1
|
Yao R, Shi L, Niu Y, Li H, Fan X, Wang B. Driving brain state transitions via Adaptive Local Energy Control Model. Neuroimage 2025; 306:121023. [PMID: 39800170 DOI: 10.1016/j.neuroimage.2025.121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 01/15/2025] Open
Abstract
The brain, as a complex system, achieves state transitions through interactions among its regions and also performs various functions. An in-depth exploration of brain state transitions is crucial for revealing functional changes in both health and pathological states and realizing precise brain function intervention. Network control theory offers a novel framework for investigating the dynamic characteristics of brain state transitions. Existing studies have primarily focused on analyzing the energy required for brain state transitions, which are driven either by the single brain region or by all brain regions. However, they often neglect the critical question of how the whole brain responds to external control inputs that are driven by control energy from multiple brain regions, which limits their application value in guiding clinical neurostimulation. In this paper, we proposed the Adaptive Local Energy Control Model (ALECM) to explore brain state transitions, which considers the complex interactions of the whole brain along the white matter network when external control inputs are applied to multiple regions. It not only quantifies the energy required for state transitions but also predicts their outcomes based on local control. Our results indicated that patients with Schizophrenia (SZ) and Bipolar Disorder (BD) required more energy to drive the brain state transitions from the pathological state to the healthy baseline state, which is defined as Hetero-state transition. Importantly, we successfully induced Hetero-state transition in the patients' brains by using the ALECM, with subnetworks or specific brain regions serving as local control sets. Eventually, the network similarity between patients and healthy subjects reached baseline levels. These offer evidence that the ALECM can effectively quantify the cost characteristics of brain state transitions, providing a theoretical foundation for accurately predicting the efficacy of electromagnetic perturbation therapies in the future.
Collapse
Affiliation(s)
- Rong Yao
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Langhua Shi
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yan Niu
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - HaiFang Li
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xing Fan
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Bin Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
2
|
Luppi AI, Sanz Perl Y, Vohryzek J, Mediano PAM, Rosas FE, Milisav F, Suarez LE, Gini S, Gutierrez-Barragan D, Gozzi A, Misic B, Deco G, Kringelbach ML. Competitive interactions shape brain dynamics and computation across species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619194. [PMID: 39484469 PMCID: PMC11526968 DOI: 10.1101/2024.10.19.619194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Adaptive cognition relies on cooperation across anatomically distributed brain circuits. However, specialised neural systems are also in constant competition for limited processing resources. How does the brain's network architecture enable it to balance these cooperative and competitive tendencies? Here we use computational whole-brain modelling to examine the dynamical and computational relevance of cooperative and competitive interactions in the mammalian connectome. Across human, macaque, and mouse we show that the architecture of the models that most faithfully reproduce brain activity, consistently combines modular cooperative interactions with diffuse, long-range competitive interactions. The model with competitive interactions consistently outperforms the cooperative-only model, with excellent fit to both spatial and dynamical properties of the living brain, which were not explicitly optimised but rather emerge spontaneously. Competitive interactions in the effective connectivity produce greater levels of synergistic information and local-global hierarchy, and lead to superior computational capacity when used for neuromorphic computing. Altogether, this work provides a mechanistic link between network architecture, dynamical properties, and computation in the mammalian brain.
Collapse
Affiliation(s)
- Andrea I. Luppi
- University of Oxford, Oxford, UK
- St John’s College, Cambridge, UK
- Montreal Neurological Institute, Montreal, Canada
| | | | | | | | | | | | | | - Silvia Gini
- Italian Institute of Technology, Rovereto, Italy
- Centre for Mind/Brain Sciences, University of Trento, Italy
| | | | | | | | | | | |
Collapse
|
3
|
Camassa A, Torao-Angosto M, Manasanch A, Kringelbach ML, Deco G, Sanchez-Vives MV. The temporal asymmetry of cortical dynamics as a signature of brain states. Sci Rep 2024; 14:24271. [PMID: 39414871 PMCID: PMC11484927 DOI: 10.1038/s41598-024-74649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
The brain is a complex non-equilibrium system capable of expressing many different dynamics as well as the transitions between them. We hypothesized that the level of non-equilibrium can serve as a signature of a given brain state, which was quantified using the arrow of time (the level of irreversibility). Using this thermodynamic framework, the irreversibility of emergent cortical activity was quantified from local field potential recordings in male Lister-hooded rats at different anesthesia levels and during the sleep-wake cycle. This measure was carried out on five distinct brain states: slow-wave sleep, awake, deep anesthesia-slow waves, light anesthesia-slow waves, and microarousals. Low levels of irreversibility were associated with synchronous activity found both in deep anesthesia and slow-wave sleep states, suggesting that slow waves were the state closest to the thermodynamic equilibrium (maximum symmetry), thus requiring minimum energy. Higher levels of irreversibility were found when brain dynamics became more asynchronous, for example, in wakefulness. These changes were also reflected in the hierarchy of cortical dynamics across different cortical areas. The neural dynamics associated with different brain states were characterized by different degrees of irreversibility and hierarchy, also acting as markers of brain state transitions. This could open new routes to monitoring, controlling, and even changing brain states in health and disease.
Collapse
Affiliation(s)
- Alessandra Camassa
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Melody Torao-Angosto
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Arnau Manasanch
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, 8000, Denmark
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Maria V Sanchez-Vives
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain.
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain.
| |
Collapse
|
4
|
Benozzo D, Baggio G, Baron G, Chiuso A, Zampieri S, Bertoldo A. Analyzing asymmetry in brain hierarchies with a linear state-space model of resting-state fMRI data. Netw Neurosci 2024; 8:965-988. [PMID: 39355437 PMCID: PMC11424037 DOI: 10.1162/netn_a_00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/02/2024] [Indexed: 10/03/2024] Open
Abstract
This study challenges the traditional focus on zero-lag statistics in resting-state functional magnetic resonance imaging (rsfMRI) research. Instead, it advocates for considering time-lag interactions to unveil the directionality and asymmetries of the brain hierarchy. Effective connectivity (EC), the state matrix in dynamical causal modeling (DCM), is a commonly used metric for studying dynamical properties and causal interactions within a linear state-space system description. Here, we focused on how time-lag statistics are incorporated within the framework of DCM resulting in an asymmetric EC matrix. Our approach involves decomposing the EC matrix, revealing a steady-state differential cross-covariance matrix that is responsible for modeling information flow and introducing time-irreversibility. Specifically, the system's dynamics, influenced by the off-diagonal part of the differential covariance, exhibit a curl steady-state flow component that breaks detailed balance and diverges the dynamics from equilibrium. Our empirical findings indicate that the EC matrix's outgoing strengths correlate with the flow described by the differential cross covariance, while incoming strengths are primarily driven by zero-lag covariance, emphasizing conditional independence over directionality.
