1
|
Shang KM, Elsheikha HM, Ma H, Wei YJ, Zhao JX, Qin Y, Li JM, Zhao ZY, Zhang XX. Metagenomic profiling of cecal microbiota and antibiotic resistome in rodents. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117186. [PMID: 39426111 DOI: 10.1016/j.ecoenv.2024.117186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
The rodent gut microbiota is a known reservoir of antimicrobial resistance, yet the distribution of antibiotic resistance genes (ARGs) within rodent cecal microbial communities and the specific bacterial species harboring these ARGs remain largely underexplored. This study employed high-throughput sequencing of 122 samples from five distinct rodent species to comprehensively profile the diversity and distribution of ARGs and to identify the bacterial hosts of these genes. A gene catalog of the rodent cecal microbiome was constructed, comprising 22,757,369 non-redundant genes. Analysis of the microbial composition and diversity revealed that Bacillota and Bacteroidota were the dominant bacterial phyla across different rodent species, with significant variations in species composition among the rodents. In total, 3703 putative antimicrobial resistance protein-coding genes were identified, corresponding to 392 unique ARG types classified into 32 resistance classes. The most enriched ARGs in the rodent cecal microbiome were associated with multidrug resistance, followed by glycopeptide and elfamycin antibiotics. Procrustes analysis demonstrated a correlation between the structure of the microbial community and the resistome. Metagenomic assembly-based host tracking indicated that most ARG-carrying contigs originated from the bacterial family Oscillospiraceae. Additionally, 130 ARGs showed significant correlations with mobile genetic elements. These findings provide new insights into the cecal microbiota and the prevalence of ARGs across five rodent species. Future research on a wider range of wild rodent species carrying ARGs will further elucidate the mechanisms underlying the transmission of antimicrobial resistance.
Collapse
Affiliation(s)
- Kai-Meng Shang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - He Ma
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China
| | - Yong-Jie Wei
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China
| | - Ji-Xin Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China
| | - Ya Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China; College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, PR China
| | - Jian-Ming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province, PR China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, Jilin Province, PR China; Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun, Jilin Province, PR China
| | - Zi-Yu Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, PR China
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China.
| |
Collapse
|
2
|
Ding J, Cui X, Wang X, Zhai F, Wang L, Zhu L. Multi-omics analysis of gut microbiota and metabolites reveals contrasting profiles in domestic pigs and wild boars across urban environments. Front Microbiol 2024; 15:1450306. [PMID: 39193431 PMCID: PMC11347354 DOI: 10.3389/fmicb.2024.1450306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
The gut microbiota plays a crucial role in host health and metabolism. This study explores the differences in gut microbiota and metabolites between domestic pigs (DP) and wild boars (WB) in urban environments. We analyzed gut microbial composition, metabolic profiles, virome composition, antibiotic resistance genes (ARGs), and human pathogenic bacteria (HPB) in both DP and WB. Our results revealed that DP exhibited a higher Firmicutes/Bacteroidetes ratio and were enriched in bacterial genera associated with domestication and modern feeding practices. Metabolomic analysis showed distinct profiles, with WB significantly enriched in the Pantothenate and CoA biosynthesis pathway, highlighting dietary and environmental influences on host metabolism. Additionally, DP had a distinct gut virome composition, particularly enriched in lytic phages of the Chaseviridae family. ARG analysis indicated a higher abundance of tetracycline resistance genes in DP, likely due to antibiotic use in pig farms. Furthermore, variations in HPB composition underscored potential health risks associated with contact with pig feces. These findings provide valuable insights into the microbial ecology of domestic pigs and wild boars, emphasizing the importance of these comparisons in identifying zoonotic pathogen transmission pathways and managing antibiotic resistance. Continued research in this area is essential for developing effective strategies to mitigate public health risks and promote sustainable livestock management practices.
