1
|
Mbiydzenyuy NE, Qulu LA. Stress, hypothalamic-pituitary-adrenal axis, hypothalamic-pituitary-gonadal axis, and aggression. Metab Brain Dis 2024; 39:1613-1636. [PMID: 39083184 PMCID: PMC11535056 DOI: 10.1007/s11011-024-01393-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/08/2024] [Indexed: 11/05/2024]
Abstract
This comprehensive review explores the intricate relationship between the hypothalamic-pituitary-adrenal (HPA) axis, the hypothalamic-pituitary-gonadal (HPG) axis, and aggression. It provides a detailed overview of the physiology and functioning of these axes, as well as the implications for aggressive behavior. The HPA axis, responsible for the stress response, is activated in response to various stressors and can influence aggressive behavior. Glucocorticoids, such as cortisol, play a crucial role in stress-induced activation of the HPA axis and have been implicated in aggressive tendencies. Chronic stress can dysregulate the HPA axis, leading to alterations in cortisol levels and potentially contributing to aggressive behavior. The HPG axis, particularly the androgen hormone testosterone, is also closely linked to aggression. Animal and human studies have consistently shown a positive association between testosterone levels and aggression. The androgen receptors in the brain's neural circuitry play a critical role in modulating aggressive behavior. Interactions between the HPA and HPG axes further contribute to the regulation of aggression. Feedback mechanisms and crosstalk between these axes provide a complex system for the modulation of both stress and reproductive functions, which can impact aggressive behavior. Additionally,the influence of stress on reproductive functions, particularly the role of androgens in stress-induced aggression, adds further complexity to this relationship. The review also discusses the future directions and implications for clinical interventions. Understanding the neurobiological mechanisms underlying aggression requires integrating molecular, cellular, and circuit-level approaches. Translational perspectives, including animal models and human studies, can bridge the gap between basic research and clinical applications. Finally, therapeutic strategies for aggression-related disorders are explored, highlighting the importance of targeted interventions based on a comprehensive understanding of the interactions between the HPA and HPG axes. In conclusion, this review provides a comprehensive overview of the physiological and neurobiological mechanisms underlying aggression, with a specific focus on the interplay between the HPA and HPG axes. By elucidating the complex interactions between stress, hormones, and aggressive behavior, this research paves the way for future investigations and potential therapeutic interventions for aggression-related disorders.
Collapse
Affiliation(s)
- Ngala Elvis Mbiydzenyuy
- Basic Science Department, School of Medicine, Copperbelt University, P.O Box 71191, Ndola, Zambia
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town, South Africa
| | - Lihle-Appiah Qulu
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town, South Africa.
| |
Collapse
|
2
|
Gumusoglu SB, Kiel MD, Gugel A, Schickling BM, Weaver KR, Lauffer MC, Sullivan HR, Coulter KJ, Blaine BM, Kamal M, Zhang Y, Devor EJ, Santillan DA, Gantz SC, Santillan MK. Anti-angiogenic mechanisms and serotonergic dysfunction in the Rgs2 knockout model for the study of psycho-obstetric risk. Neuropsychopharmacology 2024; 49:864-875. [PMID: 37848733 PMCID: PMC10948883 DOI: 10.1038/s41386-023-01749-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Psychiatric and obstetric diseases are growing threats to public health and share high rates of co-morbidity. G protein-coupled receptor signaling (e.g., vasopressin, serotonin) may be a convergent psycho-obstetric risk mechanism. Regulator of G Protein Signaling 2 (RGS2) mutations increase risk for both the gestational disease preeclampsia and for depression. We previously found preeclampsia-like, anti-angiogenic obstetric phenotypes with reduced placental Rgs2 expression in mice. Here, we extend this to test whether conserved cerebrovascular and serotonergic mechanisms are also associated with risk for neurobiological phenotypes in the Rgs2 KO mouse. Rgs2 KO exhibited anxiety-, depression-, and hedonic-like behaviors. Cortical vascular density and vessel length decreased in Rgs2 KO; cortical and white matter thickness and cell densities were unchanged. In Rgs2 KO, serotonergic gene expression was sex-specifically changed (e.g., cortical Htr2a, Maoa increased in females but all serotonin targets unchanged or decreased in males); redox-related expression increased in paraventricular nucleus and aorta; and angiogenic gene expression was changed in male but not female cortex. Whole-cell recordings from dorsal raphe serotonin neurons revealed altered 5-HT1A receptor-dependent inhibitory postsynaptic currents (5-HT1A-IPSCs) in female but not male KO neurons. Additionally, serotonin transporter blockade by the SSRI sertraline increased the amplitude and time-to-peak of 5-HT1A-IPSCs in KO neurons to a greater extent than in WT neurons in females only. These results demonstrate behavioral, cerebrovascular, and sertraline hypersensitivity phenotypes in Rgs2 KOs, some of which are sex-specific. Disruptions may be driven by vascular and cell stress mechanisms linking the shared pathogenesis of psychiatric and obstetric disease to reveal future targets.
