1
|
Uranga M, Martín-Hernández AM, De Storme N, Pasin F. CRISPR-Cas systems and applications for crop bioengineering. Front Bioeng Biotechnol 2024; 12:1483857. [PMID: 39479297 PMCID: PMC11521923 DOI: 10.3389/fbioe.2024.1483857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
CRISPR-Cas technologies contribute to enhancing our understanding of plant gene functions, and to the precise breeding of crop traits. Here, we review the latest progress in plant genome editing, focusing on emerging CRISPR-Cas systems, DNA-free delivery methods, and advanced editing approaches. By illustrating CRISPR-Cas applications for improving crop performance and food quality, we highlight the potential of genome-edited crops to contribute to sustainable agriculture and food security.
Collapse
Affiliation(s)
- Mireia Uranga
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - Nico De Storme
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Valencia, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
2
|
Prasad KVSK, Cheema A, Scanlon W, Matthews A, Sharifova S, Huq E, Reddy ASN. A simple method to visualize pre-mRNA splicing with the naked eye using a genetically encoded visual splicing reporter. PLANT PHYSIOLOGY 2024; 196:726-730. [PMID: 39056536 PMCID: PMC11444279 DOI: 10.1093/plphys/kiae396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
A genetically encoded splicing reporter allows naked-eye visualization of pre-mRNA splicing and requires no expensive equipment or substrate.
Collapse
Affiliation(s)
- Kasavajhala V S K Prasad
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Amandeep Cheema
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - William Scanlon
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Allison Matthews
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Saida Sharifova
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| |
Collapse
|
3
|
Kababji AM, Butt H, Mahfouz M. Synthetic directed evolution for targeted engineering of plant traits. FRONTIERS IN PLANT SCIENCE 2024; 15:1449579. [PMID: 39286837 PMCID: PMC11402689 DOI: 10.3389/fpls.2024.1449579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
Improving crop traits requires genetic diversity, which allows breeders to select advantageous alleles of key genes. In species or loci that lack sufficient genetic diversity, synthetic directed evolution (SDE) can supplement natural variation, thus expanding the possibilities for trait engineering. In this review, we explore recent advances and applications of SDE for crop improvement, highlighting potential targets (coding sequences and cis-regulatory elements) and computational tools to enhance crop resilience and performance across diverse environments. Recent advancements in SDE approaches have streamlined the generation of variants and the selection processes; by leveraging these advanced technologies and principles, we can minimize concerns about host fitness and unintended effects, thus opening promising avenues for effectively enhancing crop traits.
Collapse
Affiliation(s)
- Ahad Moussa Kababji
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
4
|
Chang Y, Fang Y, Liu J, Ye T, Li X, Tu H, Ye Y, Wang Y, Xiong L. Stress-induced nuclear translocation of ONAC023 improves drought and heat tolerance through multiple processes in rice. Nat Commun 2024; 15:5877. [PMID: 38997294 PMCID: PMC11245485 DOI: 10.1038/s41467-024-50229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Drought and heat are major abiotic stresses frequently coinciding to threaten rice production. Despite hundreds of stress-related genes being identified, only a few have been confirmed to confer resistance to multiple stresses in crops. Here we report ONAC023, a hub stress regulator that integrates the regulations of both drought and heat tolerance in rice. ONAC023 positively regulates drought and heat tolerance at both seedling and reproductive stages. Notably, the functioning of ONAC023 is obliterated without stress treatment and can be triggered by drought and heat stresses at two layers. The expression of ONAC023 is induced in response to stress stimuli. We show that overexpressed ONAC23 is translocated to the nucleus under stress and evidence from protoplasts suggests that the dephosphorylation of the remorin protein OSREM1.5 can promote this translocation. Under drought or heat stress, the nuclear ONAC023 can target and promote the expression of diverse genes, such as OsPIP2;7, PGL3, OsFKBP20-1b, and OsSF3B1, which are involved in various processes including water transport, reactive oxygen species homeostasis, and alternative splicing. These results manifest that ONAC023 is fine-tuned to positively regulate drought and heat tolerance through the integration of multiple stress-responsive processes. Our findings provide not only an underlying connection between drought and heat responses, but also a promising candidate for engineering multi-stress-resilient rice.