Collapse
Affiliation(s)
- Danilo Benozzo
- Information Engineering Department, University of Padova, Padova, Italy
| | - Giacomo Baggio
- Information Engineering Department, University of Padova, Padova, Italy
| | - Giorgia Baron
- Information Engineering Department, University of Padova, Padova, Italy
| | - Alessandro Chiuso
- Information Engineering Department, University of Padova, Padova, Italy
| | - Sandro Zampieri
- Information Engineering Department, University of Padova, Padova, Italy
| | - Alessandra Bertoldo
- Information Engineering Department, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Nartallo-Kaluarachchi R, Asllani M, Deco G, Kringelbach ML, Goriely A, Lambiotte R. Broken detailed balance and entropy production in directed networks. Phys Rev E 2024; 110:034313. [PMID: 39425339 DOI: 10.1103/physreve.110.034313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/06/2024] [Indexed: 10/21/2024]
Abstract
The structure of a complex network plays a crucial role in determining its dynamical properties. In this paper , we show that the the degree to which a network is directed and hierarchically organized is closely associated with the degree to which its dynamics break detailed balance and produce entropy. We consider a range of dynamical processes and show how different directed network features affect their entropy production rate. We begin with an analytical treatment of a two-node network followed by numerical simulations of synthetic networks using the preferential attachment and Erdös-Renyi algorithms. Next, we analyze a collection of 97 empirical networks to determine the effect of complex real-world topologies. Finally, we present a simple method for inferring broken detailed balance and directed network structure from multivariate time series and apply our method to identify non-equilibrium dynamics and hierarchical organisation in both human neuroimaging and financial time series. Overall, our results shed light on the consequences of directed network structure on non-equilibrium dynamics and highlight the importance and ubiquity of hierarchical organisation and non-equilibrium dynamics in real-world systems.
Collapse
Affiliation(s)
| | | | | | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, 7 Stoke Pl, Oxford OX3 9BX, United Kingdom
- Center for Music in the Brain, Aarhus University, & The Royal Academy of Music, Aarhus/Aalborg, Denmark
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX United Kingdom
| | | | | |
Collapse
|
6
|
Vodret M. Irreversibility in belief dynamics: Unraveling the link to cognitive effort. Phys Rev E 2024; 110:014304. [PMID: 39160952 DOI: 10.1103/physreve.110.014304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/25/2024] [Indexed: 08/21/2024]
Abstract
The relationship between time irreversibility in neuronal dynamics and cognitive effort is a subject of growing interest in the scientific literature. Although correlations between proxies of both concepts have been experimentally observed, the underlying precise linkage between them remains elusive. Here we investigate the case of learning in decision-making tasks; we do so by introducing a thermodynamically grounded metric-inspired by Landauer's principle-which connects time-irreversible information processing to energy consumption. Equipped with this metric, we investigate the role of macroscopic time-reversal symmetry breaking in belief dynamics for the case of an agent with finite sensitivity while performing a static two-armed bandit task-a standard setup in cognitive neuroscience. To gain insights into the belief dynamics, we analogize it to the dynamics of an active particle subject to state-dependent noise and living in a two-dimensional space. This mapping allows an analytical description of learning-induced biases. We deeply explore the case of Q-learning with forgetting the nonchosen option. In this case, learning-induced risk aversion is formally equivalent to standard thermophoresis, i.e., the net motion towards low-temperature regions. Finally, we quantify the irreversibility of belief dynamics in the steady state for different bandit configurations, sensitivity levels, and exploitative behavior. We found a strong correlation in high-sensitivity learning between heightened irreversibility in belief dynamics and improved decision-making outcomes. Notably, as the task's difficulty increases, a greater degree of irreversibility in belief dynamics becomes necessary for having superior performances; this explicitly unravels a plausible connection between time irreversibility and cognitive effort. In conclusion, our investigation reveals that irreversibility in belief dynamics bridges out-of-equilibrium statistical physics concepts and cognitive neuroscience. In decision-making contexts, this perspective offers insights into the notion of cognitive effort, suggesting a potential mechanism driving the evolution of living systems toward out-of-equilibrium structures.
Collapse
|
7
|
Kringelbach ML, Sanz Perl Y, Deco G. The Thermodynamics of Mind. Trends Cogn Sci 2024; 28:568-581. [PMID: 38677884 DOI: 10.1016/j.tics.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2024]
Abstract
To not only survive, but also thrive, the brain must efficiently orchestrate distributed computation across space and time. This requires hierarchical organisation facilitating fast information transfer and processing at the lowest possible metabolic cost. Quantifying brain hierarchy is difficult but can be estimated from the asymmetry of information flow. Thermodynamics has successfully characterised hierarchy in many other complex systems. Here, we propose the 'Thermodynamics of Mind' framework as a natural way to quantify hierarchical brain orchestration and its underlying mechanisms. This has already provided novel insights into the orchestration of hierarchy in brain states including movie watching, where the hierarchy of the brain is flatter than during rest. Overall, this framework holds great promise for revealing the orchestration of cognition.
Collapse
Affiliation(s)
- Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Psychiatry, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; International Centre for Flourishing, Universities of Oxford, Aarhus, and Pompeu Fabra, Oxford, UK.
| | - Yonatan Sanz Perl
- International Centre for Flourishing, Universities of Oxford, Aarhus, and Pompeu Fabra, Oxford, UK; Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, Spain; Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
| | - Gustavo Deco
- International Centre for Flourishing, Universities of Oxford, Aarhus, and Pompeu Fabra, Oxford, UK; Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
8
|
Szakács H, Mutlu MC, Balestrieri G, Gombos F, Braun J, Kringelbach ML, Deco G, Kovács I. Navigating Pubertal Goldilocks: The Optimal Pace for Hierarchical Brain Organization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308364. [PMID: 38489748 DOI: 10.1002/advs.202308364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Adolescence is a timed process with an onset, tempo, and duration. Nevertheless, the temporal dimension, especially the pace of maturation, remains an insufficiently studied aspect of developmental progression. The primary objective is to estimate the precise influence of pubertal maturational tempo on the configuration of associative brain regions. To this end, the connection between maturational stages and the level of hierarchical organization of large-scale brain networks in 12-13-year-old females is analyzed. Skeletal maturity is used as a proxy for pubertal progress. The degree of maturity is defined by the difference between bone age and chronological age. To assess the level of hierarchical organization in the brain, the temporal dynamic of closed eye resting state high-density electroencephalography (EEG) in the alpha frequency range is analyzed. Different levels of hierarchical order are captured by the measured asymmetry in the directionality of information flow between different regions. The calculated EEG-based entropy production of participant groups is then compared with accelerated, average, and decelerated maturity. Results indicate that an average maturational trajectory optimally aligns with cerebral hierarchical order, and both accelerated and decelerated timelines result in diminished cortical organization. This suggests that a "Goldilocks rule" of brain development is favoring a particular maturational tempo.