Collapse
Affiliation(s)
- Jingjing Ding
- Jiangsu Academy of Forestry, Nanjing, China
- Jiangsu Yangzhou Urban Forest Ecosystem National Observation and Research Station, Yangzhou, China
| | - Xinyuan Cui
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan Wang
- Jiangsu Academy of Forestry, Nanjing, China
- Jiangsu Yangzhou Urban Forest Ecosystem National Observation and Research Station, Yangzhou, China
| | - Feifei Zhai
- Jiangsu Wildlife Protection Station, Nanjing, China
| | - Lei Wang
- Jiangsu Academy of Forestry, Nanjing, China
- Jiangsu Yangzhou Urban Forest Ecosystem National Observation and Research Station, Yangzhou, China
| | - Lifeng Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Liu T, Lee S, Kim M, Fan P, Boughton RK, Boucher C, Jeong KC. A study at the wildlife-livestock interface unveils the potential of feral swine as a reservoir for extended-spectrum β-lactamase-producing Escherichia coli. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134694. [PMID: 38788585 DOI: 10.1016/j.jhazmat.2024.134694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Wildlife is known to serve as carriers and sources of antimicrobial resistance (AMR). Due to their unrestricted movements and behaviors, they can spread antimicrobial resistant bacteria among livestock, humans, and the environment, thereby accelerating the dissemination of AMR. Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is one of major concerns threatening human and animal health, yet transmission mechanisms at the wildlife-livestock interface are not well understood. Here, we investigated the mechanisms of ESBL-producing bacteria spreading across various hosts, including cattle, feral swine, and coyotes in the same habitat range, as well as from environmental samples over a two-year period. We report a notable prevalence and clonal dissemination of ESBL-producing E. coli in feral swine and coyotes, suggesting their persistence and adaptation within wildlife hosts. In addition, in silico studies showed that horizontal gene transfer, mediated by conjugative plasmids and insertion sequences elements, may play a key role in spreading the ESBL genes among these bacteria. Furthermore, the shared gut resistome of cattle and feral swine suggests the dissemination of antibiotic resistance genes at the wildlife-livestock interface. Taken together, our results suggest that feral swine may serve as a reservoir of ESBL-producing E. coli.
Collapse
Affiliation(s)
- Ting Liu
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611 USA; Department of Animal Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611 USA
| | - Shinyoung Lee
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611 USA; Department of Animal Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611 USA
| | - Miju Kim
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611 USA; Department of Animal Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611 USA; Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Peixin Fan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611 USA; Department of Animal Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611 USA
| | - Raoul K Boughton
- Range Cattle Research and Education Center, Wildlife Ecology and Conservation, University of Florida, Ona, FL 33865, USA
| | - Christina Boucher
- Department of Computer and Information Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611 USA
| | - Kwangcheol C Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611 USA; Department of Animal Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611 USA.
| |
Collapse
|
4
|
Zhai J, Wang Y, Tang B, Zheng S, He S, Zhao W, Lin J, Li F, Bao Y, Lancuo Z, Liu C, Wang W. A comparison of antibiotic resistance genes and mobile genetic elements in wild and captive Himalayan vultures. PeerJ 2024; 12:e17710. [PMID: 39006014 PMCID: PMC11243982 DOI: 10.7717/peerj.17710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
As the most widely distributed scavenger birds on the Qinghai-Tibetan Plateau, Himalayan vultures (Gyps himalayensis) feed on the carcasses of various wild and domestic animals, facing the dual selection pressure of pathogens and antibiotics and are suitable biological sentinel species for monitoring antibiotic resistance genes (ARGs). This study used metagenomic sequencing to comparatively investigate the ARGs and mobile genetic elements (MGEs) of wild and captive Himalayan vultures. Overall, the resistome of Himalayan vultures contained 414 ARG subtypes resistant to 20 ARG types, with abundances ranging from 0.01 to 1,493.60 ppm. The most abundant resistance type was beta-lactam (175 subtypes), followed by multidrug resistance genes with 68 subtypes. Decreases in the abundance of macrolide-lincosamide-streptogramin (MLS) resistance genes were observed in the wild group compared with the zoo group. A total of 75 genera (five phyla) of bacteria were predicted to be the hosts of ARGs in Himalayan vultures, and the clinical (102 ARGs) and high-risk ARGs (35 Rank I and 56 Rank II ARGs) were also analyzed. Among these ARGs, twenty-two clinical ARGs, nine Rank I ARG subtypes, sixteen Rank II ARG subtypes were found to differ significantly between the two groups. Five types of MGEs (128 subtypes) were found in Himalayan vultures. Plasmids (62 subtypes) and transposases (44 subtypes) were found to be the main MGE types. Efflux pump and antibiotic deactivation were the main resistance mechanisms of ARGs in Himalayan vultures. Decreases in the abundance of cellular protection were identified in wild Himalayan vultures compared with the captive Himalayan vultures. Procrustes analysis and the co-occurrence networks analysis revealed different patterns of correlations among gut microbes, ARGs, and MGEs in wild and captive Himalayan vultures. This study is the first step in describing the characterization of the ARGs in the gut of Himalayan vultures and highlights the need to pay more attention to scavenging birds.
