1
|
Plutenko I, Radchuk V, Mayer S, Keil P, Ortleb S, Wagner S, Lehmann V, Rolletschek H, Borisjuk L. MRI-Seed-Wizard: combining deep learning algorithms with magnetic resonance imaging enables advanced seed phenotyping. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:393-410. [PMID: 39383098 PMCID: PMC11714760 DOI: 10.1093/jxb/erae408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/08/2024] [Indexed: 10/11/2024]
Abstract
Evaluation of relevant seed traits is an essential part of most plant breeding and biotechnology programmes. There is a need for non-destructive, three-dimensional assessment of the morphometry, composition, and internal features of seeds. Here, we introduce a novel tool, MRI-Seed-Wizard, which integrates deep learning algorithms with non-invasive magnetic resonance imaging (MRI) for use in a new domain-plant MRI. The tool enabled in vivo quantification of 23 grain traits, including volumetric parameters of inner seed structure. Several of these features cannot be assessed using conventional techniques, including X-ray computed tomography. MRI-Seed-Wizard was designed to automate the manual processes of identifying, labeling, and analysing digital MRI data. We further provide advanced MRI protocols that allow the evaluation of multiple seeds simultaneously to increase throughput. The versatility of MRI-Seed-Wizard in seed phenotyping is demonstrated for wheat (Triticum aestivum) and barley (Hordeum vulgare) grains, and it is applicable to a wide range of crop seeds. Thus, artificial intelligence, combined with the most versatile imaging modality, MRI, opens up new perspectives in seed phenotyping and crop improvement.
Collapse
Affiliation(s)
- Iaroslav Plutenko
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland OT Gatersleben, Germany
| | - Volodymyr Radchuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland OT Gatersleben, Germany
| | - Simon Mayer
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland OT Gatersleben, Germany
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Peter Keil
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland OT Gatersleben, Germany
| | - Stefan Ortleb
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland OT Gatersleben, Germany
| | - Steffen Wagner
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland OT Gatersleben, Germany
| | - Volker Lehmann
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland OT Gatersleben, Germany
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland OT Gatersleben, Germany
| |
Collapse
|
2
|
Mayer S, Rolletschek H, Radchuk V, Wagner S, Ortleb S, Gündel A, Dehmer KJ, Gutjahr FT, Jakob PM, Borisjuk L. Metabolic imaging in living plants: A promising field for chemical exchange saturation transfer (CEST) MRI. SCIENCE ADVANCES 2024; 10:eadq4424. [PMID: 39292788 PMCID: PMC11409970 DOI: 10.1126/sciadv.adq4424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/15/2024] [Indexed: 09/20/2024]
Abstract
Magnetic resonance imaging (MRI) is a versatile technique in the biomedical field, but its application to the study of plant metabolism in vivo remains challenging because of magnetic susceptibility problems. In this study, we report the establishment of chemical exchange saturation transfer (CEST) for plant MRI. This method enables noninvasive access to the metabolism of sugars and amino acids in complex sink organs (seeds, fruits, taproots, and tubers) of major crops (maize, barley, pea, potato, sugar beet, and sugarcane). Because of its high signal detection sensitivity and low susceptibility to magnetic field inhomogeneities, CEST analyzes heterogeneous botanical samples inaccessible to conventional magnetic resonance spectroscopy. The approach provides unprecedented insight into the dynamics and distribution of sugars and amino acids in intact, living plant tissue. The method is validated by chemical shift imaging, infrared microscopy, chromatography, and mass spectrometry. CEST is a versatile and promising tool for studying plant metabolism in vivo, with many applications in plant science and crop improvement.
Collapse
Affiliation(s)
- Simon Mayer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Volodymyr Radchuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Steffen Wagner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Stefan Ortleb
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Andre Gündel
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Klaus J. Dehmer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Fabian T. Gutjahr
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Peter M. Jakob
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| |
Collapse
|
3
|
Shen S, Ma S, Wu L, Zhou SL, Ruan YL. Winners take all: competition for carbon resource determines grain fate. TRENDS IN PLANT SCIENCE 2023; 28:893-901. [PMID: 37080837 DOI: 10.1016/j.tplants.2023.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
As an evolutionary strategy, plants overproduce ovaries as a safety net for survival, with those losing in the competition for resources being aborted. Grain abortion is, however, highly detrimental agronomically. The molecular basis of selective abortion of grain siblings remains unknown. In this opinion article we assess the current understanding of the molecular players controlling carbon resource import into ovaries and young grains, followed by an evaluation of the spatial hierarchy of sink capacity among grain siblings, focusing on the roles exerted by sugar transporters and enzymes. We argue that, upon sequential pollination and fertilization, robust activation of the carbon import and sugar signaling system plays a key role in establishing the capacity of grain siblings to acquire enough carbon resources to survive and thrive.