Collapse
Affiliation(s)
- Hanna Szakács
- Laboratory for Psychological Research, Pázmány Péter Catholic University, 1 Mikszáth Square, Budapest, 1088, Hungary
- Semmelweis University Doctoral School, Division of Mental Health Sciences, 26 Üllői road, Budapest, 1085, Hungary
| | - Murat Can Mutlu
- Institute of Biology, Otto-von-Guericke University, 44 Leipziger Straße, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, 44 Leipziger Straße, 39120, Magdeburg, Germany
| | - Giulio Balestrieri
- Center for Brain and Cognition, Universitat Pompeu Fabra, 25-27 Ramon Trias Fargas, Barcelona, 08005, Spain
| | - Ferenc Gombos
- Laboratory for Psychological Research, Pázmány Péter Catholic University, 1 Mikszáth Square, Budapest, 1088, Hungary
- HUN-REN-ELTE-PPKE Adolescent Development Research Group, 1 Mikszáth Kálmán Square, Budapest, 1088, Hungary
| | - Jochen Braun
- Institute of Biology, Otto-von-Guericke University, 44 Leipziger Straße, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, 44 Leipziger Straße, 39120, Magdeburg, Germany
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Wellington Square, Oxford, OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Wellington Square, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Nordre Ringgade 1, Aarhus, 8000, Denmark
| | - Gustavo Deco
- Center for Brain and Cognition, Universitat Pompeu Fabra, 25-27 Ramon Trias Fargas, Barcelona, 08005, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 122-140 Carrer de Tànger, Barcelona, 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), 23 Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Ilona Kovács
- HUN-REN-ELTE-PPKE Adolescent Development Research Group, 1 Mikszáth Kálmán Square, Budapest, 1088, Hungary
- Institute of Psychology, Faculty of Education and Psychology, Eötvös Loránd University, 25-27 Kazinczy Street, Budapest, 1075, Hungary
| |
Collapse
|
9
|
Ibanez A, Kringelbach ML, Deco G. A synergetic turn in cognitive neuroscience of brain diseases. Trends Cogn Sci 2024; 28:319-338. [PMID: 38246816 DOI: 10.1016/j.tics.2023.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Despite significant improvements in our understanding of brain diseases, many barriers remain. Cognitive neuroscience faces four major challenges: complex structure-function associations; disease phenotype heterogeneity; the lack of transdiagnostic models; and oversimplified cognitive approaches restricted to the laboratory. Here, we propose a synergetics framework that can help to perform the necessary dimensionality reduction of complex interactions between the brain, body, and environment. The key solutions include low-dimensional spatiotemporal hierarchies for brain-structure associations, whole-brain modeling to handle phenotype diversity, model integration of shared transdiagnostic pathophysiological pathways, and naturalistic frameworks balancing experimental control and ecological validity. Creating whole-brain models with reduced manifolds combined with ecological measures can improve our understanding of brain disease and help identify novel interventions. Synergetics provides an integrated framework for future progress in clinical and cognitive neuroscience, pushing the boundaries of brain health and disease toward more mature, naturalistic approaches.
Collapse
Affiliation(s)
- Agustin Ibanez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile; Global Brain Health Institute (GBHI), University California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; Department of Psychiatry, University of Oxford, Oxford, UK.
| | - Morten L Kringelbach
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
10
|
Froese T. Irruption and Absorption: A 'Black-Box' Framework for How Mind and Matter Make a Difference to Each Other. ENTROPY (BASEL, SWITZERLAND) 2024; 26:288. [PMID: 38667841 PMCID: PMC11049376 DOI: 10.3390/e26040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024]
Abstract
Cognitive science is confronted by several fundamental anomalies deriving from the mind-body problem. Most prominent is the problem of mental causation and the hard problem of consciousness, which can be generalized into the hard problem of agential efficacy and the hard problem of mental content. Here, it is proposed to accept these explanatory gaps at face value and to take them as positive indications of a complex relation: mind and matter are one, but they are not the same. They are related in an efficacious yet non-reducible, non-observable, and even non-intelligible manner. Natural science is well equipped to handle the effects of non-observables, and so the mind is treated as equivalent to a hidden 'black box' coupled to the body. Two concepts are introduced given that there are two directions of coupling influence: (1) irruption denotes the unobservable mind hiddenly making a difference to observable matter, and (2) absorption denotes observable matter hiddenly making a difference to the unobservable mind. The concepts of irruption and absorption are methodologically compatible with existing information-theoretic approaches to neuroscience, such as measuring cognitive activity and subjective qualia in terms of entropy and compression, respectively. By offering novel responses to otherwise intractable theoretical problems from first principles, and by doing so in a way that is closely connected with empirical advances, irruption theory is poised to set the agenda for the future of the mind sciences.
