1
|
Chen X, Miao L, He Q, Ke Q, Pu F, Li N, Zhou T, Xu P. Chromosome-level genome assembly for three geographical stocks of large yellow croaker (Larimichthys crocea). Sci Data 2024; 11:1364. [PMID: 39695114 DOI: 10.1038/s41597-024-04126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Large yellow croaker (Larimichthys crocea) has been demonstrated to be divided into three geographical stocks from south to north along the coast of China, including Nanhai, Mindong, and Daiqu. Although multiple versions of L. crocea have been published, no high-quality Nanhai and Daiqu genomes have been assembled, hampering the assessment of the fine-scale genetic structure and adversely affecting wild stock conservation, fishery management, and germplasm exploitation of large yellow croaker. To fill the gap, we sequenced the genomes of three L. crocea stocks using a combination of PacBio and Hi-C technologies. We assembled each genome (~712 Mb) into 24 chromosomes with a contig N50 of 19.46-29.71 Mb and an integration efficiency of 88.13-92.80%. Furthermore, 26,851-28,133 protein-coding genes were predicted. The reference genomes of three geographical stocks of L. crocea provide vital resources for future research on the conservation and utilization of genetic diversity.
Collapse
Affiliation(s)
- Xintong Chen
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lingwei Miao
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qian He
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qiaozhen Ke
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Fei Pu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ning Li
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Tao Zhou
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Peng Xu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Agro-Tech Extension Center of Guangdong Province, Guangdong, 510599, China.
| |
Collapse
|
2
|
Shi Y, Zhu Z, Li Q, Chen Q, Jiang W, Chen C, Chen X. Molecular characterization of the IgH locus and V(D)J recombination in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109909. [PMID: 39284538 DOI: 10.1016/j.fsi.2024.109909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
V(D)J recombination is crucial for generating a diverse repertoire of immunoglobulins. Although the V(D)J recombination process has been well characterized in mammals, this process remains largely unexplored in teleosts. In this study, we comprehensively analyzed the IgH locus of a marine fish species large yellow croaker (Larimichthys crocea), and identified 28 V, 19 D, and 8 J gene segments, following a pattern of V-Dζ-Jζ-Cζ-Dμ-Jμ-Cμ1-Cμ2. The V, D, and J gene segments are flanked by consensus recombination signal sequences, with spacer lengths similar to those observed in mammals. The V gene segments are categorized into three distinct families, and exhibited a higher sequence identity compared to those in mammals. Additionally, we designed a set of primers for the examination of the V(D)J recombination in large yellow croaker. RNA-seq analysis showed increased expression of genes related to immunoglobulin production and lymphocyte chemotaxis in IgM + B cells upon Pseudomonas plecoglossicida infection, accompanied by altered expression of V gene segments, suggesting their involvement in the response to P. plecoglossicida infection. Taken together, we identified the IgH locus and V(D)J recombination process of large yellow croaker, which contribute to the understanding of immunoglobulin production and B cell immunity in teleosts, and may provide insights into vaccine development in large yellow croaker.
Collapse
Affiliation(s)
- Yuan Shi
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhuo Zhu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiuhua Li
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiuxuan Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenwu Jiang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chenyi Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
3
|
Fang Q, Xue Y, Yao T, Liu X, Chen J, Han Q, Wang X. Identification of COMMD gene family in large yellow croaker (Larimichthys crocea): Immune response induced by Pseudomonas plecoglossicida infection and acute hypoxia stress. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109780. [PMID: 39033968 DOI: 10.1016/j.fsi.2024.109780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The COMMD (Copper Metabolism gene MURR1 Domain) gene family consists of 10 members, which are involved in various biological processes such as copper and sodium transport, NF-κB activity and cell cycle progression. However, the study of COMMD gene family in large yellow croaker (Larimichthys crocea) is largely unknown. In this study, 10 COMMD gene family members (named LcCOMMDs) were successfully identified from large yellow croaker. The results showed that there were differences in the number of LcCOMMDs exons at the level of gene structure, which reflected that they had adjusted and changed accordingly in the process of evolution to adapt to the environment and achieved functional diversification. Through phylogenetic analysis, we found that the LcCOMMDs was highly conserved, indicating their important functions in organisms. It was worth noting that the expression levels of LcCOMMD1, LcCOMMD2, LcCOMMD3, LcCOMMD5 and LcCOMMD10 in the spleen changed significantly after bacterial stress, which suggested that these genes might be involved in the regulation of innate immune response. In addition, the expression levels of LcCOMMD1, LcCOMMD2, LcCOMMD3, LcCOMMD5, LcCOMMD7, LcCOMMD8, LcCOMMD9 and LcCOMMD10 changed significantly after hypoxia exposure, which further proved the role of LcCOMMDs in immune function. In summary, this study not only revealed the important role of COMMD genes in the innate immune response of large yellow croaker, but also provided valuable information for further understanding the regulatory mechanism of COMMD gene family under different conditions.
Collapse
Affiliation(s)
- Qian Fang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Yadong Xue
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - TingYan Yao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China.
| | - Jianming Chen
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China.
| | - Qingxi Han
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China.
| |
Collapse
|
4
|
Jackson TK, Rhode C. Comparative genomics of dusky kob (Argyrosomus japonicus, Sciaenidae) conspecifics: Evidence for speciation and the genetic mechanisms underlying traits. JOURNAL OF FISH BIOLOGY 2024; 105:841-857. [PMID: 38885946 DOI: 10.1111/jfb.15844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/17/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
Dusky kob (Argyrosomus japonicus) is a commercially important finfish, indigenous to South Africa, Australia, and China. Previous studies highlighted differences in genetic composition, life history, and morphology of the species across geographic regions. A draft genome sequence of 0.742 Gb (N50 = 5.49 Mb; BUSCO completeness = 97.8%) and 22,438 predicted protein-coding genes was generated for the South African (SA) conspecific. A comparison with the Chinese (CN) conspecific revealed a core set of 32,068 orthologous protein clusters across both genomes. The SA genome exhibited 440 unique clusters compared to 1928 unique clusters in the CN genome. Transportation and immune response processes were overrepresented among the SA accessory genome, whereas the CN accessory genome was enriched for immune response, DNA transposition, and sensory detection (FDR-adjusted p < 0.01). These unique clusters may represent an adaptive component of the species' pangenome that could explain population divergence due to differential environmental specialisation. Furthermore, 700 single-copy orthologues (SCOs) displayed evidence of positive selection between the SA and CN genomes, and globally these genomes shared only 92% similarity, suggesting they might be distinct species. These genes primarily play roles in metabolism and digestion, illustrating the evolutionary pathways that differentiate the species. Understanding these genomic mechanisms underlying adaptation and evolution within and between species provides valuable insights into growth and maturation of kob, traits that are particularly relevant to commercial aquaculture.
Collapse
Affiliation(s)
- Tassin Kim Jackson
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Clint Rhode
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
5
|
Leeuwis RHJ, Hall JR, Zanuzzo FS, Smith N, Clow KA, Kumar S, Vasquez I, Goetz FW, Johnson SC, Rise ML, Santander J, Gamperl AK. Climate change can impair bacterial pathogen defences in sablefish via hypoxia-mediated effects on adaptive immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105161. [PMID: 38521379 DOI: 10.1016/j.dci.2024.105161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Low-oxygen levels (hypoxia) in aquatic habitats are becoming more common because of global warming and eutrophication. However, the effects on the health/disease status of fishes, the world's largest group of vertebrates, are unclear. Therefore, we assessed how long-term hypoxia affected the immune function of sablefish, an ecologically and economically important North Pacific species, including the response to a formalin-killed Aeromonas salmonicida bacterin. Sablefish were held at normoxia or hypoxia (100% or 40% air saturated seawater, respectively) for 6-16 weeks, while we measured a diverse array of immunological traits. Given that the sablefish is a non-model organism, this involved the development of a species-specific methodological toolbox comprised of qPCR primers for 16 key immune genes, assays for blood antibacterial defences, the assessment of blood immunoglobulin (IgM) levels with ELISA, and flow cytometry and confocal microscopy techniques. We show that innate immune parameters were typically elevated in response to the bacterial antigens, but were not substantially affected by hypoxia. In contrast, hypoxia completely prevented the ∼1.5-fold increase in blood IgM level that was observed under normoxic conditions following bacterin exposure, implying a serious impairment of adaptive immunity. Since the sablefish is naturally hypoxia tolerant, our results demonstrate that climate change-related deoxygenation may be a serious threat to the immune competency of fishes.
Collapse
Affiliation(s)
- Robine H J Leeuwis
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Fábio S Zanuzzo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Nicole Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Kathy A Clow
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Ignacio Vasquez
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Frederick W Goetz
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA
| | - Stewart C Johnson
- Pacific Biological Station, Department of Fisheries and Oceans, Nanaimo, BC, V9T 6N7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Javier Santander
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| |
Collapse
|
6
|
Hayakawa K, Zhou Y, Shinton SA. B-1 derived anti-Thy-1 B cells in old aged mice develop lymphoma/leukemia with high expression of CD11b and Hamp2 that different from TCL1 transgenic mice. Immun Ageing 2024; 21:22. [PMID: 38570827 PMCID: PMC10988983 DOI: 10.1186/s12979-024-00415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 04/05/2024]
Abstract
Human old aged unmutated chronic lymphocytic leukemia U-CLL are the TCL1+ZAP70+CD5+ B cells. Since CD5 makes the BCR signaling tolerance, ZAP70 increased in U-CLL not only TCL1+ alone. In mice, TCL1 (TCL1A) is the negative from neonate to old aged, as TC-. VH8-12/Vk21-5 is the anti-thymocyte/Thy-1 autoreactive ATA B cell. When ATA μκTg generation in mice, ATA B cells are the neonate generated CD5+ B cells in B-1, and in the middle age, CD5+ can be down or continuously CD5+, then, old aged CLL/lymphoma generation with increased CD11b in TC-ZAP70-CD5- or TC-ZAP70+CD5+. In this old aged TC-ATA B microarray analysis showed most similar to human CLL and U-CLL, and TC-ZAP70+CD5+ showed certain higher present as U-CLL. Original neonate ATA B cells showed with several genes down or further increase in old aged tumor, and old aged T-bet+CD11c+, CTNNB1hi, HMGBhi, CXCR4hi, DPP4hi and decreased miR181b. These old aged increased genes and down miR181b are similar to human CLL. Also, in old age ATA B cell tumor, high CD38++CD44++, increased Ki67+ AID+, and decreased CD180- miR15Olow are similar to U-CLL. In this old aged ATA B, increased TLR7,9 and Wnt10b. TC+Tg generated with ATAμκTg mice occurred middle age tumor as TC+ZAP70-CD5+ or TC+ZAP70+CD5+, with high NF-kB1, TLR4,6 and Wnt5b,6 without increased CD11b. Since neonatal state to age with TC+Tg continuously, middle age CLL/lymphoma generation is not similar to old aged generated, however, some increased in TC+ZAP70+ are similar to the old age TC- ATA B tumor. Then, TC- ATA B old age tumor showed some difference to human CLL. ATA B cells showed CD11b+CD22++, CD24 down, and hepcidin Hamp2++ with iron down. This mouse V8-12 similar to human V2-5, and V2-5 showed several cancers with macrophages/neutrophils generated hepcidin+ ironlow or some showed hepcidin- iron+ with tumor, and mouse V8-12 with different Vk19-17 generate MZ B cells strongly increased macrophage++ in old aged and generated intestine/colon tumor. Conclusion, neonate generated TC-ATA B1 cells in old aged tumor generation are CD11b+ in the leukemia CLL together with lymphoma cancer with hepcidin-related Hamp2++ in B-1 cell generation to control iron.