Collapse
Affiliation(s)
- Yu Chang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yujie Fang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Jiahan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tiantian Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaokai Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haifu Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Alhabsi A, Butt H, Kirschner GK, Blilou I, Mahfouz MM. SCR106 splicing factor modulates abiotic stress responses by maintaining RNA splicing in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:802-818. [PMID: 37924151 PMCID: PMC10837019 DOI: 10.1093/jxb/erad433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Plants employ sophisticated molecular machinery to fine-tune their responses to growth, developmental, and stress cues. Gene expression influences plant cellular responses through regulatory processes such as transcription and splicing. Pre-mRNA is alternatively spliced to increase the genome coding potential and further regulate expression. Serine/arginine-rich (SR) proteins, a family of pre-mRNA splicing factors, recognize splicing cis-elements and regulate both constitutive and alternative splicing. Several studies have reported SR protein genes in the rice genome, subdivided into six subfamilies based on their domain structures. Here, we identified a new splicing factor in rice with an RNA recognition motif (RRM) and SR-dipeptides, which is related to the SR proteins, subfamily SC. OsSCR106 regulates pre-mRNA splicing under abiotic stress conditions. It localizes to the nuclear speckles, a major site for pre-mRNA splicing in the cell. The loss-of-function scr106 mutant is hypersensitive to salt, abscisic acid, and low-temperature stress, and harbors a developmental abnormality indicated by the shorter length of the shoot and root. The hypersensitivity to stress phenotype was rescued by complementation using OsSCR106 fused behind its endogenous promoter. Global gene expression and genome-wide splicing analysis in wild-type and scr106 seedlings revealed that OsSCR106 regulates its targets, presumably through regulating the alternative 3'-splice site. Under salt stress conditions, we identified multiple splice isoforms regulated by OsSCR106. Collectively, our results suggest that OsSCR106 is an important splicing factor that plays a crucial role in accurate pre-mRNA splicing and regulates abiotic stress responses in plants.
Collapse
Affiliation(s)
- Abdulrahman Alhabsi
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Gwendolyn K Kirschner
- Laboratory of Plant Cell and Developmental Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
6
|
Duan X, Zhang Y, Huang X, Ma X, Gao H, Wang Y, Xiao Z, Huang C, Wang Z, Li B, Yang W, Wang Y. GreenPhos, a universal method for in-depth measurement of plant phosphoproteomes with high quantitative reproducibility. MOLECULAR PLANT 2024; 17:199-213. [PMID: 38018035 DOI: 10.1016/j.molp.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/08/2023] [Accepted: 11/25/2023] [Indexed: 11/30/2023]
Abstract
Protein phosphorylation regulates a variety of important cellular and physiological processes in plants. In-depth profiling of plant phosphoproteomes has been more technically challenging than that of animal phosphoproteomes. This is largely due to the need to improve protein extraction efficiency from plant cells, which have a dense cell wall, and to minimize sample loss resulting from the stringent sample clean-up steps required for the removal of a large amount of biomolecules interfering with phosphopeptide purification and mass spectrometry analysis. To this end, we developed a method with a streamlined workflow for highly efficient purification of phosphopeptides from tissues of various green organisms including Arabidopsis, rice, tomato, and Chlamydomonas reinhardtii, enabling in-depth identification with high quantitative reproducibility of about 11 000 phosphosites, the greatest depth achieved so far with single liquid chromatography-mass spectrometry (LC-MS) runs operated in a data-dependent acquisition (DDA) mode. The mainstay features of the method are the minimal sample loss achieved through elimination of sample clean-up before protease digestion and of desalting before phosphopeptide enrichment and hence the dramatic increases of time- and cost-effectiveness. The method, named GreenPhos, combined with single-shot LC-MS, enabled in-depth quantitative identification of Arabidopsis phosphoproteins, including differentially phosphorylated spliceosomal proteins, at multiple time points during salt stress and a number of kinase substrate motifs. GreenPhos is expected to serve as a universal method for purification of plant phosphopeptides, which, if samples are further fractionated and analyzed by multiple LC-MS runs, could enable measurement of plant phosphoproteomes with an unprecedented depth using a given mass spectrometry technology.