Collapse
Affiliation(s)
- Serena B Gumusoglu
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, USA
| | - Michaela D Kiel
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Aleigha Gugel
- Iowa Neuroscience Institute, University of Iowa, Iowa City, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Brandon M Schickling
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Kaylee R Weaver
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Marisol C Lauffer
- Iowa Neuroscience Institute, University of Iowa, Iowa City, USA
- Neural Circuits and Behavior Core, Iowa Neuroscience Institute, University of Iowa, Iowa City, USA
| | - Hannah R Sullivan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Kaylie J Coulter
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Brianna M Blaine
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Mushroor Kamal
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Yuping Zhang
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Eric J Devor
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Donna A Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Stephanie C Gantz
- Iowa Neuroscience Institute, University of Iowa, Iowa City, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Mark K Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA.
| |
Collapse
|
3
|
Deng Y, Dickey JE, Saito K, Deng G, Singh U, Jiang J, Toth BA, Zhu Z, Zingman LV, Resch JM, Grobe JL, Cui H. Elucidating the role of Rgs2 expression in the PVN for metabolic homeostasis in mice. Mol Metab 2022; 66:101622. [PMID: 36307046 PMCID: PMC9638802 DOI: 10.1016/j.molmet.2022.101622] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE RGS2 is a GTPase activating protein that modulates GPCR-Gα signaling and mice lacking RGS2 globally exhibit metabolic alterations. While RGS2 is known to be broadly expressed throughout the body including the brain, the relative contribution of brain RGS2 to metabolic homeostasis remains unknown. The purpose of this study was to characterize RGS2 expression in the paraventricular nucleus of hypothalamus (PVN) and test its role in metabolic homeostasis. METHODS We used a combination of RNAscope in situ hybridization (ISH), immunohistochemistry, and bioinformatic analyses to characterize the pattern of Rgs2 expression in the PVN. We then created mice lacking Rgs2 either prenatally or postnatally in the PVN and evaluated their metabolic consequences. RESULTS RNAscope ISH analysis revealed a broad but regionally enriched Rgs2 mRNA expression throughout the mouse brain, with the highest expression being observed in the PVN along with several other brain regions, such as the arcuate nucleus of hypothalamus and the dorsal raphe nucleus. Within the PVN, we found that Rgs2 is specifically enriched in CRH+ endocrine neurons and is further increased by calorie restriction. Functionally, although Sim1-Cre-mediated prenatal deletion of Rgs2 in PVN neurons had no major effects on metabolic homeostasis, AAV-mediated adult deletion of Rgs2 in the PVN led to significantly increased food intake, body weight (both fat and fat-free masses), body length, and blood glucose levels in both male and female mice. Strikingly, we found that prolonged postnatal loss of Rgs2 leads to neuronal cell death in the PVN, while rapid body weight gain in the early phase of viral-mediated PVN Rgs2 deletion is independent of PVN neuronal loss. CONCLUSIONS Our results provide the first evidence to show that PVN Rgs2 expression is not only sensitive to metabolic challenge but also critically required for PVN endocrine neurons to function and maintain metabolic homeostasis.