Collapse
Affiliation(s)
- Kyoko Hayakawa
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA.
| | - Yan Zhou
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| | - Susan A Shinton
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| |
Collapse
|
7
|
Shi Y, Zhu Z, Chen Q, Chen X. DNA methylation regulates B cell activation via repressing Pax5 expression in teleost. Front Immunol 2024; 15:1363426. [PMID: 38404580 PMCID: PMC10884147 DOI: 10.3389/fimmu.2024.1363426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
In mammals, the transcription factor Pax5 is a key regulator of B cell development and maturation and specifically expressed in naive/mature B cells but repressed upon B cell activation. Despite the long-standing proposal that Pax5 repression is essential for proper B cell activation, the underlying mechanisms remain largely elusive. In this study, we used a teleost model to elucidate the mechanisms governing Pax5 repression during B cell activation. Treatment with lipopolysaccharide (LPS) and chitosan oligosaccharide (COS) significantly enhanced the antibody secreting ability and phagocytic capacity of IgM+ B cells in large yellow croaker (Larimichthys crocea), coinciding with upregulated expression of activation-related genes, such as Bcl6, Blimp1, and sIgM, and downregulated expression of Pax5. Intriguingly, two CpG islands were identified within the promoter region of Pax5. Both CpG islands exhibited hypomethylation in naive/mature B cells, while CpG island1 was specifically transited into hypermethylation upon B cell activation. Furthermore, treatment with DNA methylation inhibitor 5-aza-2'-deoxycytidine (AZA) prevented the hypermethylation of CpG island1, and concomitantly impaired the downregulation of Pax5 and activation of B cells. Finally, through in vitro methylation experiments, we demonstrated that DNA methylation exerts an inhibitory effect on promoter activities of Pax5. Taken together, our findings unveil a novel mechanism underlying Pax5 repression during B cell activation, thus promoting the understanding of B cell activation process.
Collapse
Affiliation(s)
- Yuan Shi
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhuo Zhu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiuxuan Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| |
Collapse
|
8
|
Wu Z, Zhao J, An H, Wang Y, Shao J, Weng H, Chen X, Zhang W. Effects of laminarin on growth performance and resistance against Pseudomonas plecoglossicida of large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2024; 144:109271. [PMID: 38065295 DOI: 10.1016/j.fsi.2023.109271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/31/2023]
Abstract
Laminarin (LAM) is widely used as an immunopotentiator in aquaculture, but its protective mechanism is still unclear. In this study, the effects of LAM on the growth performance and resistance against Pseudomonas plecoglossicida of large yellow croaker were studied in vitro and in vivo. The 42 d-feeding trial in large yellow croaker showed that dietary LAM could obviously promote the fish growth by improving the weight gain rate (WGR), specific growth rate (SGR), and feed conversion rate (FCR). Dietary LAM could also improve the survival rate of large yellow croakers subjected to P. plecoglossicida infection, and 500 mg/kg LAM produced the highest relative percent survival (RPS) of 35.00 %. LAM improved fish antioxidant level by enhancing serum total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity, and reducing malondialdehyde (MDA) content. In addition, LAM also improved fish innate immunity by increasing serum acid phosphatase (ACP) and alkaline phosphatase (AKP) activities and complement 3 (C3) content under P. plecoglossicida infection. What is more, on 9 d post P. plecoglossicida challenge, LAM could significantly decrease the bacteria load in head kidneys, spleens and livers of fish, and the lowest bacterial load was found in 500 mg/kg LAM group. In vitro, LAM exerted a protective role against inactivated P. plecoglossicida-triggered inflammatory injury in primary head kidney macrophages (PKM) of large yellow croaker by recovering cell viability, suppressing NO production, and reversing pro-inflammatory cytokine expression (IL-1β, IL-6, and IL-8). All these findings therefore will provide insights into the protection mechanism of LAM in fish, facilitating its application in prevention and control of fish bacteriosis.
Collapse
Affiliation(s)
- Ziliang Wu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Jinpeng Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Huimin An
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yongyang Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Jianchun Shao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Huasong Weng
- Ningde Fufa Fisheries Co. Ltd, Ningde, 352100, PR China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.
| | - Weini Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
9
|
Yan W, Liu X, Wang X. The heat shock protein 20 gene family in large yellow croaker (Larimichthys crocea): Identification, phylogenetic relationships, expression analyses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106700. [PMID: 37837866 DOI: 10.1016/j.aquatox.2023.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/16/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is an economically important fish in China, but its aquaculture industry has been threatened by both biotic and abiotic stressors such as hypoxia and pathogens. In the current study, hsp20 genes were identified and analyzed systematically for the first time from the genome of large yellow croaker, and their roles in hypoxia response and Aeromonas hydrophila, Pseudomonas plecoglossicida infection were investigated. Herein, 11 hsp20 genes were identified and annotated, phylogenetic analysis and selection pressure analysis showed that the hsp20 genes were evolutionarily-constrained and their function was conserved among fishes. Besides, we observed the expression patterns of the hsp20 genes under hypoxia and two pathogens' stress. In brief, seven, four, seven genes responded to hypoxia stress, A. hydrophila infection and P. plecoglossicida challenge, respectively, which indicated that they were involved in hypoxia and disease responses. Furthermore, pathogen- and time-specific pattern was observed after A. hydrophila and P. plecoglossicida infection whereas tissue-specific pattern was observed after hypoxia exposure, revealing that hsp20 genes showed differential functions in response to hypoxia and immune stress. Taken together, these results provided preliminary information for future analysis of the roles of hsp20 genes in both biotic and abiotic stress response in fish.
Collapse
Affiliation(s)
- Weijie Yan
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, China.
| |
Collapse
|
10
|
Azemin WA, Alias N, Ali AM, Shamsir MS. Structural and functional characterisation of HepTH1-5 peptide as a potential hepcidin replacement. J Biomol Struct Dyn 2023; 41:681-704. [PMID: 34870559 DOI: 10.1080/07391102.2021.2011415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hepcidin is a principal regulator of iron homeostasis and its dysregulation has been recognised as a causative factor in cancers and iron disorders. The strategy of manipulating the presence of hepcidin peptide has been used for cancer treatment. However, this has demonstrated poor efficiency and has been short-lived in patients. Many studies reported using minihepcidin therapy as an alternative way to treat hepcidin dysregulation, but this was only applied to non-cancer patients. Highly conserved fish hepcidin protein, HepTH1-5, was investigated to determine its potential use in developing a hepcidin replacement for human hepcidin (Hepc25) and as a therapeutic agent by targeting the tumour suppressor protein, p53, through structure-function analysis. The authors found that HepTH1-5 is stably bound to ferroportin, compared to Hepc25, by triggering the ferroportin internalisation via Lys42 and Lys270 ubiquitination, in a similar manner to the Hepc25 activity. Moreover, the residues Ile24 and Gly24, along with copper and zinc ligands, interacted with similar residues, Lys24 and Asp1 of Hepc25, respectively, showing that those molecules are crucial to the hepcidin replacement strategy. HepTH1-5 interacts with p53 and activates its function through phosphorylation. This finding shows that HepTH1-5 might be involved in the apoptosis signalling pathway upon a DNA damage response. This study will be very helpful for understanding the mechanism of the hepcidin replacement and providing insights into the HepTH1-5 peptide as a new target for hepcidin and cancer therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wan-Atirah Azemin
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia.,Bioinformatics Research Group (BIRG), Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nadiawati Alias
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Abdul Manaf Ali
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group (BIRG), Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.,Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Muar, Johor, Malaysia
| |
Collapse
|
11
|
Shao G, He T, Mu Y, Mu P, Ao J, Lin X, Ruan L, Wang Y, Gao Y, Liu D, Zhang L, Chen X. The genome of a hadal sea cucumber reveals novel adaptive strategies to deep-sea environments. iScience 2022; 25:105545. [PMID: 36444293 PMCID: PMC9700323 DOI: 10.1016/j.isci.2022.105545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/18/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
How organisms cope with coldness and high pressure in the hadal zone remains poorly understood. Here, we sequenced and assembled the genome of hadal sea cucumber Paelopatides sp. Yap with high quality and explored its potential mechanisms for deep-sea adaptation. First, the expansion of ACOX1 for rate-limiting enzyme in the DHA synthesis pathway, increased DHA content in the phospholipid bilayer, and positive selection of EPT1 may maintain cell membrane fluidity. Second, three genes for translation initiation factors and two for ribosomal proteins underwent expansion, and three ribosomal protein genes were positively selected, which may ameliorate the protein synthesis inhibition or ribosome dissociation in the hadal zone. Third, expansion and positive selection of genes associated with stalled replication fork recovery and DNA repair suggest improvements in DNA protection. This is the first genome sequence of a hadal invertebrate. Our results provide insights into the genetic adaptations used by invertebrate in deep oceans.