Collapse
Affiliation(s)
- Xiaoxiao Duan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Gao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengcheng Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongshu Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bolong Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang Yang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Harms FL, Dingemans AJM, Hempel M, Pfundt R, Bierhals T, Casar C, Müller C, Niermeijer JMF, Fischer J, Jahn A, Hübner C, Majore S, Agolini E, Novelli A, van der Smagt J, Ernst R, van Binsbergen E, Mancini GMS, van Slegtenhorst M, Barakat TS, Wakeling EL, Kamath A, Downie L, Pais L, White SM, de Vries BBA, Kutsche K. De novo PHF5A variants are associated with craniofacial abnormalities, developmental delay, and hypospadias. Genet Med 2023; 25:100927. [PMID: 37422718 DOI: 10.1016/j.gim.2023.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE The SF3B splicing complex is composed of SF3B1-6 and PHF5A. We report a developmental disorder caused by de novo variants in PHF5A. METHODS Clinical, genomic, and functional studies using subject-derived fibroblasts and a heterologous cellular system were performed. RESULTS We studied 9 subjects with congenital malformations, including preauricular tags and hypospadias, growth abnormalities, and developmental delay who had de novo heterozygous PHF5A variants, including 4 loss-of-function (LOF), 3 missense, 1 splice, and 1 start-loss variant. In subject-derived fibroblasts with PHF5A LOF variants, wild-type and variant PHF5A mRNAs had a 1:1 ratio, and PHF5A mRNA levels were normal. Transcriptome sequencing revealed alternative promoter use and downregulated genes involved in cell-cycle regulation. Subject and control fibroblasts had similar amounts of PHF5A with the predicted wild-type molecular weight and of SF3B1-3 and SF3B6. SF3B complex formation was unaffected in 2 subject cell lines. CONCLUSION Our data suggest the existence of feedback mechanisms in fibroblasts with PHF5A LOF variants to maintain normal levels of SF3B components. These compensatory mechanisms in subject fibroblasts with PHF5A or SF3B4 LOF variants suggest disturbed autoregulation of mutated splicing factor genes in specific cell types, that is, neural crest cells, during embryonic development rather than haploinsufficiency as pathomechanism.
Collapse
Affiliation(s)
- Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander J M Dingemans
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Casar
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Müller
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jan Fischer
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Arne Jahn
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Christoph Hübner
- Department of Neuropaediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Silvia Majore
- Division of Medical Genetics, Department of Experimental Medicine, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Jasper van der Smagt
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Robert Ernst
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Emma L Wakeling
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Arveen Kamath
- All Wales Medical Genomics Service/ Pennaeth Labordy Genomeg Cymru Gyfan, University Hospital of Wales, Heath Park, Cardiff, United Kingdom
| | - Lilian Downie
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, VIC; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Lynn Pais
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Susan M White
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, VIC; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
8
|
Jung H, Park HJ, Jo SH, Lee A, Lee HJ, Kim HS, Jung C, Cho HS. Nuclear OsFKBP20-1b maintains SR34 stability and promotes the splicing of retained introns upon ABA exposure in rice. THE NEW PHYTOLOGIST 2023; 238:2476-2494. [PMID: 36942934 DOI: 10.1111/nph.18892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/16/2023] [Indexed: 05/19/2023]
Abstract
Alternative splicing (AS) is a critical means by which plants respond to changes in the environment, but few splicing factors contributing to AS have been reported and functionally characterized in rice (Oryza sativa L.). Here, we explored the function and molecular mechanism of the spliceosome-associated protein OsFKBP20-1b during AS. We determined the AS landscape of wild-type and osfkbp20-1b knockout plants upon abscisic acid (ABA) treatment by transcriptome deep sequencing. To capture the dynamics of translating intron-containing mRNAs, we blocked transcription with cordycepin and performed polysome profiling. We also analyzed whether OsFKBP20-1b and the splicing factors OsSR34 and OsSR45 function together in AS using protoplast transfection assays. We show that OsFKBP20-1b interacts with OsSR34 and regulates its stability, suggesting a role as a chaperone-like protein in the spliceosome. OsFKBP20-1b facilitates the splicing of mRNAs with retained introns after ABA treatment; some of these mRNAs are translatable and encode functional transcriptional regulators of stress-responsive genes. In addition, interacting proteins, OsSR34 and OsSR45, regulate the splicing of the same retained introns as OsFKBP20-1b after ABA treatment. Our findings reveal that spliceosome-associated immunophilin functions in alternative RNA splicing in rice by positively regulating the splicing of retained introns to limit ABA response.
