-based catalysts remains challenging. Herein, we put forward an anion enrichment strategy to efficiently dictate the route of *CO reduction by a pulsed electrolysis strategy. Upon periodically applying a positive potential on the cathode, the anion concentration in the vicinity of the electrode increases apparently. By adopting KF, KCl, and KHCO3 as electrolytes, the dominant CO2 electroreduction product on commercial Cu foil can be tuned into CO (53% ± 2.5), C2+ (76.6 ± 2.1%), and CH4 (42.6 ± 2.1%) under pulsed electrolysis. Notably, one can delicately tailor the ratios of CO/CH4, CH4/C2+, and C2+/CO by simply changing the composition of the electrolyte. Density functional theory calculations demonstrate that locally enriched anions can affect the key CO2RR intermediates in different ways owing to their specific electronegativity and volume, which leads to the distinct selectivity. The present study highlights the importance of tuning ionic species at the electrode-electrolyte interface for customizing the CO2 electroreduction products.
Collapse
Affiliation(s)
- Jianghao Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Yanyang Qin
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shoutong Jin
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yue Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jie Zhu
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Xiaotong Li
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiangzhou Lv
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jie Fu
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zijian Hong
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou Zhejiang 310027, China
| | - Yaqiong Su
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao Bin Wu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou Zhejiang 310027, China
| |
Collapse
|
46
|
Zhou X, Zhang A, Chen B, Zhu S, Cui Y, Bai L, Yu J, Ge Y, Yun Q, Li L, Huang B, Liao L, Fu J, Wa Q, Wang G, Huang Z, Zheng L, Ren Y, Li S, Liu G, Zhai L, Li Z, Liu J, Chen Y, Ma L, Ling C, Wang J, Fan Z, Du Y, Shao M, Zhang H. Synthesis of 2H/fcc-Heterophase AuCu Nanostructures for Highly Efficient Electrochemical CO 2 Reduction at Industrial Current Densities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304414. [PMID: 37515580 DOI: 10.1002/adma.202304414] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/21/2023] [Indexed: 07/31/2023]
Abstract
Structural engineering of nanomaterials offers a promising way for developing high-performance catalysts toward catalysis. However, the delicate modulation of thermodynamically unfavorable nanostructures with unconventional phases still remains a challenge. Here, the synthesis of hierarchical AuCu nanostructures is reported with hexagonal close-packed (2H-type)/face-centered cubic (fcc) heterophase, high-index facets, planar defects (e.g., stacking faults, twin boundaries, and grain boundaries), and tunable Cu content. The obtained 2H/fcc Au99 Cu1 hierarchical nanosheets exhibit excellent performance for the electrocatalytic CO2 reduction to produce CO, outperforming the 2H/fcc Au91 Cu9 and fcc Au99 Cu1 . The experimental results, especially those obtained by in-situ differential electrochemical mass spectroscopy and attenuated total reflection Fourier-transform infrared spectroscopy, suggest that the enhanced catalytic performance of 2H/fcc Au99 Cu1 arises from the unconventional 2H/fcc heterophase, high-index facets, planar defects, and appropriate alloying of Cu. Impressively, the 2H/fcc Au99 Cu1 shows CO Faradaic efficiencies of 96.6% and 92.6% at industrial current densities of 300 and 500 mA cm-2 , respectively, as well as good durability, placing it among the best CO2 reduction electrocatalysts for CO production. The atomically structural regulation based on phase engineering of nanomaterials (PEN) provides an avenue for the rational design and preparation of high-performance electrocatalysts for various catalytic applications.