Collapse
Affiliation(s)
- Guangming Shao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tianliang He
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yinnan Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Pengfei Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jingqun Ao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xihuang Lin
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
| | - Lingwei Ruan
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
| | - YuGuang Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
| | - Yuan Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dinggao Liu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519000, China
| |
Collapse
|
12
|
Wang Y, Wu Z, Chen H, Liu R, Zhang W, Chen X. Astragalus polysaccharides protect against inactivated Vibrio alginolyticus-induced inflammatory injury in macrophages of large yellow croaker. FISH & SHELLFISH IMMUNOLOGY 2022; 131:95-104. [PMID: 36206995 DOI: 10.1016/j.fsi.2022.09.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
As an effective immunostimulant, Astragalus polysaccharides (APS) have been widely used in fish aquaculture, however, their action mechanisms remain poorly understood. In the present paper, the inflammatory macrophage model of large yellow croaker (Larimichthys crocea) was constructed by using formalin-inactivated Vibrio alginolyticus. Inactivated V. alginolyticus could cause cellular damage of primary head kidney macrophages (PKM) by decreasing cell activity and inducing reactive oxygen species (ROS) production and cell apoptosis. When PKM were pretreated with APS, the depressed cell activity induced by inactivated V. alginolyticus was significantly improved, and ROS overproduction and cell apoptosis were inhibited. Then the protection mechanism of APS was investigated by transcriptome analysis. After treated with inactivated V. alginolyticus, the expression of immune-related genes (TLR5s, TLR13, Clec4e, IKK, IκB, BCL-3, NF-κB2, REL, IL-1β, and IL-6) and pyroptosis-related genes (caspase-1, NLRP3, and NLRC3) in PKM were significantly up-regulated. However, APS pretreatment reversed the up-regulation of most of the above-mentioned genes, where TLR5s, BCL-3, REL, caspase-1, NLRP12, IL-1β, and IL-6 were significantly down-regulated compared with inactivated V. alginolyticus-treated group. These results suggested that APS could protect large yellow croaker PKM against inactivated V. alginolyticus-induced inflammatory injury, and may exert their protection effects by activating NF-κB and pyroptosis signaling pathways. These findings therefore advance our understanding of the immune regulation mechanism of APS in fish, and facilitate the application of APS in prevention and control of fish bacteriosis.
Collapse
Affiliation(s)
- Yongyang Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Ziliang Wu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Hui Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Ruoyu Liu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.
| |
Collapse
|
13
|
Fu H, Tian J, Shi C, Li Q, Liu S. Ecological significance of G protein-coupled receptors in the Pacific oyster (Crassostrea gigas): Pervasive gene duplication and distinct transcriptional response to marine environmental stresses. MARINE POLLUTION BULLETIN 2022; 185:114269. [PMID: 36368080 DOI: 10.1016/j.marpolbul.2022.114269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Marine ecosystems with ocean warming and industry pollution threaten the survival and adaptation of organisms. G protein-coupled receptors (GPCRs) play critical roles in various physiological and toxicological processes in vertebrates and invertebrates. The Pacific oyster (Crassostrea gigas) was widely used to study the adaptation of marine molluscs to coastal environments. In this work, we identified a total of 586 GPCRs in C. gigas genome. The C. gigas GPCRs were divided into five classes (including class A, B, C, E and F) with different degrees of expansion. Meta-analysis of multiple RNA-seq datasets revealed that transcriptional expression patterns of GPCRs in C. gigas were distinct in response to high temperature, salinity, air exposure, heavy metal, ostreid herpes virus 1 (OsHV-1) and Vibrio challenge. This work for the first time characterized the GPCR gene family and provided insights into the potential roles of GPCRs in adaptation of marine molluscs to stressful coastal environment.
Collapse
Affiliation(s)
- Huiru Fu
- Key Laboratory of Maericulture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Jing Tian
- Key Laboratory of Maericulture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Chenyu Shi
- Key Laboratory of Maericulture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Maericulture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Shikai Liu
- Key Laboratory of Maericulture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
14
|
Serna-Duque JA, Cuesta A, Esteban MÁ. Massive gene expansion of hepcidin, a host defense peptide, in gilthead seabream (Sparus aurata). FISH & SHELLFISH IMMUNOLOGY 2022; 124:563-571. [PMID: 35489593 DOI: 10.1016/j.fsi.2022.04.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/09/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Host defense peptides (HDP) are among the most ancient immune molecules in animals and clearly reflect an ancestral evolutionary history involving pathogen-host interactions. Hepcidins are a very widespread family of HDPs among vertebrates and are especially diverse in teleosts. We have investigated the identification of new hepcidins in gilthead seabream (Sparus aurata), a fish farmed in the Mediterranean. Targeted gene predictions supported with expressed sequence tags (ESTs) derived from Hidden Markov Models were used to find the hamp genes in the seabream genome. The results revealed a massively clustered hamp duplication on chromosome 17. In fact, the seabream genome contains the largest number of hepcidin copies described in any vertebrate. The evolutionary history of hepcidins in seabream, and vertebrates generally, clearly indicates high adaptation in teleosts and novel subgroups within hepcidin type II. Furthermore, basal hepcidin gene expression analysis indicates specific-tissue expression profiles, while the presence and distribution of transcription factor binding sites (TFBS) in hamp promoters as well as their transcription profile upon bacterial challenge indicates different immune roles depending on the type of hepcidin and tissue. This massive duplication of HDP genes in a bony fish could point to a far more specific and adaptive innate immune system than assumed in the classic concept of immunity in mammals. Hence, a new world of knowledge regarding hepcidins in fish and vertebrates is being initiated.
Collapse
Affiliation(s)
- Jhon A Serna-Duque
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, 30100, Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, 30100, Murcia, Spain
| | - M Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
15
|
Xiao W, Chen Z, Zhang Y, Wu Y, Jiang H, Zhang H, Qu M, Lin Q, Qin G. Hepcidin Gene Co-Option Balancing Paternal Immune Protection and Male Pregnancy. Front Immunol 2022; 13:884417. [PMID: 35529860 PMCID: PMC9073008 DOI: 10.3389/fimmu.2022.884417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Viviparity has originated independently more than 150 times in vertebrates, while the male pregnancy only emerged in Syngnathidae fishes, such as seahorses. The typical male pregnancy seahorses have closed sophisticated brood pouch that act as both uterus and placenta, representing an excellent model system for studying the evolutionary process of paternal immune protection. Phylogenetic analysis indicated that the hampII gene family has multiple tandem duplicated genes and shows independent lineage-specific expansion in seahorses, and they had the highest ratio of nonsynonymous substitutions to synonymous substitutions (dN/dS) in the seahorse phylogenetic branch. The expression levels of hampIIs in the brood pouch placenta were significantly higher during pregnancy than non-pregnancy. Both LPS stimulation test in vivo and cytotoxicity test in vitro proved the immunological protection function of hampIIs against pathogen infection in seahorse. Besides, seahorse hampII peptides exhibit weaker antibacterial function, but stronger agglutination and free endotoxin inhibition. We assumed that the modified immunological function seemed to be a trade-off between the resistance to microbial attack and offspring protection. In brief, this study suggests that the rapid co-option of hampIIs contributes to the evolutionary adaption to paternal immune care during male pregnancy.
Collapse
Affiliation(s)
- Wanghong Xiao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zelin Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yanhong Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yongli Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Han Jiang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Huixian Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Meng Qu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Qiang Lin
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Geng Qin
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
16
|
Zhang XY, Zhuo X, Cheng J, Wang X, Liang K, Chen X. PU.1 Regulates Cathepsin S Expression in Large Yellow Croaker ( Larimichthys crocea) Macrophages. Front Immunol 2022; 12:819029. [PMID: 35069603 PMCID: PMC8766968 DOI: 10.3389/fimmu.2021.819029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Different morphologies have been detected in teleost macrophages. In this study, two macrophage cell lines were sub-cloned from a large yellow croaker head kidney cell line, LYCK. One type of sub-cloned cells was fusiform but the other was round, named LYC-FM and LYC-RM cells respectively, based on their morphologies. Both types showed the characteristics of macrophages, including expression of macrophage-specific marker genes, possession of phagocytic and bactericidal activities, and production of reactive oxygen species (ROS) and nitric oxide (NO). The transcription factor PU.1, crucial for the development of macrophages in mammals, was found to exist in two transcripts, PU.1a and PU.1b, in large yellow croaker, and constitutively expressed in LYC-FM and LYC-RM cells. The expression levels of PU.1a and PU.1b could be upregulated by recombinant large yellow croaker IFN-γ protein (rLcIFN-γ). Further studies showed that both PU.1a and PU.1b increased the expression of cathepsin S (CTSS) by binding to different E26−transformation−specific (Ets) motifs of the CTSS promoter. Additionally, we demonstrated that all three domains of PU.1a and PU.1b were essential for initiating CTSS expression by truncated mutation experiments. Our results therefore provide the first evidence that teleost PU.1 has a role in regulating the expression of CTSS.
Collapse
Affiliation(s)
- Xiang-Yang Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyue Zhuo
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Cheng
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohong Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kexin Liang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
17
|
Yuan X, Rong Y, Chen Y, Ren C, Meng Y, Mu Y, Chen X. Molecular characterization, expression analysis and cellular location of IL-4/13 receptors in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2022; 120:45-55. [PMID: 34774733 DOI: 10.1016/j.fsi.2021.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/07/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Interleukin (IL)-4 and IL-13 are closely related class I cytokines that play key roles in the T helper (Th)-2 immune response via heterodimeric receptors. IL-4 signals via both the type I (IL-4Rα/γc) and type II (IL-4Rα/IL-13Rα1) receptor complexes, while IL-13 signals only via the type II receptor complex. IL-13Rα2 is traditionally considered a "decoy" receptor for IL-13. However, the IL-4/13 system and its response to pathogenic infection are still not fully understood in fish. In this study, we identified four IL-4/13 receptor subunit genes in the large yellow croaker (Larimichthys crocea): LcIL-4Rα1, LcIL-4Rα2, LcIL-13Rα1, and LcIL-13Rα2. Sequence analysis showed that these receptors possessed typical characteristic domains, including a signal peptide, two fibronectin type III (FN III)-like domains, and a transmembrane domain, but their cytoplasmic regions were not well conserved. The mRNA and protein of the four IL-4/13 receptors were constitutively expressed in all examined tissues of large yellow croaker. Their mRNAs were also detected in primary head kidney macrophages (PKMs), primary head kidney granulocytes (PKGs), and primary head kidney lymphocytes (PKLs). Immunofluorescence assay further showed that LcIL-4Rα and LcIL-13Rα1 were expressed on the membrane of IgM + B cells. After stimulation by Vibrio alginolyticus and poly (I:C) (a viral dsRNA mimic), the mRNA levels of LcIL-4/13 receptors were significantly upregulated in the head kidney and spleen. Their mRNA levels were also upregulated in head kidney leukocytes in response to poly (I:C) and lipopolysaccharide (LPS) treatment. Moreover, both recombinant LcIL-4/13A and LcIL-4/13B upregulated LcIL-4Rα1 and LcIL-4Rα2 in primary leukocytes, but only recombinant LcIL-4/13A upregulated LcIL-13Rα1 and LcIL-13Rα2. These results indicated that LcIL-4/13 receptors, containing conserved functional domains, may be involved in the IL-4/13-mediated immune response to pathogenic infections in the large yellow croaker.