Collapse
Affiliation(s)
- Tom Froese
- Embodied Cognitive Science Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
11
|
Camassa A, Barbero-Castillo A, Bosch M, Dasilva M, Masvidal-Codina E, Villa R, Guimerà-Brunet A, Sanchez-Vives MV. Chronic full-band recordings with graphene microtransistors as neural interfaces for discrimination of brain states. NANOSCALE HORIZONS 2024; 9:589-597. [PMID: 38329118 DOI: 10.1039/d3nh00440f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Brain states such as sleep, anesthesia, wakefulness, or coma are characterized by specific patterns of cortical activity dynamics, from local circuits to full-brain emergent properties. We previously demonstrated that full-spectrum signals, including the infraslow component (DC, direct current-coupled), can be recorded acutely in multiple sites using flexible arrays of graphene solution-gated field-effect transistors (gSGFETs). Here, we performed chronic implantation of 16-channel gSGFET arrays over the rat cerebral cortex and recorded full-band neuronal activity with two objectives: (1) to test the long-term stability of implanted devices; and (2) to investigate full-band activity during the transition across different levels of anesthesia. First, we demonstrate it is possible to record full-band signals with stability, fidelity, and spatiotemporal resolution for up to 5.5 months using chronic epicortical gSGFET implants. Second, brain states generated by progressive variation of levels of anesthesia could be identified as traditionally using the high-pass filtered (AC, alternating current-coupled) spectrogram: from synchronous slow oscillations in deep anesthesia through to asynchronous activity in the awake state. However, the DC signal introduced a highly significant improvement for brain-state discrimination: the DC band provided an almost linear information prediction of the depth of anesthesia, with about 85% precision, using a trained algorithm. This prediction rose to about 95% precision when the full-band (AC + DC) spectrogram was taken into account. We conclude that recording infraslow activity using gSGFET interfaces is superior for the identification of brain states, and further supports the preclinical and clinical use of graphene neural interfaces for long-term recordings of cortical activity.
Collapse
Affiliation(s)
- A Camassa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - A Barbero-Castillo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - M Bosch
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - M Dasilva
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - E Masvidal-Codina
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - R Villa
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - A Guimerà-Brunet
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - M V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
12
|
Froese T, Loh CL, Putri F. Inter-brain desynchronization in social interaction: a consequence of subjective involvement? Front Hum Neurosci 2024; 18:1359841. [PMID: 38532790 PMCID: PMC10963429 DOI: 10.3389/fnhum.2024.1359841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Hyperscanning approaches to human neuroscience aim to uncover the neural mechanisms of social interaction. They have been largely guided by the expectation that increased levels of engagement between two persons will be supported by higher levels of inter-brain synchrony (IBS). A common approach to measuring IBS is phase synchrony in the context of EEG hyperscanning. Yet the growing number of experimental findings does not yield a straightforward interpretation, which has prompted critical reflections about the field's theoretical and methodological principles. In this perspective piece, we make a conceptual contribution to this debate by considering the role of a possibly overlooked effect of inter-brain desynchronization (IBD), as for example measured by decreased phase synchrony. A principled reason to expect this role comes from the recent proposal of irruption theory, which operationalizes the efficacy of a person's subjective involvement in behavior generation in terms of increased neural entropy. Accordingly, IBD is predicted to increase with one or more participant's socially motivated subjective involvement in interaction, because of the associated increase in their neural entropy. Additionally, the relative prominence of IBD compared to IBS is expected to vary in time, as well as across frequency bands, depending on the extent that subjective involvement is elicited by the task and/or desired by the person. If irruption theory is on the right track, it could thereby help to explain the notable variability of IBS in social interaction in terms of a countertendency from another factor: IBD due to subjective involvement.
Collapse
Affiliation(s)
- Tom Froese
- Embodied Cognitive Science Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | | | | |
Collapse
|
13
|
Luppi AI, Uhrig L, Tasserie J, Signorelli CM, Stamatakis EA, Destexhe A, Jarraya B, Cofre R. Local orchestration of distributed functional patterns supporting loss and restoration of consciousness in the primate brain. Nat Commun 2024; 15:2171. [PMID: 38462641 PMCID: PMC10925605 DOI: 10.1038/s41467-024-46382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
A central challenge of neuroscience is to elucidate how brain function supports consciousness. Here, we combine the specificity of focal deep brain stimulation with fMRI coverage of the entire cortex, in awake and anaesthetised non-human primates. During propofol, sevoflurane, or ketamine anaesthesia, and subsequent restoration of responsiveness by electrical stimulation of the central thalamus, we investigate how loss of consciousness impacts distributed patterns of structure-function organisation across scales. We report that distributed brain activity under anaesthesia is increasingly constrained by brain structure across scales, coinciding with anaesthetic-induced collapse of multiple dimensions of hierarchical cortical organisation. These distributed signatures are observed across different anaesthetics, and they are reversed by electrical stimulation of the central thalamus, coinciding with recovery of behavioural markers of arousal. No such effects were observed upon stimulating the ventral lateral thalamus, demonstrating specificity. Overall, we identify consistent distributed signatures of consciousness that are orchestrated by specific thalamic nuclei.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Lynn Uhrig
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Department of Anesthesiology and Critical Care, Necker Hospital, AP-HP, Université de Paris Cité, Paris, France
| | - Jordy Tasserie
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Camilo M Signorelli
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, 1070, Brussels, Belgium
- Department of Computer Science, University of Oxford, Oxford, 7 Parks Rd, Oxford, OX1 3QG, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alain Destexhe
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Department of Neurology, Hopital Foch, 92150, Suresnes, France
| | - Rodrigo Cofre
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France.