Collapse
Affiliation(s)
- Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yu Cui
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Licheng Bai
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518057, China
| | - Jinli Yu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Lujiang Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Lingwen Liao
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jiaju Fu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Long Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Guangyao Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Chongyi Ling
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Yonghua Du
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
- Energy Institute, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
47
|
Zhu X, Xu H, Liu J, Bi C, Tian J, Zhong K, Wang B, Ding P, Wang X, Chu PK, Xu H, Ding J. Stacking Engineering of Heterojunctions in Half-Metallic Carbon Nitride for Efficient CO 2 Photoreduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2307192. [PMID: 38072660 PMCID: PMC10754085 DOI: 10.1002/advs.202307192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/19/2023] [Indexed: 12/29/2023]
Abstract
Enhancing charge separation in semiconductor photocatalysts is a major challenge for efficient artificial photosynthesis. Herein, a compact heterojunction is designed by embedding half-metallic C(CN)3 (hm-CN) hydrothermally in BiOBr (BOB) as the backbone. The interface between hm-CN and BOB is seamless and formed by covalent bonding to facilitate the transmission of photoinduced electrons from BOB to hm-CN. The transient photocurrents and electrochemical impedance spectra reveal that the modified composite catalyst exhibits a larger electron transfer rate. The photocatalytic activity of hm-CN/BOB increases significantly as indicated by a CO yield that is about four times higher than that of individual components. Density-functional theory calculations verify that the heterojunction improves electron transport and decreases the reaction energy barrier, thus promoting the overall photocatalytic CO2 conversion efficiency. The half-metal nitride coupled semiconductor heterojunctions might have large potential in artificial photosynthesis and related applications.
Collapse
Affiliation(s)
- Xingwang Zhu
- College of Environmental Science and Engineering, Institute of Technology for Carbon NeutralizationYangzhou UniversityYangzhou225009P. R. China
| | - Hangmin Xu
- College of Environmental Science and Engineering, Institute of Technology for Carbon NeutralizationYangzhou UniversityYangzhou225009P. R. China
| | - Jinyuan Liu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong Kong999077P. R. China
| | - Chuanzhou Bi
- College of Environmental Science and Engineering, Institute of Technology for Carbon NeutralizationYangzhou UniversityYangzhou225009P. R. China
| | - Jianfeng Tian
- College of Environmental Science and Engineering, Institute of Technology for Carbon NeutralizationYangzhou UniversityYangzhou225009P. R. China
| | - Kang Zhong
- School of the Environment and Safety Engineering, Institute for Energy ResearchJiangsu UniversityZhenjiang212013P. R. China
| | - Bin Wang
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong Kong999077P. R. China
- School of the Environment and Safety Engineering, Institute for Energy ResearchJiangsu UniversityZhenjiang212013P. R. China
| | - Penghui Ding
- Department of Science and TechnologyLinköping UniversityNorrköpingSE‐601 74Sweden
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Institute of Technology for Carbon NeutralizationYangzhou UniversityYangzhou225009P. R. China
| | - Paul K. Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong Kong999077P. R. China
| | - Hui Xu
- School of the Environment and Safety Engineering, Institute for Energy ResearchJiangsu UniversityZhenjiang212013P. R. China
| | - Jianning Ding
- College of Environmental Science and Engineering, Institute of Technology for Carbon NeutralizationYangzhou UniversityYangzhou225009P. R. China
| |
Collapse
|
48
|
Wang W, Erofeev I, He Y, Yang F, Yan H, Lu J, Mirsaidov U. Direct Observation of Hollow Bimetallic Nanoparticle Formation through Galvanic Replacement and Etching Reactions. NANO LETTERS 2023. [PMID: 37988597 DOI: 10.1021/acs.nanolett.3c02575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Hollow bimetallic nanoparticles (NPs) formed from metal oxide NP templates are widely used catalysts for hydrogen evolution and CO2 reduction reactions. Despite their importance in catalysis, the details of how these NPs form on the NP templates remain unclear. Here, using in situ liquid-phase transmission electron microscopy (TEM) imaging, we describe the conversion of Cu2O template NPs to hollow PdCu NPs. Our observations show that a polycrystalline PdCu shell forms on the surface of the template via a galvanic replacement reaction while the template undergoes anisotropic etching. This study provides important insights into the synthesis of hollow metallic nanostructures from metal oxide templates.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Physics, National University of Singapore, 117551, Singapore