Collapse
Affiliation(s)
- Xiaoqin Yuan
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Rong
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - You Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chaoqun Ren
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yufan Meng
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yinnan Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
18
|
Development of Disease-Resistance-Associated Microsatellite DNA Markers for Selective Breeding of Tilapia (Oreochromis spp.) Farmed in Taiwan. Genes (Basel) 2021; 13:genes13010099. [PMID: 35052439 PMCID: PMC8774982 DOI: 10.3390/genes13010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
There are numerous means to improve the tilapia aquaculture industry, and one is to develop disease resistance through selective breeding using molecular markers. In this study, 11 disease-resistance-associated microsatellite markers including 3 markers linked to hamp2, 4 linked to hamp1, 1 linked to pgrn2, 2 linked to pgrn1, and 1 linked to piscidin 4 (TP4) genes were established for tilapia strains farmed in Taiwan after challenge with Streptococcus inae. The correlation analysis of genotypes and survival revealed a total of 55 genotypes related to survival by the chi-square and Z-test. Although fewer markers were found in B and N2 strains compared with A strain, they performed well in terms of disease resistance. It suggested that this may be due to the low potency of some genotypes and the combinatorial arrangement between them. Therefore, a predictive model was built by the genotypes of the parental generation and the mortality rate of different combinations was calculated. The results show the same trend of predicted mortality in the offspring of three new disease-resistant strains as in the challenge experiment. The present findings is a nonkilling method without requiring the selection by challenge with bacteria or viruses and might increase the possibility of utilization of selective breeding using SSR markers in farms.
Collapse
|
19
|
Wei Z, Wen Q, Li W, Yuan X, Fu Q, Cui Z, Chen X. ATG12 is involved in the antiviral immune response in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2021; 119:262-271. [PMID: 34653664 DOI: 10.1016/j.fsi.2021.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
ATG12, a core autophagy protein, forms a conjugate with ATG5 to promote the formation of autophagosome membrane, and plays an important role in antiviral immunity. However, little is known about the function of ATG12 in fish. Here, we cloned the open reading frame (ORF) of large yellow croaker (Larimichthys crocea) ATG12 (LcATG12), which is 354 nucleotides long and encodes a protein of 117 amino acids. The deduced LcATG12 possesses a conserved APG12 domain (residues 31 to 117), and shares 91.45% identities with ATG12 in orange-spotted grouper (Epinephelus coioides). LcATG12 was constitutively expressed in all examined tissues, with the highest level in intestine. Its transcript was also detected in primary head kidney granulocytes (PKG), primary head kidney macrophages (PKM), primary head kidney lymphocytes (PKL), and large yellow croaker head kidney (LYCK) cell line, and was significantly up-regulated by poly(I:C). LcATG12 was regularly distributed in both cytoplasm and nucleus of LYCK and epithelioma papulosum cyprinid (EPC) cells. Overexpression of LcATG12 in EPC cells significantly inhibited the replication of spring viremia of carp virus (SVCV). Further studies reveled that LcATG12 could induce the occurrence of autophagy in LYCK cells. Furthermore, overexpression of LcATG12 in LYCK cells increased the expression levels of large yellow croaker type I interferons (IFNs, IFNc, IFNd, and IFNh), IFN regulatory factors (IRF3 and IRF7), and IFN-stimulated genes (PKR, Mx, and Viperin). All these data indicated that LcATG12 plays a role in the antiviral immunity possibly by inducing both autophagy and type I IFN response in large yellow croaker.
Collapse
Affiliation(s)
- Zuyun Wei
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiao Wen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wanru Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoqin Yuan
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiuling Fu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhengwei Cui
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
20
|
Transcriptome analysis revealed multiple immune processes and energy metabolism pathways involved in the defense response of the large yellow croaker Larimichthys crocea against Pseudomonas plecoglossicida. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100886. [PMID: 34418783 DOI: 10.1016/j.cbd.2021.100886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/08/2023]
Abstract
The large yellow croaker (Larimichthys crocea) aquaculture industry is suffering substantial financial losses caused by visceral white nodules disease resulting from Pseudomonas plecoglossicida infection. However, how L. crocea responds to P. plecoglossicida infection remains largely unknown. Here, we characterized the changes in the mRNA profile in the spleen of L. crocea upon P. plecoglossicida infection and explored the related defensive strategies. Sample clustering analysis and qRT-PCR indicated that P. plecoglossicida induced profound and reproducible transcriptome remodeling in the L. crocea spleen. Many innate immune-related genes, such as IL-17 signaling molecules, chemokines and chemokine receptors, complement components, TLR5 signaling molecules, and antimicrobial peptide hepcidins (Hamps), were upregulated by P. plecoglossicida and may play important roles in the L. crocea defense against P. plecoglossicida. The antibacterial activity of Hamp2-5 against P. plecoglossicida was further confirmed by using synthetic mature peptide of Hamp2-5. Additionally, significant enrichment of "Glycolysis/Gluconeogenesis", "Citrate cycle" and "Oxidative phosphorylation" pathways and a significant upregulation of all 6 rate-limiting enzyme genes (HK1, PFK, PKM, CS, IDH2, DLST) in the Glycolysis and Citrate cycle pathways in P. plecoglossicida-infected fish suggested that ATP synthesis may be accelerated to ensure energy supply in response to pathogenic infection. Altogether, our results not only identified the key immune-related genes and immune pathways that participated in the defense response of L. crocea against P. plecoglossicida, but also revealed a novel defensive strategy involving ATP synthesis in this species.
Collapse
|
21
|
Sjodin BMF, Galbreath KE, Lanier HC, Russello MA. Chromosome-Level Reference Genome Assembly for the American Pika (Ochotona princeps). J Hered 2021; 112:549-557. [PMID: 34036348 PMCID: PMC8558581 DOI: 10.1093/jhered/esab031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023] Open
Abstract
The American pika (Ochotona princeps) is an alpine lagomorph found throughout western North America. Primarily inhabiting talus slopes at higher elevations (>2000 m), American pikas are well adapted to cold, montane environments. Warming climates on both historical and contemporary scales have contributed to population declines in American pikas, positioning them as a focal mammalian species for investigating the ecological effects of climate change. To support and expand ongoing research efforts, here, we present a highly contiguous and annotated reference genome assembly for the American pika (OchPri4.0). This assembly was produced using Dovetail de novo proximity ligation methods and annotated through the NCBI Eukaryotic Genome Annotation pipeline. The resulting assembly was chromosome- scale, with a total length of 2.23 Gb across 9350 scaffolds and a scaffold N50 of 75.8 Mb. The vast majority (>97%) of the total assembly length was found within 36 large scaffolds; 33 of these scaffolds correlated to whole autosomes, while the X chromosome was covered by 3 large scaffolds. Additionally, we identified 17 enriched gene ontology terms among American pika-specific genes putatively related to adaptation to high-elevation environments. This high-quality genome assembly will serve as a springboard for exploring the evolutionary underpinnings of behavioral, ecological, and taxonomic diversification in pikas as well as broader-scale eco-evolutionary questions pertaining to cold-adapted species in general.
Collapse
Affiliation(s)
- Bryson M F Sjodin
- Department of Biology, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, Canada
| | - Kurt E Galbreath
- Department of Biology, Northern Michigan University, Marquette, MI, USA
| | - Hayley C Lanier
- Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, Canada
| |
Collapse
|
22
|
Gan W, Zhao C, Liu X, Bian C, Shi Q, You X, Song W. Whole-Genome Sequencing and Genome-Wide Studies of Spiny Head Croaker ( Collichthys lucidus) Reveals Potential Insights for Well-Developed Otoliths in the Family Sciaenidae. Front Genet 2021; 12:730255. [PMID: 34659355 PMCID: PMC8515026 DOI: 10.3389/fgene.2021.730255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Spiny head croaker (Collichthys lucidus), belonging to the family Sciaenidae, is a small economic fish with a main distribution in the coastal waters of Northwestern Pacific. Here, we constructed a nonredundant chromosome-level genome assembly of spiny head croaker and also made genome-wide investigations on genome evolution and gene families related to otolith development. A primary genome assembly of 811.23 Mb, with a contig N50 of 74.92 kb, was generated by a combination of 49.12-Gb Illumina clean reads and 35.24 Gb of PacBio long reads. Contigs of this draft assembly were further anchored into chromosomes by integration with additional 185.33-Gb Hi-C data, resulting in a high-quality chromosome-level genome assembly of 817.24 Mb, with an improved scaffold N50 of 26.58 Mb. Based on our phylogenetic analysis, we observed that C. lucidus is much closer to Larimichthys crocea than Miichthys miiuy. We also predicted that many gene families were significantly expanded (p-value <0.05) in spiny head croaker; among them, some are associated with "calcium signaling pathway" and potential "inner ear functions." In addition, we identified some otolith-related genes (such as otol1a that encodes Otolin-1a) with critical deletions or mutations, suggesting possible molecular mechanisms for well-developed otoliths in the family Sciaenidae.
Collapse
Affiliation(s)
- Wu Gan
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Chenxi Zhao
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Xinran Liu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Chao Bian
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Qiong Shi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Xinxin You
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Wei Song
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| |
Collapse
|
23
|
Barroso C, Carvalho P, Nunes M, Gonçalves JFM, Rodrigues PNS, Neves JV. The Era of Antimicrobial Peptides: Use of Hepcidins to Prevent or Treat Bacterial Infections and Iron Disorders. Front Immunol 2021; 12:754437. [PMID: 34646277 PMCID: PMC8502971 DOI: 10.3389/fimmu.2021.754437] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
The current treatments applied in aquaculture to limit disease dissemination are mostly based on the use of antibiotics, either as prophylactic or therapeutic agents, with vaccines being available for a limited number of fish species and pathogens. Antimicrobial peptides are considered as promising novel substances to be used in aquaculture, due to their antimicrobial and immunomodulatory activities. Hepcidin, the major iron metabolism regulator, is found as a single gene in most mammals, but in certain fish species, including the European sea bass (Dicentrarchus labrax), two different hepcidin types are found, with specialized roles: the single type 1 hepcidin is involved in iron homeostasis trough the regulation of ferroportin, the only known iron exporter; and the various type 2 hepcidins present antimicrobial activity against a number of different pathogens. In this study, we tested the administration of sea bass derived hepcidins in models of infection and iron overload. Administration with hamp2 substantially reduced fish mortalities and bacterial loads, presenting itself as a viable alternative to the use of antibiotics. On the other hand, hamp1 seems to attenuate the effects of iron overload. Further studies are necessary to test the potential protective effects of hamp2 against other pathogens, as well as to understand how hamp2 stimulate the inflammatory responses, leading to an increased fish survival upon infection.