| |
Collapse
|
14
|
Fan L, Li Y, Zhao X, Huang ZG, Liu T, Wang J. Dynamic nonreversibility view of intrinsic brain organization and brain dynamic analysis of repetitive transcranial magnitude stimulation. Cereb Cortex 2024; 34:bhae098. [PMID: 38494890 DOI: 10.1093/cercor/bhae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Intrinsic neural activities are characterized as endless spontaneous fluctuation over multiple time scales. However, how the intrinsic brain organization changes over time under local perturbation remains an open question. By means of statistical physics, we proposed an approach to capture whole-brain dynamics based on estimating time-varying nonreversibility and k-means clustering of dynamic varying nonreversibility patterns. We first used synthetic fMRI to investigate the effects of window parameters on the temporal variability of varying nonreversibility. Second, using real test-retest fMRI data, we examined the reproducibility, reliability, biological, and physiological correlation of the varying nonreversibility substates. Finally, using repetitive transcranial magnetic stimulation-fMRI data, we investigated the modulation effects of repetitive transcranial magnetic stimulation on varying nonreversibility substate dynamics. The results show that: (i) as window length increased, the varying nonreversibility variance decreased, while the sliding step almost did not alter it; (ii) the global high varying nonreversibility states and low varying nonreversibility states were reproducible across multiple datasets and different window lengths; and (iii) there were increased low varying nonreversibility states and decreased high varying nonreversibility states when the left frontal lobe was stimulated, but not the occipital lobe. Taken together, these results provide a thermodynamic equilibrium perspective of intrinsic brain organization and reorganization under local perturbation.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Xingjian Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
- The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi 710049, China
| |
Collapse
|
15
|
Ruffini G, Lopez-Sola E, Vohryzek J, Sanchez-Todo R. Neural Geometrodynamics, Complexity, and Plasticity: A Psychedelics Perspective. ENTROPY (BASEL, SWITZERLAND) 2024; 26:90. [PMID: 38275498 PMCID: PMC11154528 DOI: 10.3390/e26010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
We explore the intersection of neural dynamics and the effects of psychedelics in light of distinct timescales in a framework integrating concepts from dynamics, complexity, and plasticity. We call this framework neural geometrodynamics for its parallels with general relativity's description of the interplay of spacetime and matter. The geometry of trajectories within the dynamical landscape of "fast time" dynamics are shaped by the structure of a differential equation and its connectivity parameters, which themselves evolve over "slow time" driven by state-dependent and state-independent plasticity mechanisms. Finally, the adjustment of plasticity processes (metaplasticity) takes place in an "ultraslow" time scale. Psychedelics flatten the neural landscape, leading to heightened entropy and complexity of neural dynamics, as observed in neuroimaging and modeling studies linking increases in complexity with a disruption of functional integration. We highlight the relationship between criticality, the complexity of fast neural dynamics, and synaptic plasticity. Pathological, rigid, or "canalized" neural dynamics result in an ultrastable confined repertoire, allowing slower plastic changes to consolidate them further. However, under the influence of psychedelics, the destabilizing emergence of complex dynamics leads to a more fluid and adaptable neural state in a process that is amplified by the plasticity-enhancing effects of psychedelics. This shift manifests as an acute systemic increase of disorder and a possibly longer-lasting increase in complexity affecting both short-term dynamics and long-term plastic processes. Our framework offers a holistic perspective on the acute effects of these substances and their potential long-term impacts on neural structure and function.
Collapse
Affiliation(s)
- Giulio Ruffini
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
| | - Edmundo Lopez-Sola
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, Universitat Pompeu Fabra, 08018 Barcelona, Spain;
| | - Jakub Vohryzek
- Computational Neuroscience Group, Universitat Pompeu Fabra, 08018 Barcelona, Spain;
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, UK
| | - Roser Sanchez-Todo
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, Universitat Pompeu Fabra, 08018 Barcelona, Spain;
| |
Collapse
|
16
|
Idesis S, Geli S, Faskowitz J, Vohryzek J, Sanz Perl Y, Pieper F, Galindo-Leon E, Engel AK, Deco G. Functional hierarchies in brain dynamics characterized by signal reversibility in ferret cortex. PLoS Comput Biol 2024; 20:e1011818. [PMID: 38241383 PMCID: PMC10836715 DOI: 10.1371/journal.pcbi.1011818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/02/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Brain signal irreversibility has been shown to be a promising approach to study neural dynamics. Nevertheless, the relation with cortical hierarchy and the influence of different electrophysiological features is not completely understood. In this study, we recorded local field potentials (LFPs) during spontaneous behavior, including awake and sleep periods, using custom micro-electrocorticographic (μECoG) arrays implanted in ferrets. In contrast to humans, ferrets remain less time in each state across the sleep-wake cycle. We deployed a diverse set of metrics in order to measure the levels of complexity of the different behavioral states. In particular, brain irreversibility, which is a signature of non-equilibrium dynamics, captured by the arrow of time of the signal, revealed the hierarchical organization of the ferret's cortex. We found different signatures of irreversibility and functional hierarchy of large-scale dynamics in three different brain states (active awake, quiet awake, and deep sleep), showing a lower level of irreversibility in the deep sleep stage, compared to the other. Irreversibility also allowed us to disentangle the influence of different cortical areas and frequency bands in this process, showing a predominance of the parietal cortex and the theta band. Furthermore, when inspecting the embedded dynamic through a Hidden Markov Model, the deep sleep stage was revealed to have a lower switching rate and lower entropy production. These results suggest functional hierarchies in organization that can be revealed through thermodynamic features and information theory metrics.
Collapse
Affiliation(s)
- Sebastian Idesis
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
| | - Sebastián Geli
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, Indiana, United States of America
| | - Jakub Vohryzek
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
| | - Yonatan Sanz Perl
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
- National Scientific and Technical Research Council, Buenos Aires, Argentina
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Florian Pieper
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Edgar Galindo-Leon
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K. Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gustavo Deco
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
17
|
Deco G, Lynn CW, Sanz Perl Y, Kringelbach ML. Violations of the fluctuation-dissipation theorem reveal distinct nonequilibrium dynamics of brain states. Phys Rev E 2023; 108:064410. [PMID: 38243472 DOI: 10.1103/physreve.108.064410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/16/2023] [Indexed: 01/21/2024]
Abstract
The brain is a nonequilibrium system whose dynamics change in different brain states, such as wakefulness and deep sleep. Thermodynamics provides the tools for revealing these nonequilibrium dynamics. We used violations of the fluctuation-dissipation theorem to describe the hierarchy of nonequilibrium dynamics associated with different brain states. Together with a whole-brain model fitted to empirical human neuroimaging data, and deriving the appropriate analytical expressions, we were able to capture the deviation from equilibrium in different brain states that arises from asymmetric interactions and hierarchical organization.