Collapse
Affiliation(s)
- Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Si Ma
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Limin Wu
- Agriculture and Food, CSIRO, Canberra, ACT 2617, Australia
| | - Shun-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yong-Ling Ruan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, China; Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
4
|
Borisjuk L, Horn P, Chapman K, Jakob PM, Gündel A, Rolletschek H. Seeing plants as never before. THE NEW PHYTOLOGIST 2023; 238:1775-1794. [PMID: 36895109 DOI: 10.1111/nph.18871] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 05/04/2023]
Abstract
Imaging has long supported our ability to understand the inner life of plants, their development, and response to a dynamic environment. While optical microscopy remains the core tool for imaging, a suite of novel technologies is now beginning to make a significant contribution to visualize plant metabolism. The purpose of this review was to provide the scientific community with an overview of current imaging methods, which rely variously on either nuclear magnetic resonance (NMR), mass spectrometry (MS) or infrared (IR) spectroscopy, and to present some examples of their application in order to illustrate their utility. In addition to providing a description of the basic principles underlying these technologies, the review discusses their various advantages and limitations, reveals the current state of the art, and suggests their potential application to experimental practice. Finally, a view is presented as to how the technologies will likely develop, how these developments may encourage the formulation of novel experimental strategies, and how the enormous potential of these technologies can contribute to progress in plant science.
Collapse
Affiliation(s)
- Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| | - Patrick Horn
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Kent Chapman
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Peter M Jakob
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andre Gündel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| |
Collapse
|
5
|
Langer M, Hilo A, Guan JC, Koch KE, Xiao H, Verboven P, Gündel A, Wagner S, Ortleb S, Radchuk V, Mayer S, Nicolai B, Borisjuk L, Rolletschek H. Causes and consequences of endogenous hypoxia on growth and metabolism of developing maize kernels. PLANT PHYSIOLOGY 2023; 192:1268-1288. [PMID: 36691698 PMCID: PMC10231453 DOI: 10.1093/plphys/kiad038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 06/01/2023]
Abstract
Maize (Zea mays) kernels are the largest cereal grains, and their endosperm is severely oxygen deficient during grain fill. The causes, dynamics, and mechanisms of acclimation to hypoxia are minimally understood. Here, we demonstrate that hypoxia develops in the small, growing endosperm, but not the nucellus, and becomes the standard state, regardless of diverse structural and genetic perturbations in modern maize (B73, popcorn, sweet corn), mutants (sweet4c, glossy6, waxy), and non-domesticated wild relatives (teosintes and Tripsacum species). We also uncovered an interconnected void space at the chalazal pericarp, providing superior oxygen supply to the placental tissues and basal endosperm transfer layer. Modeling indicated a very high diffusion resistance inside the endosperm, which, together with internal oxygen consumption, could generate steep oxygen gradients at the endosperm surface. Manipulation of oxygen supply induced reciprocal shifts in gene expression implicated in controlling mitochondrial functions (23.6 kDa Heat-Shock Protein, Voltage-Dependent Anion Channel 2) and multiple signaling pathways (core hypoxia genes, cyclic nucleotide metabolism, ethylene synthesis). Metabolite profiling revealed oxygen-dependent shifts in mitochondrial pathways, ascorbate metabolism, starch synthesis, and auxin degradation. Long-term elevated oxygen supply enhanced the rate of kernel development. Altogether, evidence here supports a mechanistic framework for the establishment of and acclimation to hypoxia in the maize endosperm.