Collapse
Affiliation(s)
- Carolina Barroso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Iron and Innate Immunity, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Programa Doutoral em Biologia Molecular e Celular (MCbiology), ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Pedro Carvalho
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Magda Nunes
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José F M Gonçalves
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Pedro N S Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Iron and Innate Immunity, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - João V Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Iron and Innate Immunity, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
24
|
Wei Z, Li X, Li W, Fu Q, Mu Y, Chen X. Molecular characterization and role in virus infection of Beclin-1 in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2021; 116:30-41. [PMID: 34147615 DOI: 10.1016/j.fsi.2021.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 06/12/2023]
Abstract
Beclin-1, the ortholog of yeast autophagy-related gene 6 (Atg6), has a central role in autophagy, which has been linked to diverse biological processes including immunity, development, tumor suppression, and lifespan extension. However, understanding of function of fish Beclin-1 is limited now. In this study, the complete Beclin-1 cDNA of large yellow croaker Larimichthys crocea (LcBeclin-1) was cloned, whose open reading frame (ORF) is 1344 bp long and encodes a protein of 447 amino acids (aa). The deduced LcBeclin-1 possesses a typical Bcl-2 homology domain 3(BH3) and an APG6 domain that contains a central coiled-coil domain (CCD, residues 174 to 231) and a C-terminal evolutionarily conserved domain (ECD, residues 241 to 334). LcBeclin-1 shared a high amino acid identity of 81.66-98.66% with reported Beclin-1 molecules from other vertebrate species. LcBeclin-1 gene was constitutively expressed in all tissues tested, with the highest levels in heart. LcBeclin-1 transcripts were also detected in primary head kidney granulocytes (PKGs), primary head kidney macrophages (PKMs), primary head kidney leukocytes (PKLs), and large yellow croaker head kidney cell line (LYCK), and were significantly upregulated by poly (I:C) in PKMs and LYCK cells. Subcellular localization showed that LcBeclin-1 was evenly distributed in the cytoplasm and nucleus of LYCK cells. Overexpression of LcBeclin-1 significantly increased the replication of SVCV, as evidenced by increased severity of the cytopathic effects, enhanced viral titre, and upregulated transcriptional levels of viral genes. Further studies showed that LcBeclin-1 induced the occurrence of autophagy in LYCK cells. Additionally, LcBeclin-1 also decreased the expression levels of large yellow croaker interferons (IFNs; IFNc, IFNd, and IFNh), interferon regulatory factor 3 (IRF3) and IRF7, IFN-stimulated genes (ISGs; Mx, PKR, and Viperin) in LYCK cells. All these data suggest that LcBeclin-1 promoted the viral replication possibly by inducing autophagy or negatively modulating IFN response, which will help us to further understand the function of fish Beclin-1.
Collapse
Affiliation(s)
- Zuyun Wei
- Key Laboratory of Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaofeng Li
- Key Laboratory of Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wanru Li
- Key Laboratory of Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiuling Fu
- Key Laboratory of Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yinnan Mu
- Key Laboratory of Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- Key Laboratory of Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
25
|
Sumon TA, Hussain MA, Hasan M, Rashid A, Abualreesh MH, Jang WJ, Sharifuzzaman SM, Brown CL, Lee EW, Hasan MT. Antiviral peptides from aquatic organisms: Functionality and potential inhibitory effect on SARS-CoV-2. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2021; 541:736783. [PMID: 33883784 PMCID: PMC8049179 DOI: 10.1016/j.aquaculture.2021.736783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/26/2021] [Accepted: 04/14/2021] [Indexed: 05/06/2023]
Abstract
Several antiviral peptides (AVPs) from aquatic organisms have been effective in interfering with the actions of infectious viruses, such as Human Immunodeficiency Virus-1 and Herpes Simplex Virus-1 and 2. AVPs are able to block viral attachment or entry into host cells, inhibit internal fusion or replication events by suppressing viral gene transcription, and prevent viral infections by modulating host immunity. Therefore, as promising therapeutics, the potential of aquatic AVPs for use against the COVID-19 pandemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is considered. At present no therapeutic drugs are yet available. A total of 32 AVPs derived from fish and shellfish species are discussed in this review paper with notes on their properties and mechanisms of action in the inhibition of viral diseases both in humans and animals, emphasizing on SARS-CoV-2. The molecular structure of novel SARS-CoV-2 with its entry mechanisms, clinical signs and symptoms are also discussed. In spite of only a few study of these AVPs against SARS-CoV-2, aquatic AVPs properties and infection pathways (entry, replication and particle release) into coronaviruses are linked in this paper to postulate an analysis of their potential but unconfirmed actions to impair SARS-CoV-2 infection in humans.
Collapse
Affiliation(s)
- Tofael Ahmed Sumon
- Department of Fish Health Management, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md Ashraf Hussain
- Department of Fisheries Technology and Quality Control, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Aminur Rashid
- Department of Aquaculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Muyassar Hamid Abualreesh
- Department of Marine Biology, Faculty of Marine Science, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia
| | - Won Je Jang
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - S M Sharifuzzaman
- Institute of Marine Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Christopher Lyon Brown
- FAO World Fisheries University Pilot Programme, Pukyong National University, Busan, South Korea
| | - Eun-Woo Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Md Tawheed Hasan
- Department of Aquaculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
26
|
Hepcidin Protects Yellow Catfish ( Pelteobagrus fulvidraco) against Aeromonas veronii-Induced Ascites Disease by Regulating Iron Metabolism. Antibiotics (Basel) 2021; 10:antibiotics10070848. [PMID: 34356769 PMCID: PMC8300743 DOI: 10.3390/antibiotics10070848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/26/2022] Open
Abstract
Aeromonas veronii (A. veronii) is one of the main pathogens causing bacterial diseases in aquaculture. Although previous studies have shown that hepcidin as an antimicrobial peptide can promote fish resistance to pathogenic bacterial infections, but the mechanisms remain unclear. Here, we expressed and purified recombinant yellow catfish (Pelteobagrus fulvidraco) hepcidin protein (rPfHep). rPfHep can up-regulate the expression of ferritin and enhance the antibacterial activity in primary hepatocytes of yellow catfish. We employed berberine hydrochloride (BBR) and Fursultiamine (FSL) as agonists and antagonists for hepcidin, respectively. The results indicated that agonist BBR can inhibit the proliferation of pathogenic bacteria, and the antagonist FSL shows the opposite effect. After gavage administration, rPfHep and the agonist BBR can enhance the accumulation of iron in liver, which may hinder the iron transport and limit the amount of iron available to pathogenic bacteria. Moreover, rPfHep and the agonist BBR can also reduce the mortality rate, bacterial load and histological lesions in yellow catfish infected with A. veronii. Therefore, hepcidin is an important mediator of iron metabolism, and it can be used as a candidate target for prevent bacterial infections in yellow catfish. Hepcidin and BBR have potential application value in preventing anti-bacterial infection.
Collapse
|
27
|
Tigano A, Jacobs A, Wilder AP, Nand A, Zhan Y, Dekker J, Therkildsen NO. Chromosome-Level Assembly of the Atlantic Silverside Genome Reveals Extreme Levels of Sequence Diversity and Structural Genetic Variation. Genome Biol Evol 2021; 13:evab098. [PMID: 33964136 PMCID: PMC8214408 DOI: 10.1093/gbe/evab098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
The levels and distribution of standing genetic variation in a genome can provide a wealth of insights about the adaptive potential, demographic history, and genome structure of a population or species. As structural variants are increasingly associated with traits important for adaptation and speciation, investigating both sequence and structural variation is essential for wholly tapping this potential. Using a combination of shotgun sequencing, 10x Genomics linked reads and proximity-ligation data (Chicago and Hi-C), we produced and annotated a chromosome-level genome assembly for the Atlantic silverside (Menidia menidia)-an established ecological model for studying the phenotypic effects of natural and artificial selection-and examined patterns of genomic variation across two individuals sampled from different populations with divergent local adaptations. Levels of diversity varied substantially across each chromosome, consistently being highly elevated near the ends (presumably near telomeric regions) and dipping to near zero around putative centromeres. Overall, our estimate of the genome-wide average heterozygosity in the Atlantic silverside is among the highest reported for a fish, or any vertebrate (1.32-1.76% depending on inference method and sample). Furthermore, we also found extreme levels of structural variation, affecting ∼23% of the total genome sequence, including multiple large inversions (> 1 Mb and up to 12.6 Mb) associated with previously identified haploblocks showing strong differentiation between locally adapted populations. These extreme levels of standing genetic variation are likely associated with large effective population sizes and may help explain the remarkable adaptive divergence among populations of the Atlantic silverside.
Collapse
Affiliation(s)
- Anna Tigano
- Department of Natural Resources, Cornell University, Ithaca, New York, USA
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Arne Jacobs
- Department of Natural Resources, Cornell University, Ithaca, New York, USA
| | - Aryn P Wilder
- Department of Natural Resources, Cornell University, Ithaca, New York, USA
- Conservation Genetics, San Diego Zoo Global, Escondido, California, USA
| | - Ankita Nand
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ye Zhan
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Job Dekker
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | | |
Collapse
|
28
|
Effective CRISPR/Cas9-based genome editing in large yellow croaker (Larimichthys crocea). AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Chen X, Guan Y, Li K, Luo T, Mu Y, Chen X. IRF1 and IRF2 act as positive regulators in antiviral response of large yellow croaker (Larimichthys crocea) by induction of distinct subgroups of type I IFNs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103996. [PMID: 33444646 DOI: 10.1016/j.dci.2021.103996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Interferon regulatory factors (IRFs) are crucial transcription factors involved in transcriptional regulation of type I interferons (IFNs) and IFN-stimulated genes (ISGs) against viral infection. In teleost fish, eleven IRFs have been found, however, understanding of their roles in the antiviral response remains limited. In the previous study, IRF1 (LcIRF1) and IRF2 (LcIRF2) genes were cloned from large yellow croaker (Larimichthys crocea). Here, we further characterized their function in the antiviral response. LcIRF1 and LcIRF2 were constitutively expressed in primary head kidney monocytes/macrophages (PKMs), lymphocytes (PKLs), granulocytes (PKGs) and large yellow croaker head kidney (LYCK) cell line, and significantly upregulated in PKMs and LYCK cells after stimulation with poly (I:C). LcIRF1 could induce promoter activities of three large yellow croaker type I IFNs, IFNc, IFNd and IFNh, while LcIRF2 could only induce those of IFNd and IFNh, and inhibit IFNc promoter activity. Correspondingly, overexpression of LcIRF1 in LYCK cells increased expression of all three IFNs (IFNc, IFNd and IFNh), while that of LcIRF2 only upregulated the expression levels of IFNd and IFNh, and inhibited expression of IFNc, although both LcIRF1and LcIRF2 induced expression of IFN-stimulated genes (ISGs), MxA, PKR and Viperin. Additionally, both LcIRF1 and LcIRF2 inhibited the Spring Viremia of Carp Virus (SVCV) replication in epithelioma papulosum cyprinid (EPC) cells, thus showing antiviral activity. Taken together, these results indicated that both LcIRF1 and LcIRF2 play positive roles in regulating the antiviral response of large yellow croaker by induction of distinct subgroups of type I IFNs.