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, 117557, Singapore
| | - Ivan Erofeev
- Department of Physics, National University of Singapore, 117551, Singapore
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, 117557, Singapore
| | - Ya He
- Department of Physics, National University of Singapore, 117551, Singapore
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, 117557, Singapore
| | - Fangqi Yang
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Hongwei Yan
- Department of Physics, National University of Singapore, 117551, Singapore
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, 117557, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Utkur Mirsaidov
- Department of Physics, National University of Singapore, 117551, Singapore
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, 117557, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 117546, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| |
Collapse
|
49
|
Yin Y, Peng Y, Zhou M, Zhang P, Cheng Y, Chen P, Xing X, Ma X, Zhu Q, Sun X, Qian Q, Kang X, Han B. Highly efficient zinc electrode prepared by electro-deposition in a salt-induced pre-phase separation region solution. Sci Bull (Beijing) 2023; 68:2362-2369. [PMID: 37657973 DOI: 10.1016/j.scib.2023.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/04/2023] [Accepted: 08/10/2023] [Indexed: 09/03/2023]
Abstract
Efficient electrode design is crucial for the electrochemical reduction of CO2 to produce valuable chemicals. The solution used for the preparation of electrodes can affect their overall properties, which in turn determine the reaction efficiency. In this work, we report that transition metal salts could induce the change of two-phase ionic liquid/ethanol mixture into miscible one phase. Pre-phase separation region near the phase boundary of the ternary system was observed. Zinc nanoparticles were electro-deposited along the fibres of carbon paper (CP) substrate uniformly in the salt-induced pre-phase separation region solution. The as-prepared Zn(1)/CP electrode exhibits super-wettability to the electrolyte, rendering very high catalytic performance for CO2 electro-reduction, and the Faradaic efficiency towards CO is 97.6% with a current density of 340 mA cm-2, which is the best result to date in an H-type cell.
Collapse
Affiliation(s)
- Yaoyu Yin
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaguang Peng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Meng Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Pei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yingying Cheng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Peng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueqing Xing
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxue Ma
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingli Qian
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
50
|
Long C, Liu X, Wan K, Jiang Y, An P, Yang C, Wu G, Wang W, Guo J, Li L, Pang K, Li Q, Cui C, Liu S, Tan T, Tang Z. Regulating reconstruction of oxide-derived Cu for electrochemical CO 2 reduction toward n-propanol. SCIENCE ADVANCES 2023; 9:eadi6119. [PMID: 37889974 PMCID: PMC10610896 DOI: 10.1126/sciadv.adi6119] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023]
Abstract
Oxide-derived copper (OD-Cu) is the most efficient and likely practical electrocatalyst for CO2 reduction toward multicarbon products. However, the inevitable but poorly understood reconstruction from the pristine state to the working state of OD-Cu under strong reduction conditions largely hinders the rational construction of catalysts toward multicarbon products, especially C3 products like n-propanol. Here, we simulate the reconstruction of CuO and Cu2O into their derived Cu by molecular dynamics, revealing that CuO-derived Cu (CuOD-Cu) intrinsically has a richer population of undercoordinated Cu sites and higher surficial Cu atom density than the counterpart Cu2O-derived Cu (Cu2OD-Cu) because of the vigorous oxygen removal. In situ spectroscopes disclose that the coordination number of CuOD-Cu is considerably lower than that of Cu2OD-Cu, enabling the fast kinetics of CO2 reaction and strengthened binding of *C2 intermediate(s). Benefiting from the rich undercoordinated Cu sites, CuOD-Cu achieves remarkable n-propanol faradaic efficiency up to ~17.9%, whereas the Cu2OD-Cu dominantly generates formate.
Collapse
Affiliation(s)
- Chang Long
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Xiaolong Liu
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Kaiwei Wan
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuheng Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Caoyu Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guoling Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wenyang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Lei Li
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Kanglei Pang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Qun Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Shaoqin Liu
- MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Ting Tan
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|