Collapse
Affiliation(s)
- Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
| | - Seung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Areum Lee
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Functional Genomics, KRIBB School of Bioscience, UST, Daejeon, 34113, South Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Choonkyun Jung
- Department of International Agricultural Technology and Crop Biotechnology Institute/Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- Department of Agriculture, Forestry, and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| |
Collapse
|
9
|
Boulanger HG, Guo W, Monteiro LDFR, Calixto CPG. Co-expression network of heat-response transcripts: A glimpse into how splicing factors impact rice basal thermotolerance. Front Mol Biosci 2023; 10:1122201. [PMID: 36818043 PMCID: PMC9932781 DOI: 10.3389/fmolb.2023.1122201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
To identify novel solutions to improve rice yield under rising temperatures, molecular components of thermotolerance must be better understood. Alternative splicing (AS) is a major post-transcriptional mechanism impacting plant tolerance against stresses, including heat stress (HS). AS is largely regulated by splicing factors (SFs) and recent studies have shown their involvement in temperature response. However, little is known about the splicing networks between SFs and AS transcripts in the HS response. To expand this knowledge, we constructed a co-expression network based on a publicly available RNA-seq dataset that explored rice basal thermotolerance over a time-course. Our analyses suggest that the HS-dependent control of the abundance of specific transcripts coding for SFs might explain the widespread, coordinated, complex, and delicate AS regulation of critical genes during a plant's inherent response to extreme temperatures. AS changes in these critical genes might affect many aspects of plant biology, from organellar functions to cell death, providing relevant regulatory candidates for future functional studies of basal thermotolerance.
Collapse
Affiliation(s)
- Hadrien Georges Boulanger
- Université Paris-Saclay, Gif-sur-Yvette, France,École Nationale Supérieure d'Informatique pour l'Industrie et l’Entreprise, Evry-Courcouronnes, France,Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Wenbin Guo
- Information and Computational Sciences, The James Hutton Institute, Dundee, United Kingdom
| | | | - Cristiane Paula Gomes Calixto
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil,*Correspondence: Cristiane Paula Gomes Calixto,
| |
Collapse
|
10
|
Butt H, Ramirez JLM, Mahfouz M. Synthetic evolution of herbicide resistance using a T7 RNAP-based random DNA base editor. Life Sci Alliance 2022; 5:5/12/e202201538. [PMID: 36171140 PMCID: PMC9526444 DOI: 10.26508/lsa.202201538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
A chimeric fusion of T7 RNAP and deaminase edits the DNA under the T7 promoter in plant cells. It directs the continuous synthetic evolution of OsALS to produce variants with herbicide resistance. Synthetic directed evolution via localized sequence diversification and the simultaneous application of selection pressure is a promising method for producing new, beneficial alleles that affect traits of interest in diverse species; however, this technique has rarely been applied in plants. Here, we designed, built, and tested a chimeric fusion of T7 RNA Polymerase (RNAP) and deaminase to enable the localized sequence diversification of a target sequence of interest. We tested our T7 RNAP–DNA base editor in Nicotiana benthamiana transient assays to target a transgene expressing GFP under the control of the T7 promoter and observed C-to-T conversions. We then targeted the T7 promoter-driven acetolactate synthase sequence that had been stably integrated in the rice genome and generated C-to-T and G-to-A transitions. We used herbicide treatment as selection pressure for the evolution of the acetolactate synthase sequence, resulting in the enrichment of herbicide-responsive residues. We then validated these herbicide-responsive regions in the transgenic rice plants. Thus, our system could be used for the continuous synthetic evolution of gene functions to produce variants with improved herbicide resistance.
Collapse
Affiliation(s)
- Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jose Luis Moreno Ramirez
- Laboratory for Genome Engineering and Synthetic Biology, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
11
|
The Rice Serine/Arginine Splicing Factor RS33 Regulates Pre-mRNA Splicing during Abiotic Stress Responses. Cells 2022; 11:cells11111796. [PMID: 35681491 PMCID: PMC9180459 DOI: 10.3390/cells11111796] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Abiotic stresses profoundly affect plant growth and development and limit crop productivity. Pre-mRNA splicing is a major form of gene regulation that helps plants cope with various stresses. Serine/arginine (SR)-rich splicing factors play a key role in pre-mRNA splicing to regulate different biological processes under stress conditions. Alternative splicing (AS) of SR transcripts and other transcripts of stress-responsive genes generates multiple splice isoforms that contribute to protein diversity, modulate gene expression, and affect plant stress tolerance. Here, we investigated the function of the plant-specific SR protein RS33 in regulating pre-mRNA splicing and abiotic stress responses in rice. The loss-of-function mutant rs33 showed increased sensitivity to salt and low-temperature stresses. Genome-wide analyses of gene expression and splicing in wild-type and rs33 seedlings subjected to these stresses identified multiple splice isoforms of stress-responsive genes whose AS are regulated by RS33. The number of RS33-regulated genes was much higher under low-temperature stress than under salt stress. Our results suggest that the plant-specific splicing factor RS33 plays a crucial role during plant responses to abiotic stresses.
Collapse
|