Collapse
Affiliation(s)
- Yue Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jacob E Dickey
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Kenji Saito
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Uday Singh
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jingwei Jiang
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Brandon A Toth
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Zhiyong Zhu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Leonid V Zingman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jon M Resch
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States; F.O.E. Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States; F.O.E. Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
4
|
Bohne P, Volkmann A, Schwarz MK, Mark MD. Deletion of the P/Q-Type Calcium Channel from Serotonergic Neurons Drives Male Aggression in Mice. J Neurosci 2022; 42:6637-6653. [PMID: 35853721 PMCID: PMC9410759 DOI: 10.1523/jneurosci.0204-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Aggressive behavior is one of the most conserved social interactions in nature and serves as a crucial evolutionary trait. Serotonin (5-HT) plays a key role in the regulation of our emotions, such as anxiety and aggression, but which molecules and mechanisms in the serotonergic system are involved in violent behavior are still unknown. In this study, we show that deletion of the P/Q-type calcium channel selectively from serotonergic neurons in the dorsal raphe nuclei (DRN) augments aggressive behavior in male mice, while anxiety is not affected. These mice demonstrated increased induction of the immediate early gene c-fos and in vivo serotonergic firing activity in the DRN. The ventrolateral part of the ventromedial hypothalamus is also a prominent region of the brain mediating aggression. We confirmed a monosynaptic projection from the DRN to the ventrolateral part of the ventromedial hypothalamus, and silencing these projections with an inhibitory designer receptor exclusively activated by a designer drug effectively reduced aggressive behavior. Overall, our findings show that deletion of the P/Q-type calcium channel from DRN neurons is sufficient to induce male aggression in mice and regulating its activity may serve as a therapeutic approach to treat violent behavior.SIGNIFICANCE STATEMENT In this study, we show that P/Q-type calcium channel is mediating aggression in serotonergic neurons from the dorsal raphe nucleus via monosynaptic projections to the ventrolateral part of the ventromedial hypothalamus. More importantly, silencing these projections reduced aggressive behavior in mice and may serve as a therapeutic approach for treating aggression in humans.
Collapse
Affiliation(s)
- Pauline Bohne
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum, D-44780, Germany
| | - Achim Volkmann
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum, D-44780, Germany
| | - Martin K Schwarz
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical School, Bonn, D-53127, Germany
| | - Melanie D Mark
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum, D-44780, Germany
| |
Collapse
|
5
|
Cabrera-Muñoz EA, Olvera-Hernández S, Vega-Rivera NM, Meneses-San Juan D, Reyes-Haro D, Ortiz-López L, Ramírez Rodríguez GB. Environmental Enrichment Differentially Activates Neural Circuits in FVB/N Mice, Inducing Social Interaction in Females but Agonistic Behavior in Males. Neurochem Res 2022; 47:781-794. [PMID: 34978003 DOI: 10.1007/s11064-021-03487-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Accepted: 11/09/2021] [Indexed: 01/17/2023]
Abstract
Environmental enrichment induces behavioral and structural modifications in rodents and influences the capability of mice to cope with stress. However, little is understood about hippocampal neurogenesis and the appearance of social/agonistic (aggressive) behavior upon activation of different neuronal circuits in FVB/N mice. Thus, in this study we hypothesized that environmental enrichment differentially regulates neurogenesis, neural circuit activation and social/agonistic behavior in male and female FVB/N mice. We explored the (1) neurogenic process as an indicative of neuroplasticity, (2) neuronal activation in the limbic system, and (3) social behavior using the resident-intruder test. On postnatal day 23 (PD23), mice were assigned to one of two groups: Standard Housing or Environmental Enrichment. At PD53, rodents underwent the resident-intruder test to evaluate social behaviors. Results revealed that environmental enrichment increased neurogenesis and social interaction in females. In males, environmental enrichment increased neurogenesis and agonistic behavior. Enriched male mice expressed higher levels of agonistic-related behavior than female mice housed under the same conditions. Neural circuit analysis showed lower activation in the amygdala of enriched males and higher activation in enriched females than their respective controls. Enriched females also showed higher activation in the frontal cortex without differences in male groups. Moreover, the insular cortex was less activated in females than in males. Thus, our results indicate that environmental enrichment has different effects on neuroplasticity and social/agonistic behavior in FVB/N mice, suggesting the relevance of sexual dimorphism in response to environmental stimuli.