Collapse
Affiliation(s)
- Matthias Langer
- Molecular Genetics Department, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse, 06466 Seeland-Gatersleben, Germany
| | - Alexander Hilo
- Molecular Genetics Department, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse, 06466 Seeland-Gatersleben, Germany
| | - Jiahn-Chou Guan
- University of Florida, Horticultural Sciences Department, Fifield Hall, 2550 Hull Rd., PO Box 110690, Gainesville, Florida, 32611, USA
| | - Karen E Koch
- University of Florida, Horticultural Sciences Department, Fifield Hall, 2550 Hull Rd., PO Box 110690, Gainesville, Florida, 32611, USA
| | - Hui Xiao
- Biosystems Department, KU Leuven—University of Leuven, BIOSYST-MeBioS, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Pieter Verboven
- Biosystems Department, KU Leuven—University of Leuven, BIOSYST-MeBioS, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Andre Gündel
- Molecular Genetics Department, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse, 06466 Seeland-Gatersleben, Germany
| | - Steffen Wagner
- Molecular Genetics Department, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse, 06466 Seeland-Gatersleben, Germany
| | - Stefan Ortleb
- Molecular Genetics Department, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse, 06466 Seeland-Gatersleben, Germany
| | - Volodymyr Radchuk
- Molecular Genetics Department, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse, 06466 Seeland-Gatersleben, Germany
| | - Simon Mayer
- Molecular Genetics Department, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse, 06466 Seeland-Gatersleben, Germany
| | - Bart Nicolai
- Biosystems Department, KU Leuven—University of Leuven, BIOSYST-MeBioS, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Ljudmilla Borisjuk
- Molecular Genetics Department, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse, 06466 Seeland-Gatersleben, Germany
| | - Hardy Rolletschek
- Molecular Genetics Department, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse, 06466 Seeland-Gatersleben, Germany
| |
Collapse
|
6
|
Radchuk V, Belew ZM, Gündel A, Mayer S, Hilo A, Hensel G, Sharma R, Neumann K, Ortleb S, Wagner S, Muszynska A, Crocoll C, Xu D, Hoffie I, Kumlehn J, Fuchs J, Peleke FF, Szymanski JJ, Rolletschek H, Nour-Eldin HH, Borisjuk L. SWEET11b transports both sugar and cytokinin in developing barley grains. THE PLANT CELL 2023; 35:2186-2207. [PMID: 36857316 DOI: 10.1093/plcell/koad055] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 02/17/2023] [Indexed: 05/30/2023]
Abstract
Even though Sugars Will Eventually be Exported Transporters (SWEETs) have been found in every sequenced plant genome, a comprehensive understanding of their functionality is lacking. In this study, we focused on the SWEET family of barley (Hordeum vulgare). A radiotracer assay revealed that expressing HvSWEET11b in African clawed frog (Xenopus laevis) oocytes facilitated the bidirectional transfer of not only just sucrose and glucose, but also cytokinin. Barley plants harboring a loss-of-function mutation of HvSWEET11b could not set viable grains, while the distribution of sucrose and cytokinin was altered in developing grains of plants in which the gene was knocked down. Sucrose allocation within transgenic grains was disrupted, which is consistent with the changes to the cytokinin gradient across grains, as visualized by magnetic resonance imaging and Fourier transform infrared spectroscopy microimaging. Decreasing HvSWEET11b expression in developing grains reduced overall grain size, sink strength, the number of endopolyploid endosperm cells, and the contents of starch and protein. The control exerted by HvSWEET11b over sugars and cytokinins likely predetermines their synergy, resulting in adjustments to the grain's biochemistry and transcriptome.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Zeinu M Belew
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Andre Gündel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Simon Mayer
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander Hilo
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Goetz Hensel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Rajiv Sharma
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JGUK
| | - Kerstin Neumann
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Stefan Ortleb
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Steffen Wagner
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Aleksandra Muszynska
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Christoph Crocoll
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Deyang Xu
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Iris Hoffie
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Joerg Fuchs
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Fritz F Peleke
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Jedrzej J Szymanski
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Hussam H Nour-Eldin
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| |
Collapse
|
7
|
Xie F, Vahldick H, Lin Z, Nowack M. Killing me softly - Programmed cell death in plant reproduction from sporogenesis to fertilization. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102271. [PMID: 35963096 PMCID: PMC7613566 DOI: 10.1016/j.pbi.2022.102271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/11/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Regulated or programmed cell death (RCD or PCD) is a fundamental biological principle integral to a considerable variety of functions in multicellular organisms. In plants, different PCD processes are part of biotic and abiotic stress responses, but also occur as an essential aspect of unperturbed plant development. PCD is particularly abundant during plant reproduction, eliminating unwanted or no longer needed cells, tissues, or organs in a precisely controlled manner. Failure in reproductive PCD can have detrimental consequences for plant reproduction. Here we shed a light on the latest research into PCD mechanisms in plant reproduction from sex determination over sporogenesis to pollination and fertilization.