Collapse
Affiliation(s)
- Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Christopher W Lynn
- Initiative for the Theoretical Sciences, Graduate Center, City University of New York, New York, New York 10016, USA and Joseph Henry Laboratories of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Yonatan Sanz Perl
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain
- Department of Physics, University of Buenos Aires, Buenos Aires 1428, Argentina and Paris Brain Institute (ICM), Paris 75013, France
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, United Kingdom; Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom; and Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
18
|
Deco G, Sanz Perl Y, de la Fuente L, Sitt JD, Yeo BTT, Tagliazucchi E, Kringelbach ML. The arrow of time of brain signals in cognition: Potential intriguing role of parts of the default mode network. Netw Neurosci 2023; 7:966-998. [PMID: 37781151 PMCID: PMC10473271 DOI: 10.1162/netn_a_00300] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/14/2022] [Indexed: 10/03/2023] Open
Abstract
A promising idea in human cognitive neuroscience is that the default mode network (DMN) is responsible for coordinating the recruitment and scheduling of networks for computing and solving task-specific cognitive problems. This is supported by evidence showing that the physical and functional distance of DMN regions is maximally removed from sensorimotor regions containing environment-driven neural activity directly linked to perception and action, which would allow the DMN to orchestrate complex cognition from the top of the hierarchy. However, discovering the functional hierarchy of brain dynamics requires finding the best way to measure interactions between brain regions. In contrast to previous methods measuring the hierarchical flow of information using, for example, transfer entropy, here we used a thermodynamics-inspired, deep learning based Temporal Evolution NETwork (TENET) framework to assess the asymmetry in the flow of events, 'arrow of time', in human brain signals. This provides an alternative way of quantifying hierarchy, given that the arrow of time measures the directionality of information flow that leads to a breaking of the balance of the underlying hierarchy. In turn, the arrow of time is a measure of nonreversibility and thus nonequilibrium in brain dynamics. When applied to large-scale Human Connectome Project (HCP) neuroimaging data from close to a thousand participants, the TENET framework suggests that the DMN plays a significant role in orchestrating the hierarchy, that is, levels of nonreversibility, which changes between the resting state and when performing seven different cognitive tasks. Furthermore, this quantification of the hierarchy of the resting state is significantly different in health compared to neuropsychiatric disorders. Overall, the present thermodynamics-based machine-learning framework provides vital new insights into the fundamental tenets of brain dynamics for orchestrating the interactions between cognition and brain in complex environments.
Collapse
Affiliation(s)
- Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Clayton VIC, Australia
| | - Yonatan Sanz Perl
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
| | - Laura de la Fuente
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
| | - Jacobo D. Sitt
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - B. T. Thomas Yeo
- Centre for Sleep & Cognition, Centre for Translational MR Research, Department of Electrical and Computer Engineering, N.1. Institute for Health and Institute for Digital Medicine, National University of Singapore, Singapore
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
| | - Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
19
|
Ibáñez A, Reiss AB, Custodio N, Agosta F. Editorial: Insights in Alzheimer's disease and related dementias: 2022. Front Aging Neurosci 2023; 15:1279870. [PMID: 37810616 PMCID: PMC10556743 DOI: 10.3389/fnagi.2023.1279870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Affiliation(s)
- Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés and CONICET, Buenos Aires, Argentina
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- Trinity College Dublin (TCD), Dublin, Ireland
| | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY, United States
| | - Nilton Custodio
- Department of Neurology, Instituto Peruano de Neurociencias, Lima, Peru
- Unit of Diagnosis of Cognitive Impairment and Dementia Prevention, Instituto Peruano de Neurociencias, Lima, Peru
| | | |
Collapse
|
20
|
Idesis S, Allegra M, Vohryzek J, Sanz Perl Y, Faskowitz J, Sporns O, Corbetta M, Deco G. A low dimensional embedding of brain dynamics enhances diagnostic accuracy and behavioral prediction in stroke. Sci Rep 2023; 13:15698. [PMID: 37735201 PMCID: PMC10514061 DOI: 10.1038/s41598-023-42533-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Large-scale brain networks reveal structural connections as well as functional synchronization between distinct regions of the brain. The latter, referred to as functional connectivity (FC), can be derived from neuroimaging techniques such as functional magnetic resonance imaging (fMRI). FC studies have shown that brain networks are severely disrupted by stroke. However, since FC data are usually large and high-dimensional, extracting clinically useful information from this vast amount of data is still a great challenge, and our understanding of the functional consequences of stroke remains limited. Here, we propose a dimensionality reduction approach to simplify the analysis of this complex neural data. By using autoencoders, we find a low-dimensional representation encoding the fMRI data which preserves the typical FC anomalies known to be present in stroke patients. By employing the latent representations emerging from the autoencoders, we enhanced patients' diagnostics and severity classification. Furthermore, we showed how low-dimensional representation increased the accuracy of recovery prediction.
Collapse
Affiliation(s)
- Sebastian Idesis
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Carrer Trias i Fargas 25-27, 08005, Barcelona, Catalonia, Spain.
| | - Michele Allegra
- Padova Neuroscience Center (PNC), University of Padova, via Orus 2/B, 35129, Padua, Italy
- Department of Physics and Astronomy "G. Galilei", University of Padova, via Marzolo 8, 35131, Padua, Italy
| | - Jakub Vohryzek
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Carrer Trias i Fargas 25-27, 08005, Barcelona, Catalonia, Spain
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
| | - Yonatan Sanz Perl
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Carrer Trias i Fargas 25-27, 08005, Barcelona, Catalonia, Spain
- Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council, Buenos Aires, Argentina
- Institut du Cerveau et de la Moelle Épinière, ICM, Paris, France
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Maurizio Corbetta
- Padova Neuroscience Center (PNC), University of Padova, via Orus 2/B, 35129, Padua, Italy
- Department of Neuroscience, University of Padova, via Giustiniani 5, 35128, Padua, Italy
- Veneto Institute of Molecular Medicine (VIMM), via Orus 2/B, 35129, Padua, Italy
| | - Gustavo Deco
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Carrer Trias i Fargas 25-27, 08005, Barcelona, Catalonia, Spain
| |
Collapse
|
21
|
Tewarie PKB, Hindriks R, Lai YM, Sotiropoulos SN, Kringelbach M, Deco G. Non-reversibility outperforms functional connectivity in characterisation of brain states in MEG data. Neuroimage 2023; 276:120186. [PMID: 37268096 DOI: 10.1016/j.neuroimage.2023.120186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Characterising brain states during tasks is common practice for many neuroscientific experiments using electrophysiological modalities such as electroencephalography (EEG) and magnetoencephalography (MEG). Brain states are often described in terms of oscillatory power and correlated brain activity, i.e. functional connectivity. It is, however, not unusual to observe weak task induced functional connectivity alterations in the presence of strong task induced power modulations using classical time-frequency representation of the data. Here, we propose that non-reversibility, or the temporal asymmetry in functional interactions, may be more sensitive to characterise task induced brain states than functional connectivity. As a second step, we explore causal mechanisms of non-reversibility in MEG data using whole brain computational models. We include working memory, motor, language tasks and resting-state data from participants of the Human Connectome Project (HCP). Non-reversibility is derived from the lagged amplitude envelope correlation (LAEC), and is based on asymmetry of the forward and reversed cross-correlations of the amplitude envelopes. Using random forests, we find that non-reversibility outperforms functional connectivity in the identification of task induced brain states. Non-reversibility shows especially better sensitivity to capture bottom-up gamma induced brain states across all tasks, but also alpha band associated brain states. Using whole brain computational models we find that asymmetry in the effective connectivity and axonal conduction delays play a major role in shaping non-reversibility across the brain. Our work paves the way for better sensitivity in characterising brain states during both bottom-up as well as top-down modulation in future neuroscientific experiments.