Collapse
Affiliation(s)
- Edith Araceli Cabrera-Muñoz
- Laboratorio of Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calzada México-Xochimilco No. 101, Colonia San Lorenzo Huipulco, Delegación Tlalpan, C.P. 14370, México City, México
| | - Sandra Olvera-Hernández
- Laboratorio of Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calzada México-Xochimilco No. 101, Colonia San Lorenzo Huipulco, Delegación Tlalpan, C.P. 14370, México City, México
| | - Nelly Maritza Vega-Rivera
- Laboratorio of Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calzada México-Xochimilco 101, C.P. 14370, México City, México
| | - David Meneses-San Juan
- Laboratorio of Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calzada México-Xochimilco No. 101, Colonia San Lorenzo Huipulco, Delegación Tlalpan, C.P. 14370, México City, México
| | - Daniel Reyes-Haro
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología. Universidad Nacional Autónoma de México, Campus Juriquilla. Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México
| | - Leonardo Ortiz-López
- Laboratorio of Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calzada México-Xochimilco No. 101, Colonia San Lorenzo Huipulco, Delegación Tlalpan, C.P. 14370, México City, México
| | - Gerardo Bernabé Ramírez Rodríguez
- Laboratorio of Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calzada México-Xochimilco No. 101, Colonia San Lorenzo Huipulco, Delegación Tlalpan, C.P. 14370, México City, México.
| |
Collapse
|
6
|
Low striatal T3 is implicated in inattention and memory impairment in an ADHD mouse model overexpressing thyroid hormone-responsive protein. Commun Biol 2021; 4:1101. [PMID: 34545202 PMCID: PMC8452653 DOI: 10.1038/s42003-021-02633-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder, potentially with a biological basis; however, its exact cause remains unknown. Thyroid hormone (TH) abnormalities are more prevalent in patients with ADHD than in the general population, indicating a shared pathogenetic mechanism for these conditions. Previously, we identified that overexpression of thyroid hormone-responsive protein (THRSP), a gene highly responsive to TH status, induced inattention in male mice. Herein, we sought to explore whether TH function in THRSP-overexpressing (THRSP OE) mice influences ADHD-like (inattention) behavior. We now confirm that THRSP overexpression in male mice reproduces behavioral features of ADHD, including sustained inattention and memory impairment, accompanied by excessive theta waves that were found normal in both the THRSP-knockout and hetero groups. Physiological characterization revealed low striatal T3 levels in the THRSP OE mice due to reduced striatal T3-specific monocarboxylate transporter 8 (MCT8), indicating brain-specific hypothyroidism in this transgenic mouse strain. TH replacement for seven days rescued inattention and memory impairment and the normalization of theta waves. This study further supports the involvement of the upregulated THRSP gene in ADHD pathology and indicates that THRSP OE mice can serve as an animal model for the predominantly inattentive subtype of ADHD.
Collapse
|
7
|
Gumusoglu S, Scroggins S, Vignato J, Santillan D, Santillan M. The Serotonin-Immune Axis in Preeclampsia. Curr Hypertens Rep 2021; 23:37. [PMID: 34351543 DOI: 10.1007/s11906-021-01155-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW To review the literature and detail the potential immune mechanisms by which hyperserotonemia may drive pro-inflammation in preeclampsia and to provide insights into potential avenues for therapeutic discovery. RECENT FINDINGS Preeclampsia is a severe hypertensive complication of pregnancy associated with significant maternal and fetal risk. Though it lacks any effective treatment aside from delivery of the fetus and placenta, recent work suggests that targeting serotonin systems may be one effective therapeutic avenue. Serotonin dysregulation underlies multiple domains of physiologic dysfunction in preeclampsia, including vascular hyporeactivity and excess platelet aggregation. Broadly, serotonin is increased across maternal and placental domains, driven by decreased catabolism and increased availability of tryptophan precursor. Pro-inflammation, another hallmark of the disease, may drive hyperserotonemia in preeclampsia. Interactions between immunologic dysfunction and hyperserotonemia in preeclampsia depend on multiple mechanisms, which we discuss in the present review. These include altered immune cell, kynurenine pathway metabolism, and aberrant cytokine production mechanisms, which we detail. Future work may leverage animal and in vitro models to reveal serotonin targets in the context of preeclampsia's immune biology, and ultimately to mitigate vascular and platelet dysfunction in the disease. Hyperserotonemia in preeclampsia drives pro-inflammation via metabolic, immune cell, and cytokine-based mechanisms. These immune mechanisms may be targeted to treat vascular and platelet endophenotypes in preeclampsia.