Collapse
Affiliation(s)
- Fei Xie
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Hannah Vahldick
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Zongcheng Lin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Moritz Nowack
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
8
|
Sun Q, Li Y, Gong D, Hu A, Zhong W, Zhao H, Ning Q, Tan Z, Liang K, Mu L, Jackson D, Zhang Z, Yang F, Qiu F. A NAC-EXPANSIN module enhances maize kernel size by controlling nucellus elimination. Nat Commun 2022; 13:5708. [PMID: 36175574 PMCID: PMC9522829 DOI: 10.1038/s41467-022-33513-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Maize early endosperm development is initiated in coordination with elimination of maternal nucellar tissues. However, the underlying mechanisms are largely unknown. Here, we characterize a major quantitative trait locus for maize kernel size and weight that encodes an EXPANSIN gene, ZmEXPB15. The encoded β-expansin protein is expressed specifically in nucellus, and positively controls kernel size and weight by promoting nucellus elimination. We further show that two nucellus-enriched transcription factors (TFs), ZmNAC11 and ZmNAC29, activate ZmEXPB15 expression. Accordingly, these two TFs also promote kernel size and weight through nucellus elimination regulation, and genetic analyses support their interaction with ZmEXPB15. Importantly, hybrids derived from a ZmEXPB15 overexpression line have increased kernel weight, demonstrates its potential value in breeding. Together, we reveal a pathway modulating the cellular processes of maternal nucellus elimination and early endosperm development, and an approach to improve kernel weight.
Collapse
Affiliation(s)
- Qin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Yunfu Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Dianming Gong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Aoqing Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Wanshun Zhong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Hailiang Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Qiang Ning
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Kun Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Luyao Mu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - David Jackson
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, 430070, Wuhan, Hubei, China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, 430070, Wuhan, Hubei, China.
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, 430070, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Das AK, Hao L. Functional characterization of ZmbHLH121, a bHLH transcription factor, focusing on Zea mays kernel development. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
The molecular basis of cereal grain proteostasis. Essays Biochem 2022; 66:243-253. [PMID: 35818971 PMCID: PMC9400069 DOI: 10.1042/ebc20210041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
Storage proteins deposited in the endosperm of cereal grains are both a nitrogen reserve for seed germination and seedling growth and a primary protein source for human nutrition. Detailed surveys of the patterns of storage protein accumulation in cereal grains during grain development have been undertaken, but an in-depth understanding of the molecular mechanisms that regulate these patterns is still lacking. Accumulation of storage proteins in cereal grains involves a series of subcellular compartments, a set of energy-dependent events that compete with other cellular processes, and a balance of protein synthesis and protein degradation rates at different times during the developmental process. In this review, we focus on the importance of rates in cereal grain storage protein accumulation during grain development and outline the potential implications and applications of this information to accelerate modern agriculture breeding programmes and optimize energy use efficiency in proteostasis.
Collapse
|
11
|
Chaban IA, Gulevich AA, Kononenko NV, Khaliluev MR, Baranova EN. Morphological and Structural Details of Tomato Seed Coat Formation: A Different Functional Role of the Inner and Outer Epidermises in Unitegmic Ovule. PLANTS (BASEL, SWITZERLAND) 2022; 11:1101. [PMID: 35567102 PMCID: PMC9104524 DOI: 10.3390/plants11091101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 06/15/2023]
Abstract
In order to understand how and what structures of the tomato ovule with a single integument form the seed coat of a mature seed, a detailed study of the main development stages of the tomato ovule integument was carried out using the methods of light and electron microscopy. The integument itself it was shown to transform in the course of development into the coat (skin) of a mature seed, but the outer and inner epidermises of the integument and some layers of the integument parenchyma are mainly involved in this process. The outer epidermis cells are highly modified in later stages; their walls are thickened and lignified, creating a unique relatively hard outer coat. The fate of the inner epidermis of integument is completely different. It is separated from the other parenchyma cells of integument and is transformed into an independent new secretory tissue, an endothelium, which fences off the forming embryo and endosperm from the death zone. Due to the secretory activity of the endothelium, the dying inner parenchyma cells of the integument are lysed. Soon after the cuticle covers the endosperm, the lysis of dead integument cells stops and their flattened remnants form dense layers, which then enter the final composition of the coat of mature tomato seed. The endothelium itself returns to the location of the integument inner epidermis.
Collapse
Affiliation(s)
- Inna A. Chaban
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia;
| | - Alexander A. Gulevich
- Laboratory of Plant Cell Engineering, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (A.A.G.); (M.R.K.)
| | - Neonila V. Kononenko
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia;
| | - Marat R. Khaliluev
- Laboratory of Plant Cell Engineering, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (A.A.G.); (M.R.K.)