Collapse
Affiliation(s)
- Xiaojuan Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanyun Guan
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Kexin Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tian Luo
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yinnan Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
30
|
Li K, Li W, Chen X, Luo T, Mu Y, Chen X. Molecular and functional identification of a β-defensin homolog in large yellow croaker (Larimichthys crocea). JOURNAL OF FISH DISEASES 2021; 44:391-400. [PMID: 33340371 DOI: 10.1111/jfd.13324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
β-defensin (BD) is a cysteine-rich cationic antibacterial peptide that is active against a wide range of bacteria. Here, a β-defensin homolog (LcBD2) was identified in large yellow croaker (Larimichthys crocea). The open reading frame of LcBD2 contains 195 nucleotides, encoding a protein of 64 amino acids that possesses a typical arrangement of six conserved cysteine residues (C31 , C37 , C41 , C53 , C59 and C60 ). LcBD2 transcripts were constitutively expressed in all examined tissues and significantly increased in head kidney, spleen and gills by Vibrio alginolyticus. The synthetic LcBD2 peptide imparted antimicrobial effects on both Gram-negative bacteria (V. campbellii, V. parahaemolyticus, V. alginolyticus, V. harveyi and Pseudomonas plecoglossicida) and Gram-positive bacteria (Bacillus subtilis). We also observed that after treatment with synthetic LcBD2 peptide, numerous blisters appeared on the membrane of P. plecoglossicida, which in turn may result in cell membrane breakage and bacterial death. Moreover, the synthetic LcBD2 peptide significantly upregulated the expression levels of TNF-α2, IL-1β and CXCL8_L1 in monocytes/macrophages, while downregulated expression level of IL-10. The LcBD2 peptide also remarkedly enhanced the phagocytosis of monocytes/macrophages. These results indicate that LcBD2 not only protects large yellow croaker against multiple bacterial pathogens but also plays a role in activation of monocytes/macrophages.
Collapse
Affiliation(s)
- Kexin Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wanru Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojuan Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tian Luo
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yinnan Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
31
|
Portelinha J, Duay SS, Yu SI, Heilemann K, Libardo MDJ, Juliano SA, Klassen JL, Angeles-Boza AM. Antimicrobial Peptides and Copper(II) Ions: Novel Therapeutic Opportunities. Chem Rev 2021; 121:2648-2712. [PMID: 33524257 DOI: 10.1021/acs.chemrev.0c00921] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The emergence of new pathogens and multidrug resistant bacteria is an important public health issue that requires the development of novel classes of antibiotics. Antimicrobial peptides (AMPs) are a promising platform with great potential for the identification of new lead compounds that can combat the aforementioned pathogens due to their broad-spectrum antimicrobial activity and relatively low rate of resistance emergence. AMPs of multicellular organisms made their debut four decades ago thanks to ingenious researchers who asked simple questions about the resistance to bacterial infections of insects. Questions such as "Do fruit flies ever get sick?", combined with pioneering studies, have led to an understanding of AMPs as universal weapons of the immune system. This review focuses on a subclass of AMPs that feature a metal binding motif known as the amino terminal copper and nickel (ATCUN) motif. One of the metal-based strategies of hosts facing a pathogen, it includes wielding the inherent toxicity of copper and deliberately trafficking this metal ion into sites of infection. The sudden increase in the concentration of copper ions in the presence of ATCUN-containing AMPs (ATCUN-AMPs) likely results in a synergistic interaction. Herein, we examine common structural features in ATCUN-AMPs that exist across species, and we highlight unique features that deserve additional attention. We also present the current state of knowledge about the molecular mechanisms behind their antimicrobial activity and the methods available to study this promising class of AMPs.
Collapse
Affiliation(s)
- Jasmin Portelinha
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Searle S Duay
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Chemistry Department, Adamson University, 900 San Marcelino Street, Ermita, Manila 1000, Philippines
| | - Seung I Yu
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Kara Heilemann
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - M Daben J Libardo
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Samuel A Juliano
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Institute of Material Science, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
32
|
Evaluating the impact of methionine-enriched diets in the liver of European seabass through label-free shotgun proteomics. J Proteomics 2020; 232:104047. [PMID: 33217584 DOI: 10.1016/j.jprot.2020.104047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Plant protein sources play an essential role in aquaculture by reducing the use of fish meal to sustainable levels, although further supplementation is needed to fulfill fish nutritional requirements. This work addressed fish growth performance and proteome changes to dietary methionine in European seabass juveniles. A dose-dependent response to methionine (Met) was observed on fish growth consistent with proteomic analyses, suggesting Met requirement ≥0.9% (w/w). Fish fed at 0.77% (w/w) exhibited reduced growth and an enrichment in proteins involved in cellular homeostasis. Proteomics data suggest an optimal nutritional status at 1.36% Met (w/w), together with putative beneficial effects on the immune system up to 1.66% Met (w/w). The response to dietary Met involved the convergence of different metabolic and signalling pathways implicated in cell growth and immune response e.g., mTOR, Hedgehog or the T Cell receptor signalling, coupled with a fine-tuning regulation of amino acid metabolism and translation.
Collapse
|
33
|
Zhou T, Chen B, Ke Q, Zhao J, Pu F, Wu Y, Chen L, Zhou Z, Bai Y, Pan Y, Gong J, Zheng W, Xu P. Development and Evaluation of a High-Throughput Single-Nucleotide Polymorphism Array for Large Yellow Croaker ( Larimichthys crocea). Front Genet 2020; 11:571751. [PMID: 33193675 PMCID: PMC7645154 DOI: 10.3389/fgene.2020.571751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/29/2020] [Indexed: 11/16/2022] Open
Abstract
High-density single-nucleotide polymorphism (SNP) genotyping array is an essential tool for genetic analyses of animals and plants. Large yellow croaker (Larimichthys crocea) is one of the most commercially important marine fish species in China. Although plenty of SNPs have been identified in large yellow croaker, no high-throughput genotyping array is available. In this study, a high-throughput SNP array named NingXin-I with 600K SNPs was developed and evaluated. A set of 82 large yellow croakers were collected from different locations of China and re-sequenced. A total of 9.34M SNPs were identified by mapping sequence reads to the large yellow croaker reference genome. About 1.98M candidate SNPs were selected for further analyses by using criteria such as SNP quality score and conversion performance in the final array. Finally, 579.5K SNPs evenly distributed across the large yellow croaker genome with an average spacing of 1.19 kb were proceeded to array production. The performance of NingXin-I array was evaluated in 96 large yellow croaker individuals from five populations, and 83.38% SNPs on the array were polymorphic sites. A further test of the NingXin-I array in five closely related species in Sciaenidae identified 26.68–56.23% polymorphic SNP rate across species. A phylogenetic tree inferred by using the genotype data generated by NingXin-I confirmed the phylogenetic distance of the species in Sciaenidae. The performance of NingXin-I in large yellow croaker and the other species in Sciaenidae suggested high accuracy and broad application. The NingXin-I array should be valuable for quantitative genetic studies, such as genome-wide association studies (GWASs), high-density linkage map construction, haplotype analysis, and genome-based selection.
Collapse
Affiliation(s)
- Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Baohua Chen
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qiaozhen Ke
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Ji Zhao
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fei Pu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yidi Wu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lin Chen
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhixiong Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yulin Bai
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ying Pan
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Jie Gong
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Weiqiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Peng Xu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| |
Collapse
|
34
|
Wang Y, Wen X, Zhang X, Fu S, Liu J, Tan W, Luo M, Liu L, Huang H, You X, Luo J, Chen F. Chromosome Genome Assembly of the Leopard Coral Grouper ( Plectropomus leopardus) With Nanopore and Hi-C Sequencing Data. Front Genet 2020; 11:876. [PMID: 32983227 PMCID: PMC7492660 DOI: 10.3389/fgene.2020.00876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/17/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yongbo Wang
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Education of Ministry, Hainan Academy of Ocean and Fisheries Sciences, Hainan Tropical Ocean University, Haikou, China
| | - Xin Wen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, China
| | - Xinhui Zhang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Shuyuan Fu
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Education of Ministry, Hainan Academy of Ocean and Fisheries Sciences, Hainan Tropical Ocean University, Haikou, China
| | - Jinye Liu
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Education of Ministry, Hainan Academy of Ocean and Fisheries Sciences, Hainan Tropical Ocean University, Haikou, China
| | - Wei Tan
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Education of Ministry, Hainan Academy of Ocean and Fisheries Sciences, Hainan Tropical Ocean University, Haikou, China
| | - Ming Luo
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Education of Ministry, Hainan Academy of Ocean and Fisheries Sciences, Hainan Tropical Ocean University, Haikou, China
| | - Longlong Liu
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Education of Ministry, Hainan Academy of Ocean and Fisheries Sciences, Hainan Tropical Ocean University, Haikou, China
| | - Hai Huang
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Education of Ministry, Hainan Academy of Ocean and Fisheries Sciences, Hainan Tropical Ocean University, Haikou, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Jian Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, China
| | - Fuxiao Chen
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Education of Ministry, Hainan Academy of Ocean and Fisheries Sciences, Hainan Tropical Ocean University, Haikou, China
| |
Collapse
|
35
|
Mu Y, Li W, Wei Z, He L, Zhang W, Chen X. Transcriptome analysis reveals molecular strategies in gills and heart of large yellow croaker (Larimichthys crocea) under hypoxia stress. FISH & SHELLFISH IMMUNOLOGY 2020; 104:304-313. [PMID: 32544557 DOI: 10.1016/j.fsi.2020.06.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The gills and heart are two major targets of hypoxia in fish. However, the molecular responses in fish gills and heart to hypoxia challenge remain unclear. Here, RNA-Seq technology was used to study the gene expression profiles in gills and heart of large yellow croaker (Larimichthys crocea) at 6, 24, and 48 h after hypoxia stress. A total of 1,546 and 2,746 differentially expressed genes (DEGs) were identified in gills and heart, respectively. Expression changes of nine genes in each tissue were further validated by the qPCR. Based on KEGG and Gene ontology enrichments, we found that various innate immunity-related genes, such as complement components (C1qs, C2, C3, C6, and C7), chemokines (CCL3, CCL17, CCL19, CCL25, and CXCL8_L3), chemokine receptors (CCR9, CXCR1, and CXCR3), and nitric oxide synthase (NOS), were significantly down-regulated in gills and/or heart, suggesting that innate immune processes mediated by these genes may be inhibited by hypoxia. The genes involved in both glycolysis pathway (LDHA) and tricarboxylic acid cycle (IDH2 and OGDH) were up-regulated in gills and heart of hypoxic large yellow croakers, possibly because gill and heart tissues need enough energy to accelerate gas exchange and blood circulation. Hypoxia also affected the ion transport in gills of large yellow croaker, through down-regulating the expression levels of numerous classical ion transporters, including HVCN1, SLC20A2, SLC4A4, RHBG, RHCG, and SCN4A, suggesting an energy conservation strategy to hypoxia stress. All these results indicate that the immune processes, glycolytic pathways, and ion transport were significantly altered in gills and/or heart of large yellow croaker under hypoxia, possibly contributing to maintain cellular energy balance during hypoxia. Our data, therefore, afford new information to understand the tissue-specific molecular responses of bony fish to hypoxia stress.