Collapse
Affiliation(s)
- Prejaas K B Tewarie
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain; Clinical Neurophysiology Group, University of Twente, Enschede, The Netherlands; Department of Neurology, Amsterdam UMC, Amsterdam, the Netherlands; Sir Peter Mansfield Imaging Centre, School of Physics, University of Nottingham, Nottingham, United Kingdom.
| | - Rikkert Hindriks
- Department of Mathematics, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Yi Ming Lai
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, United Kingdom
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, United Kingdom; NIHR Biomedical Research Centre, University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Morten Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
22
|
Bolton TAW, Van De Ville D, Amico E, Preti MG, Liégeois R. The arrow-of-time in neuroimaging time series identifies causal triggers of brain function. Hum Brain Mapp 2023; 44:4077-4087. [PMID: 37209360 PMCID: PMC10258533 DOI: 10.1002/hbm.26331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/07/2023] [Accepted: 04/18/2023] [Indexed: 05/22/2023] Open
Abstract
Moving from association to causal analysis of neuroimaging data is crucial to advance our understanding of brain function. The arrow-of-time (AoT), that is, the known asymmetric nature of the passage of time, is the bedrock of causal structures shaping physical phenomena. However, almost all current time series metrics do not exploit this asymmetry, probably due to the difficulty to account for it in modeling frameworks. Here, we introduce an AoT-sensitive metric that captures the intensity of causal effects in multivariate time series, and apply it to high-resolution functional neuroimaging data. We find that causal effects underlying brain function are more distinctively localized in space and time than functional activity or connectivity, thereby allowing us to trace neural pathways recruited in different conditions. Overall, we provide a mapping of the causal brain that challenges the association paradigm of brain function.
Collapse
Affiliation(s)
- Thomas A. W. Bolton
- Connectomics Laboratory, Department of RadiologyCentre Hospitalier Universitaire VaudoisLausanneSwitzerland
- Department of Clinical NeurosciencesCentre Hospitalier Universitaire VaudoisLausanneSwitzerland
| | - Dimitri Van De Ville
- Neuro‐X InstituteÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
- Department of Radiology and Medical InformaticsUniversity of GenevaGenevaSwitzerland
| | - Enrico Amico
- Neuro‐X InstituteÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
- Department of Radiology and Medical InformaticsUniversity of GenevaGenevaSwitzerland
| | - Maria G. Preti
- Neuro‐X InstituteÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
- Department of Radiology and Medical InformaticsUniversity of GenevaGenevaSwitzerland
- CIBM Center for Biomedical ImagingVaudSwitzerland
| | - Raphaël Liégeois
- Neuro‐X InstituteÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
- Department of Radiology and Medical InformaticsUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
23
|
Deco G, Perl YS, Ponce-Alvarez A, Tagliazucchi E, Whybrow P, Fuster J, Kringelbach ML. One ring to rule them all: The unifying role of prefrontal cortex in steering task-related brain dynamics. Prog Neurobiol 2023:102468. [PMID: 37301532 DOI: 10.1016/j.pneurobio.2023.102468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Surviving and thriving in a complex world require intricate balancing of higher order brain functions with essential survival-related behaviours. Exactly how this is achieved is not fully understood but a large body of work has shown that different regions in the prefrontal cortex (PFC) play key roles for diverse cognitive and emotional tasks including emotion, control, response inhibition, mental set shifting and working memory. We hypothesised that the key regions are hierarchically organised and we developed a framework for discovering the driving brain regions at the top of the hierarchy, responsible for steering the brain dynamics of higher brain function. We fitted a time-dependent whole-brain model to the neuroimaging data from large-scale Human Connectome Project with over 1,000 participants and computed the entropy production for rest and seven tasks (covering the main domains of cognition). This thermodynamics framework allowed us to identify the main common, unifying drivers steering the orchestration of brain dynamics during difficult tasks; located in key regions of the PFC (inferior frontal gyrus, lateral orbitofrontal cortex, rostral and caudal frontal cortex and rostral anterior cingulate cortex). Selectively lesioning these regions in the whole-brain model demonstrated their causal mechanistic importance. Overall, this shows the existence of a 'ring' of specific PFC regions ruling over the orchestration of higher brain function.
Collapse
Affiliation(s)
- Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
| | - Yonatan Sanz Perl
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain; Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
| | - Adrián Ponce-Alvarez
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
| | - Peter Whybrow
- University of California, Los Angeles, CA 90024, USA; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
| | - Joaquín Fuster
- University of California, Los Angeles, CA 90024, USA; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Psychiatry, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, DK
| |
Collapse
|
24
|
G-Guzmán E, Perl YS, Vohryzek J, Escrichs A, Manasova D, Türker B, Tagliazucchi E, Kringelbach M, Sitt JD, Deco G. The lack of temporal brain dynamics asymmetry as a signature of impaired consciousness states. Interface Focus 2023; 13:20220086. [PMID: 37065259 PMCID: PMC10102727 DOI: 10.1098/rsfs.2022.0086] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/17/2023] [Indexed: 04/18/2023] Open
Abstract
Life is a constant battle against equilibrium. From the cellular level to the macroscopic scale, living organisms as dissipative systems require the violation of their detailed balance, i.e. metabolic enzymatic reactions, in order to survive. We present a framework based on temporal asymmetry as a measure of non-equilibrium. By means of statistical physics, it was discovered that temporal asymmetries establish an arrow of time useful for assessing the reversibility in human brain time series. Previous studies in human and non-human primates have shown that decreased consciousness states such as sleep and anaesthesia result in brain dynamics closer to the equilibrium. Furthermore, there is growing interest in the analysis of brain symmetry based on neuroimaging recordings and since it is a non-invasive technique, it can be extended to different brain imaging modalities and applied at different temporo-spatial scales. In the present study, we provide a detailed description of our methodological approach, paying special attention to the theories that motivated this work. We test, for the first time, the reversibility analysis in human functional magnetic resonance imaging data in patients suffering from disorder of consciousness. We verify that the tendency of a decrease in the asymmetry of the brain signal together with the decrease in non-stationarity are key characteristics of impaired consciousness states. We expect that this work will open the way for assessing biomarkers for patients' improvement and classification, as well as motivating further research on the mechanistic understanding underlying states of impaired consciousness.