Collapse
Affiliation(s)
- Serena Gumusoglu
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
| | - Sabrina Scroggins
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Julie Vignato
- University of Iowa College of Nursing, Iowa City, Iowa, USA
| | - Donna Santillan
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Mark Santillan
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Bohne P, Mourabit DBE, Josten M, Mark MD. Cognitive deficits in episodic Ataxia type 2 mouse models. Hum Mol Genet 2021; 30:1811-1832. [PMID: 34077522 PMCID: PMC8444449 DOI: 10.1093/hmg/ddab149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Episodic ataxia type 2 (EA2) is a rare autosomal dominant disorder characterized by motor incoordination, paroxysmal dystonia, vertigo, nystagmus and more recently cognitive deficits. To date over 100 mutations in the CACNA1A gene have been identified in EA2 patients leading to a loss of P/Q-type channel activity, dysfunction of cerebellar Purkinje cells (PC) and motor incoordination. To determine if the cerebellum is contributing to these cognitive deficits, we examined 2 different EA2 mouse models for cognition impairments where CACNA1A was removed specifically from cerebellar Purkinje or granule cells postnatally. Both mutant mouse models showed anxiolytic behavior to lighted, open areas in the open field and light/dark place preference tests but enhanced anxiousness in the novel suppressed feeding test. However, EA2 mice continued to show augmented latencies in the light/dark preference test and when the arena was divided into 2 dark zones in the dark/dark preference test. Moreover, increased latencies were also displayed in the novel object recognition test, indicating that EA2 mice are indecisive and anxious to explore new territories and objects and may have memory recognition deficits. Exposure to a foreign mouse led to deficiencies in attention and sniffing as well as social and genital sniffing were observed. These data suggest that postnatal removal of the P/Q type calcium channel from the cerebellum regulates neuronal activity involved in anxiety, memory, decision making and social interactions. Our EA2 mice will provide a model to identify the mechanisms and therapeutic agents underlying cognitive and psychiatric disorders seen in EA2 patients.
Collapse
Affiliation(s)
- Pauline Bohne
- Behavioral Neuroscience, Ruhr-University Bochum, D-44780 Bochum, Germany
| | | | - Mareike Josten
- Behavioral Neuroscience, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Melanie D Mark
- Behavioral Neuroscience, Ruhr-University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
9
|
Akhrif A, Roy A, Peters K, Lesch KP, Romanos M, Schmitt-Böhrer A, Neufang S. REVERSE phenotyping-Can the phenotype following constitutive Tph2 gene inactivation in mice be transferred to children and adolescents with and without adhd? Brain Behav 2021; 11:e02054. [PMID: 33523602 PMCID: PMC8119824 DOI: 10.1002/brb3.2054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Experimental models of neuropsychiatric disorders, for example, ADHD, are used to mimic specific phenotypic traits of a complex human disorder. However, it remains unresolved to what extent the animal phenotype reflects the specific human trait. The null mutant mouse of the serotonin-synthesizing tryptophan hydroxylase-2 (Tph2-/- ) gene has been proposed as experimental model for ADHD with high face validity for impulsive, aggressive, and anxious behaviors. To validate this ADHD-like model, we examined the Tph2-/- phenotype in humans when considering allelic variation of TPH2 function ("reverse phenotyping"). METHODS 58 participants (6 females, 8-18 years) were examined, of whom 32 were diagnosed with ADHD. All participants were phenotyped for impulsivity, aggression, and anxiety using questionnaires, behavioral tests, and MRI scanning while performing the 4-choice serial reaction time task. Additionally, participants were genotyped for the TPH2 G-703T (rs4570625) polymorphism. To analyze the relation between TPH2 G-703T variants and the impulsive/aggressive/anxious phenotype, mediation analyses were performed using behavioral and MRI data as potential mediators. RESULTS We found that the relation between TPH2 G-703T and aggression as part of the reverse Tph2- /- phenotype was mediated by structure and function of the right middle and inferior frontal gyrus. CONCLUSION At the example of trait aggression, our results support the assumption that the Tph2 null mutant mouse reflects the TPH2 G-703T-dependent phenotype in humans. Additionally, we conclude that "reverse phenotyping" is a promising method to validate experimental models and human findings for refined analysis of disease mechanisms.
Collapse
Affiliation(s)
- Atae Akhrif
- Department of Child and Adolescent Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Arunima Roy
- The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Katharina Peters
- Department of Child and Adolescent Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Marcel Romanos
- Department of Child and Adolescent Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Angelika Schmitt-Böhrer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Susanne Neufang
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany.,Department of Psychiatry and Psychotherapy, Medical Faculty Heinrich, Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|