Collapse
Affiliation(s)
- Yinnan Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Wanru Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Zuyun Wei
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Lianghua He
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.
| |
Collapse
|
36
|
Phan-Aram P, Mahasri G, Kayansamruaj P, Amparyup P, Srisapoome P. Immune Regulation, but Not Antibacterial Activity, Is a Crucial Function of Hepcidins in Resistance against Pathogenic Bacteria in Nile Tilapia ( Oreochromis niloticus Linn.). Biomolecules 2020; 10:biom10081132. [PMID: 32751990 PMCID: PMC7464455 DOI: 10.3390/biom10081132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
In this study, the functions of a recombinant propeptide (rProOn-Hep1) and the synthetic FITC-labelled mature peptides sMatOn-Hep1 and sMatOn-Hep2 were analyzed. Moreover, sMatOn-Hep1 and sMatOn-Hep2 were mildly detected in the lymphocytes of peripheral blood mononuclear cells (PBMCs) and strongly detected in head kidney macrophages. The in vitro binding and antibacterial activities of these peptides were slightly effective against several pathogenic bacteria. Immune regulation by sMatOn-Hep1 was also analyzed, and only sMatOn-Hep1 significantly enhanced the phagocytic index in vitro (p < 0.05). Interestingly, intraperitoneal injection of sMatOn-Hep1 (10 or 100 µg) significantly elevated the phagocytic activity, phagocytic index, and lysozyme activity and clearly decreased the iron ion levels in the livers of the treated fish (p < 0.05). Additionally, sMatOn-Hep1 enhanced the expression levels of CC and CXC chemokines, transferrin and both On-Hep genes in the liver, spleen and head kidney, for 1–96 h after injection, but did not properly protect the experimental fish from S. agalactiae infection after 7 days of treatment. However, the injection of S. agalactiae and On-Heps indicated that 100 μg of sMatOn-Hep1 was very effective, while 100 μg of rProOn-Hep1 and sMatOn-Hep2 demonstrated moderate protection. Therefore, On-Hep is a crucial iron-regulating molecule and a key immune regulator of disease resistance in Nile tilapia.
Collapse
Affiliation(s)
- Pagaporn Phan-Aram
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand; (P.P.-A.); (P.K.)
| | - Gunanti Mahasri
- Department of Fish Health Management and Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C Mulyorejo, Surabaya 60115, Indonesia;
| | - Pattanapon Kayansamruaj
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand; (P.P.-A.); (P.K.)
| | - Piti Amparyup
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand; (P.P.-A.); (P.K.)
- Correspondence:
| |
Collapse
|
37
|
Genome-wide investigation of Dmrt gene family in large yellow croaker (Larimichthys crocea). Theriogenology 2020; 156:272-282. [PMID: 32791392 DOI: 10.1016/j.theriogenology.2020.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022]
Abstract
The Dmrt (Doublesex and Mab-3 related transcription factor) gene family is a class of crucial transcription factors characterized by a conserved DM (Doublesex/Mab-3) domain. Previous researches indicate this gene family is involved in various physiological processes, especially in sex determination/differentiation and gonad development. Despite the vital roles of the Dmrt gene family in physiological processes, the comprehensive characterization and analysis of the dmrt genes in large yellow croaker (Larimichthys crocea), one of the most commercially important marine fish in China, have not been described. In this study, we performed the first genome-wide systematic analysis of L. crocea dmrt genes through the bioinformatics method. A total of seven members of the Dmrt gene family including Lcdmrt1, Lcdmrt2a, Lcdmrt2b, Lcdmrt3, Lcdmrt4, Lcdmrt5, and Lcdmrt6 were excavated based on the genome data of L. crocea. Further analysis revealed that the dmrt genes of L. crocea were distributed unevenly across four chromosomes. There were three dmrt genes (Lcdmrt1, Lcdmrt2a, and Lcdmrt3) on 3rd chromosome, one (Lcdmrt6) on 13th chromosome, one (Lcdmrt4) on 14th chromosome, two on (Lcdmrt5 and Lcdmrt2b) 17th chromosome. The gene structure analysis indicated that the number of introns of different dmrt genes of L. crocea had some differences: Lcdmrt1 had four introns, Lcdmrt2a, Lcdmrt2b, and Lcdmrt6 had two introns, Lcdmrt3, Lcdmrt4, and Lcdmrt5 had only one intron. The expression pattern analysis with published gonad transcriptome datasets and further confirmed by qRT-PCR revealed that these members of the Dmrt gene family except for Lcdmrt4 were all sexually dimorphic and preferred expressing in testis. Furthermore, the expression pattern analysis also revealed that the expression level of Lcdmrt1 and Lcdmrt6 was significantly higher than that of other members, suggesting that these two genes may play a more important role in testis. Overall, our studies provide a comprehensive insight into the Dmrt gene family members and a basis for the further study of their biological functions in L. crocea.
Collapse
|
38
|
Zhang W, Zhang M, Cheng A, Hao E, Huang X, Chen X. Immunomodulatory and antioxidant effects of Astragalus polysaccharide liposome in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2020; 100:126-136. [PMID: 32142872 DOI: 10.1016/j.fsi.2020.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/11/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Astragalus polysaccharides (APS) have been widely used as immunopotentiators in aquaculture, however, the best way of their administration remains to be explored. In the present study, APS liposome (APSL) was prepared by film dispersion-ultrasonic method. The optimal conditions of APSL preparation were determined by response surface methodology, with a ratio of 10:1 (w/w) for soybean lecithin to APS and 8:1 (w/w) for soybean lecithin to cholesterol, and an ultrasound time of 15 min, which produced an encapsulation efficiency of 73.88 ± 0.88% of APSL. In vivo feeding experiments in large yellow croaker showed that both APS and APSL could enhance the contents of serum total protein (TP) and albumin (ALB), activities of serum non-specific immune enzymes such as acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM), and phagocytic activity of head kidney macrophages. Meanwhile, they both increased the activities of serum antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and reduced the content of final lipid peroxidation product malondialdehyde (MDA) in serum, thus exhibiting the antioxidant effects. In vitro experiments on primary head kidney macrophages (PKM) showed that both APS and APSL inhibited ROS production, but obviously enhanced NO production and phagocytic activity of PKM. Furthermore, expression levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α), IFN-γ, and iNOS in PKM were significantly up-regulated after APS and APSL treatments, but no expression change of IFN-h was observed. Taken together, our results showed that both APS and APSL could improve several immune parameters and antioxidant ability of large yellow croaker either in vivo or in vitro, and the efficacy of APSL was markedly better than APS. These findings therefore indicated that the immunomodulatory and antioxidant activities of APS could be enhanced after encapsulated with liposome, and APSL may represent a potential drug delivery system of APS for development of immunoenhancers in aquaculture.
Collapse
Affiliation(s)
- Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Mengxin Zhang
- University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Anyi Cheng
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Entian Hao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Xiaohong Huang
- University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
39
|
Huang M, Mu P, Li X, Ren Q, Zhang XY, Mu Y, Chen X. Functions of TNF-α1 and TNF-α2 in large yellow croaker (Larimichthys crocea) in monocyte/macrophage activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103576. [PMID: 31846686 DOI: 10.1016/j.dci.2019.103576] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Tumor necrosis factor-α (TNF-α) plays crucial roles in cell development, proliferation, apoptosis, inflammation, and immunity. TNF-α genes have been identified in various fish species, however, their biological functions remain to be further clarified. In this study, we identified a novel TNF-α homologue (LcTNF-α2) from large yellow croaker (Larimichthys crocea), which shares a low amino acid sequence identity to the previously reported large yellow croaker TNF-α (LcTNF-α1). The open reading frame of LcTNF-α2 is 714 nucleotides long, encoding a peptide of 237 amino acids (aa). The deduced LcTNF-α2 protein contains a 23-aa transmembrane region, a TACE restriction site at residues T71/L72, a TNF family signature (I108- F135), and two conserved cysteine residues (C39 and C179), as found in other known TNF-α sequences. Both LcTNF-α1 and LcTNF-α2 genes were constitutively expressed in all examined tissues and significantly up-regulated in the spleen and head kidney by Vibrio alginolyticus. Their transcripts were also detected in primary head kidney monocytes/macrophages (MO/Mϕs), lymphocytes (PKLs), granulocytes (PKGs), and large yellow croaker head kidney (LYCK) cell line and significantly increased in these cell types by inactivated Vibrio alginolyticus. Recombinant LcTNF-α1 and LcTNF-α2 proteins (rLcTNF-α1 and rLcTNF-α2) produced in Pichia pastoris not only significantly increased the production of reactive oxygen species (ROS), but also promoted the expression of proinflammatory cytokines (IL-1β, IL-6,IL-8, and TNF-α1) in MO/Mϕs from large yellow croaker. Even more, after stimulation with rLcTNF-α1 and rLcTNF-α2, the production of nitrogen oxide (NO) and the expression of inducible NO synthase (iNOS) gene were significantly up-regulated. However, only rLcTNF-α1 remarkedly enhanced the phagocytosis of MO/Mϕs and increased the expression of TNF-α2 in MO/Mϕs. These results therefore indicated that LcTNF-α1 and LcTNF-α2 both play roles in promoting activation of head kidney MO/Mϕs.