Collapse
Affiliation(s)
- Elvira G-Guzmán
- Department of Information and Communication Technologies, Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Yonatan Sanz Perl
- Department of Information and Communication Technologies, Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm Physiological Investigation of Clinically Normal and Impaired Cognition Team, CNRS, 75013, Paris, France
| | - Jakub Vohryzek
- Department of Information and Communication Technologies, Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
| | - Anira Escrichs
- Department of Information and Communication Technologies, Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Dragana Manasova
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm Physiological Investigation of Clinically Normal and Impaired Cognition Team, CNRS, 75013, Paris, France
- Université Paris Cité, Paris, France
| | - Başak Türker
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm Physiological Investigation of Clinically Normal and Impaired Cognition Team, CNRS, 75013, Paris, France
| | - Enzo Tagliazucchi
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires, Argentina
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Morten Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Jutland, Denmark
| | - Jacobo D. Sitt
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm Physiological Investigation of Clinically Normal and Impaired Cognition Team, CNRS, 75013, Paris, France
| | - Gustavo Deco
- Department of Information and Communication Technologies, Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Department of Neuropsychology, Max Planck Institute for human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
25
|
Cruzat J, Herzog R, Prado P, Sanz-Perl Y, Gonzalez-Gomez R, Moguilner S, Kringelbach ML, Deco G, Tagliazucchi E, Ibañez A. Temporal Irreversibility of Large-Scale Brain Dynamics in Alzheimer's Disease. J Neurosci 2023; 43:1643-1656. [PMID: 36732071 PMCID: PMC10008060 DOI: 10.1523/jneurosci.1312-22.2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/12/2022] [Accepted: 12/25/2022] [Indexed: 02/04/2023] Open
Abstract
Healthy brain dynamics can be understood as the emergence of a complex system far from thermodynamic equilibrium. Brain dynamics are temporally irreversible and thus establish a preferred direction in time (i.e., arrow of time). However, little is known about how the time-reversal symmetry of spontaneous brain activity is affected by Alzheimer's disease (AD). We hypothesized that the level of irreversibility would be compromised in AD, signaling a fundamental shift in the collective properties of brain activity toward equilibrium dynamics. We investigated the irreversibility from resting-state fMRI and EEG data in male and female human patients with AD and elderly healthy control subjects (HCs). We quantified the level of irreversibility and, thus, proximity to nonequilibrium dynamics by comparing forward and backward time series through time-shifted correlations. AD was associated with a breakdown of temporal irreversibility at the global, local, and network levels, and at multiple oscillatory frequency bands. At the local level, temporoparietal and frontal regions were affected by AD. The limbic, frontoparietal, default mode, and salience networks were the most compromised at the network level. The temporal reversibility was associated with cognitive decline in AD and gray matter volume in HCs. The irreversibility of brain dynamics provided higher accuracy and more distinctive information than classical neurocognitive measures when differentiating AD from control subjects. Findings were validated using an out-of-sample cohort. Present results offer new evidence regarding pathophysiological links between the entropy generation rate of brain dynamics and the clinical presentation of AD, opening new avenues for dementia characterization at different levels.SIGNIFICANCE STATEMENT By assessing the irreversibility of large-scale dynamics across multiple brain signals, we provide a precise signature capable of distinguishing Alzheimer's disease (AD) at the global, local, and network levels and different oscillatory regimes. Irreversibility of limbic, frontoparietal, default-mode, and salience networks was the most compromised by AD compared with more sensory-motor networks. Moreover, the time-irreversibility properties associated with cognitive decline and atrophy outperformed and complemented classical neurocognitive markers of AD in predictive classification performance. Findings were generalized and replicated with an out-of-sample validation procedure. We provide novel multilevel evidence of reduced irreversibility in AD brain dynamics that has the potential to open new avenues for understating neurodegeneration in terms of the temporal asymmetry of brain dynamics.
Collapse
Affiliation(s)
- Josephine Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- Fundación para el Estudio de la Conciencia Humana (ECoH), 7550000, Santiago, Chile
| | - Ruben Herzog
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- Fundación para el Estudio de la Conciencia Humana (ECoH), 7550000, Santiago, Chile
| | - Pavel Prado
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Yonatan Sanz-Perl
- Department of Physics, University of Buenos Aires, C1428EGA, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1033AAJ, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, C116ABJ, Buenos Aires, Argentina
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, 08005 Barcelona, Spain
| | - Raul Gonzalez-Gomez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
| | - Sebastian Moguilner
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94143
- Global Brain Health Institute, Trinity College, Dublin 2, Ireland
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, 8000 Århus, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, United Kingdom
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, 08005 Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, D-04303 Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne 3168, Australia
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- Department of Physics, University of Buenos Aires, C1428EGA, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1033AAJ, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, C116ABJ, Buenos Aires, Argentina
| | - Agustín Ibañez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- National Scientific and Technical Research Council (CONICET), C1033AAJ, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, C116ABJ, Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94143
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
26
|
Kringelbach ML, Perl YS, Tagliazucchi E, Deco G. Toward naturalistic neuroscience: Mechanisms underlying the flattening of brain hierarchy in movie-watching compared to rest and task. SCIENCE ADVANCES 2023; 9:eade6049. [PMID: 36638163 PMCID: PMC9839335 DOI: 10.1126/sciadv.ade6049] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/13/2022] [Indexed: 06/04/2023]
Abstract
Identifying the functional specialization of the brain has moved from using cognitive tasks and resting state to using ecological relevant, naturalistic movies. We leveraged a large-scale neuroimaging dataset to directly investigate the hierarchical reorganization of functional brain activity when watching naturalistic films compared to performing seven cognitive tasks and resting. A thermodynamics-inspired whole-brain model paradigm revealed the generative underlying mechanisms for changing the balance in causal interactions between brain regions in different conditions. Paradoxically, the hierarchy is flatter for movie-watching, and the level of nonreversibility is significantly smaller in comparison to both rest and tasks, where the latter in turn have the highest levels of hierarchy and nonreversibility. The underlying mechanisms were revealed by the model-based generative effective connectivity (GEC). Naturalistic films could therefore provide a fast and convenient way to measure important changes in GEC (integrating functional and anatomical connectivity) found in, for example, neuropsychiatric disorders. Overall, this study demonstrates the benefits of moving toward a more naturalistic neuroscience.
Collapse
Affiliation(s)
- Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Yonatan Sanz Perl
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|