- Department of Biotechnology, Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya 49, 127550 Moscow, Russia
| | - Ekaterina N. Baranova
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia;
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia
| |
Collapse
|
12
|
Povilus RA, Gehring M. Maternal-filial transfer structures in endosperm: A nexus of nutritional dynamics and seed development. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102121. [PMID: 34801784 DOI: 10.1016/j.pbi.2021.102121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Although the ultimate purpose of a seed is the successful establishment of the next generation, seed development involves more than embryo growth. In angiosperms, seed development requires the intimate coordination of three distinct entities - maternal tissue and two offspring, embryo and embryo-nourishing endosperm. Although seeds are cornerstones of many terrestrial ecosystems and human diets, we are only beginning to understand the interactions among seed tissues and the molecular processes and genes that determine them. Recent studies of gene expression and function in distantly related angiosperms, combined with over 100 years of embryological research, have repeatedly highlighted the endosperm associated with maternal-filial boundaries as a central point in seed developmental dynamics. In this review, we highlight evidence that links this zone with nutritional dynamics, developmental signaling, and imprinted gene expression. We suggest that the underappreciated diversity of this specialized endosperm across angiosperms deserves further study from developmental, molecular, and genetic perspectives.
Collapse
Affiliation(s)
- Rebecca A Povilus
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
13
|
Guendel A, Hilo A, Rolletschek H, Borisjuk L. Probing the Metabolic Landscape of Plant Vascular Bundles by Infrared Fingerprint Analysis, Imaging and Mass Spectrometry. Biomolecules 2021; 11:1717. [PMID: 34827716 PMCID: PMC8615794 DOI: 10.3390/biom11111717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/27/2022] Open
Abstract
Fingerprint analysis is a common technique in forensic and criminal investigations. Similar techniques exist in the field of infrared spectroscopy to identify biomolecules according to their characteristic spectral fingerprint features. These unique markers are located in a wavenumber range from 1800 to 600 cm-1 in the mid infrared region. Here, a novel bioanalytical concept of correlating these spectral features with corresponding mass spectrometry datasets to unravel metabolic clusters within complex plant tissues was applied. As proof of concept, vascular bundles of oilseed rape (Brassica napus) were investigated, one of the most important and widely cultivated temperate zone oilseed crops. The link between mass spectrometry data and spectral data identified features that co-aligned within both datasets. Regions of origin were then detected by searching for these features in hyperspectral images of plant tissues. This approach, based on co-alignment and co-localization, finally enabled the detection of eight distinct metabolic clusters, reflecting functional and structural arrangements within the vascular bundle. The proposed analytical concept may assist future synergistic research approaches and may lead to biotechnological innovations with regard to crop yield and sustainability.
Collapse
Affiliation(s)
| | | | | | - Ljudmilla Borisjuk
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany; (A.G.); (A.H.); (H.R.)
| |
Collapse
|
14
|
Rolletschek H, Mayer S, Boughton B, Wagner S, Ortleb S, Kiel C, Roessner U, Borisjuk L. The metabolic environment of the developing embryo: A multidisciplinary approach on oilseed rapeseed. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153505. [PMID: 34481359 DOI: 10.1016/j.jplph.2021.153505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Brassicaceae seeds consist of three genetically distinct structures: the embryo, endosperm and seed coat, all of which are involved in assimilate allocation during seed development. The complexity of their metabolic interrelations remains unresolved to date. In the present study, we apply state-of-the-art imaging and analytical approaches to assess the metabolic environment of the Brassica napus embryo. Nuclear magnetic resonance imaging (MRI) provided volumetric data on the living embryo and endosperm, revealing how the endosperm envelops the embryo, determining endosperm's priority in assimilate uptake from the seed coat during early development. MRI analysis showed higher levels of sugars in the peripheral endosperm facing the seed coat, but a lower sugar content within the central vacuole and the region surrounding the embryo. Feeding intact siliques with 13C-labeled sucrose allowed tracing of the post-phloem route of sucrose transfer within the seed at the heart stage of embryogenesis, by means of mass spectrometry imaging. Quantification of over 70 organic and inorganic compounds in the endosperm revealed shifts in their abundance over different stages of development, while sugars and potassium were the main determinants of osmolality throughout these stages. Our multidisciplinary approach allows access to the hidden aspects of endosperm metabolism, a task which remains unattainable for the small-seeded model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hardy Rolletschek
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Simon Mayer
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Berin Boughton
- Australian National Phenome Centre, Murdoch University, Western Australia, 6150, Australia.
| | - Steffen Wagner
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Stefan Ortleb
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Christina Kiel
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia.
| | - Ljudmilla Borisjuk
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| |
Collapse
|