Collapse
Affiliation(s)
- Mingyue Huang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pengfei Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiaofeng Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiulei Ren
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiang-Yang Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yinnan Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
40
|
Mu Y, Li W, Wu B, Chen J, Chen X. Transcriptome analysis reveals new insights into immune response to hypoxia challenge of large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2020; 98:738-747. [PMID: 31730929 DOI: 10.1016/j.fsi.2019.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
Fish live in direct contact with aquatic environment, which exhibits much wider temporal and spatial variations in oxygen content. The molecular mechanisms underlying fish response to hypoxia have become a subject of great concern in recent years. In the present study, we performed transcriptome analysis of spleen and head kidney tissues from large yellow croaker (Larimichthys crocea) at 6 h, 24 h and 48 h after hypoxia challenge. A total of 2,499 and 3,685 differentially expressed genes (DEGs) were obtained in spleen and head kidney, respectively. The expression changes of 10 selected genes in each tissue were further validated by quantitative real-time PCR. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichments revealed that numerous DEGs were immune genes, involved in multiple immune-relevant pathways. In spleen, several pattern recognition receptors (PRRs), including Toll-like receptors (TLR1, TLR2-1, TLR2-2, TLR5 and TLR8), Fucolectins (FUCL1, FUCL4 and FUCL5) and macrophage mannose receptor (MRC1), were significantly down-regulated, suggesting that the immune processes mediated by these PRRs may be suppressed by hypoxia stress. However, some PRRs (FUCL4, FUCL5 and MRC1) and other innate immunity genes, such as C-type lectin domain gene family members, chemokines, chemokine receptors and complement components were up-regulated in head kidney, which may be due to the increases in phagocytosis and cytokine secretion by macrophages after hypoxic stimulus. The expression of genes involved in B cell receptor signaling pathway, Natural killer cell-mediated cytotoxicity and NF-κB signaling pathway decreased rapidly, but regained normal or increased over time, suggesting an early adjustment pattern of fish immune response to cope with hypoxia stress. Moreover, the anaerobic ATP-generating pathway was activated and energy consumption processes were repressed concurrently in both spleen and head kidney. These data provide valuable information for understanding the tissue-specific and temporal changes of immune gene expression in hypoxic large yellow croakers.
Collapse
Affiliation(s)
- Yinnan Mu
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Wanru Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Bin Wu
- Fujian Fisheries Technology Extension Center, Fuzhou, 350002, PR China
| | - Jiong Chen
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China.
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
41
|
Xu L, Chen Y, Li Q, He T, Chen X. Molecular cloning. FISH & SHELLFISH IMMUNOLOGY 2020; 98:981-987. [PMID: 31678189 DOI: 10.1016/j.fsi.2019.10.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Transcription factor c-Jun is a member of AP-1 transcription complex that can be induced by various pathogens and plays a broad regulatory role in vertebrate immune response. In this study, the complete c-Jun cDNA of large yellow croaker Larimichthys crocea (Lcc-Jun) was cloned, whose open reading frame (ORF) is 984 bp long and encodes a protein of 327 amino acids (aa). The deduced Lcc-Jun protein contains three highly conserved domains, a transactivation domain (TAD, Met1-His118), a DNA binding domain (DBD, Lys218-Arg243), and a Leucine zipper domain (LZD, Leu271-Leu299), as found in other specie c-Jun. Lcc-Jun was constitutively expressed in all examined tissues, with the higher levels in blood, heart, and head kidney. Its transcripts were not only induced in spleen and head kidney by poly (I: C) or LPS, but also up-regulated in primary head kidney leukocytes (PKL), macrophages (PKM), and granulocytes (PKG), suggesting that Lcc-Jun may be involved in immune responses induced by poly (I: C), a viral mimic, and LPS, a Gram-negative bacterial component. Overexpression of Lcc-Jun in PKL increased the expression of cytokines and transcription factors involved in T helper 1 (Th1: TNF-α, IFN-γ, and T-bet) and Th2 (IL-4/13 A/B, IL-6, and GATA3) cell development and differentiation, suggesting that Lcc-Jun may play a role in regulation of Th1/Th2 cell response. These results therefore led us to suggest that the c-Jun-mediated signaling pathways may have an important immune-modulatory function in teleost fish.
Collapse
Affiliation(s)
- Libing Xu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuhong Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiuhua Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Tianliang He
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
42
|
Adrian-Kalchhauser I, Blomberg A, Larsson T, Musilova Z, Peart CR, Pippel M, Solbakken MH, Suurväli J, Walser JC, Wilson JY, Alm Rosenblad M, Burguera D, Gutnik S, Michiels N, Töpel M, Pankov K, Schloissnig S, Winkler S. The round goby genome provides insights into mechanisms that may facilitate biological invasions. BMC Biol 2020; 18:11. [PMID: 31992286 PMCID: PMC6988351 DOI: 10.1186/s12915-019-0731-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Background The invasive benthic round goby (Neogobius melanostomus) is the most successful temperate invasive fish and has spread in aquatic ecosystems on both sides of the Atlantic. Invasive species constitute powerful in situ experimental systems to study fast adaptation and directional selection on short ecological timescales and present promising case studies to understand factors involved the impressive ability of some species to colonize novel environments. We seize the unique opportunity presented by the round goby invasion to study genomic substrates potentially involved in colonization success. Results We report a highly contiguous long-read-based genome and analyze gene families that we hypothesize to relate to the ability of these fish to deal with novel environments. The analyses provide novel insights from the large evolutionary scale to the small species-specific scale. We describe expansions in specific cytochrome P450 enzymes, a remarkably diverse innate immune system, an ancient duplication in red light vision accompanied by red skin fluorescence, evolutionary patterns of epigenetic regulators, and the presence of osmoregulatory genes that may have contributed to the round goby’s capacity to invade cold and salty waters. A recurring theme across all analyzed gene families is gene expansions. Conclusions The expanded innate immune system of round goby may potentially contribute to its ability to colonize novel areas. Since other gene families also feature copy number expansions in the round goby, and since other Gobiidae also feature fascinating environmental adaptations and are excellent colonizers, further long-read genome approaches across the goby family may reveal whether gene copy number expansions are more generally related to the ability to conquer new habitats in Gobiidae or in fish. Electronic supplementary material The online version of this article (10.1186/s12915-019-0731-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene Adrian-Kalchhauser
- Program Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland. .,University of Bern, Institute for Fish and Wildlife Health, Länggassstrasse 122, 3012, Bern, Austria.
| | - Anders Blomberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 41390, Gothenburg, Sweden
| | - Tomas Larsson
- Department of Marine Sciences, University of Gothenburg, Medicinaregatan 9C, 41390, Gothenburg, Sweden
| | - Zuzana Musilova
- Department of Zoology, Charles University, Vinicna 7, 12844, Prague, Czech Republic
| | - Claire R Peart
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, 82152 Planegg-, Martinsried, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Monica Hongroe Solbakken
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Blindernveien 31, 0371, Oslo, Norway
| | - Jaanus Suurväli
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47a, 50674, Köln, Germany
| | - Jean-Claude Walser
- Genetic Diversity Centre, ETH, Universitätsstrasse 16, 8092, Zurich, Switzerland
| | - Joanna Yvonne Wilson
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| | - Magnus Alm Rosenblad
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 41390, Gothenburg, Sweden.,NBIS Bioinformatics Infrastructure for Life Sciences, University of Gothenburg, Medicinaregatan 9C, 41390, Gothenburg, Sweden
| | - Demian Burguera
- Department of Zoology, Charles University, Vinicna 7, 12844, Prague, Czech Republic
| | - Silvia Gutnik
- Biocenter, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Nico Michiels
- Institute of Evolution and Ecology, University of Tuebingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Mats Töpel
- University of Bern, Institute for Fish and Wildlife Health, Länggassstrasse 122, 3012, Bern, Austria
| | - Kirill Pankov
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| | - Siegfried Schloissnig
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| |
Collapse
|
43
|
Li Q, Xu L, Ao J, Ai C, Chen X. Identification and bioactivity of a granulocyte colony-stimulating factor b homologue from large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2019; 90:20-29. [PMID: 31009809 DOI: 10.1016/j.fsi.2019.04.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/27/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Granulocyte colony-stimulating factor (GCSF) is a pleiotropic cytokine that plays a key role in regulation of hematopoiesis, innate and adaptive immune responses in mammals. However, bioactivity of GCSF in teleost fish remains largely unknown. In this study, a GCSFb homologue from large yellow croaker (Larimichthys crocea) (LcGCSFb) was cloned by RACE-PCR techniques. The open reading frame (ORF) of LcGCSFb is 603 bp long and encoded a protein precursor of 200 amino acids (aa), with a 19-aa signal peptide and a 181-aa mature peptide. In healthy fish, the LcGCSFb was constitutively expressed in all examined tissues, with the highest levels in mucous tissues, such as gills, intestine, and stomach. Its transcripts in head kidney, spleen, gills, intestine and stomach were significantly induced by Vibrio alginolyticus challenge. LcGCSFb transcripts were also detected in primary head kidney leukocytes (PKL), primary head kidney macrophages (PKM), primary head kidney granulocytes (PKG) and head kidney cell line (LYCK), and markedly upregulated by inactivated V. alginolyticus. These data suggested that LcGCSFb may play a role in immune response against bacterial infection. In vivo administration of recombinant LcGCSFb protein (rLcGCSFb) significantly upregulated the expression levels of the inflammatory cytokines (IL-6 and TNFα), and transcription factor C/EBPβ, which is required for proliferation of neutrophils. Furthermore, rLcGCSFb showed an ability to strengthen the phagocytosis of PKL in vitro. Taken together, LcGCSFb may be involved in antibacterial immunity via promoting the inflammatory response and the phagocytic activity of leukocytes. To our knowledge, this is the first report on immunoregulatory roles of GCSF in teleost.
Collapse
Affiliation(s)
- Qiuhua Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Libing Xu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China
| | - Chunxiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|