Collapse
Affiliation(s)
- Jundie Zhai
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - You Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Boyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Sisi Zheng
- Animal Disease Prevention and Control Center of Qinghai Province, Xining, China
| | - Shunfu He
- Xining Wildlife Park of Qinghai Province, Xining, China
| | - Wenxin Zhao
- Xining Wildlife Park of Qinghai Province, Xining, China
| | - Jun Lin
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Feng Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Yuzi Bao
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Zhuoma Lancuo
- College of Finance and Economics, Qinghai University, Xining, China
| | - Chuanfa Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wen Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
5
|
Zhao J, Feng T, An X, Chen X, Han N, Wang J, Chang G, Hou X. Livestock grazing is associated with the gut microbiota and antibiotic resistance genes in sympatric plateau pika (Ochotona curzoniae). Integr Zool 2024; 19:646-661. [PMID: 37828802 DOI: 10.1111/1749-4877.12778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
With the overuse of antibiotics in health care and animal husbandry, antibiotic resistance becomes a serious threat to public health. Antibiotic residues from veterinary medicine have increased the dissemination of antibiotic resistance genes (ARGs) by horizontal gene transfer globally, leading to the enrichment of ARGs in wildlife. Plateau pika (Ochotona curzoniae) is a small herbivore endemic to the Qinghai-Tibetan Plateau. Previous studies reveal that pika evolves a coprophagy behavior toward cohabitated yak, which makes the pika population a potential reservoir of ARGs. Yet, little is known about the resistome of pika under different grazing intensities. Here, we sampled the cecum content of pika from three different grazing intensity areas in the Qinghai-Tibetan Plateau to evaluate the effect of grazing on its gut microbiota and resistome. By using the 16S full-length amplicon and metagenomic sequencing, our study revealed that livestock grazing significantly altered the gut microbial community of plateau pika as compared to prohibited grazing areas. We found bacterial lineage Prevotellaceae, Lachnospirales, and RF39 increased in grazing areas. Analysis of the resistome revealed that pika from continuous grazing areas enriched a higher abundance of colistin (MCR) and streptogramin (vat) resistance genes. Moreover, we observed significant correlations between the gut microbial community, ARGs, and mobile genetic element profiles, hinting that pika gut microbiota was an important shaping force of the resistome. In future studies, the continuous monitoring of wildlife gut resistome and environmental antibiotic residues is imperative for a better understanding and for tackling the horizontal gene transfer of ARGs across the wildlife-livestock interface.
Collapse
Affiliation(s)
- Jidong Zhao
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, P. R. China
| | - Tuo Feng
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, P. R. China
| | - Xiaolei An
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, P. R. China
| | - Xiaoning Chen
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, P. R. China
| | - Ning Han
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, P. R. China
| | - Jing Wang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, P. R. China
| | - Gang Chang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, P. R. China
| | - Xiang Hou
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, P. R. China
| |
Collapse
|
6
|
Tutija JF, Freitas MG, Martinez EV, Silva JFG, Araripe MBM, Leal CRB, Souza Filho AF, Ramos CAN. High frequency of multidrug-resistant Escherichia coli from cattle in the Cerrado and Pantanal biomes of Brazil. Microb Pathog 2024; 192:106704. [PMID: 38761893 DOI: 10.1016/j.micpath.2024.106704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
The indiscriminate use of antimicrobials has led to the emergence of resistant bacteria, especially pathogenic strains of Escherichia coli, which are associated with diseases in animals and humans. The aim of the present study was to characterize E. coli isolates in calves with regards to the presence of virulence genes and investigate the resistance of the isolates to different antimicrobials. Between 2021 and 2023, 456 fecal samples were collected from calves in the Pantanal and Cerrado biomes of the state of Mato Grosso do Sul, Brazil. All samples were subjected to microbiological analysis and disc diffusion antibiogram testing. The polymerase chain reaction method was used to detect virulence genes. Bacterial growth was found in 451 of the 456 samples and biochemically identified as Escherichia coli. All 451 isolates (100 %) exhibited some phenotypic resistance to antimicrobials and 67.62 % exhibited multidrug resistance. The frequency of multidrug-resistant isolates in the Cerrado biome was significantly higher than that in the Pantanal biome (p = 0.0001). In the Cerrado, the most common pathotype was Shiga toxin-producing Escherichia coli (STEC) (28 %), followed by toxigenic Escherichia coli (ETEC) (11 %), enterohemorrhagic Escherichia coli (EHEC) (8 %) and enteropathogenic Escherichia coli (EPEC) (2 %). In most cases, the concomitant occurrence of pathotypes was more common, the most frequent of which were ETEC + STEC (33 %), ETEC + EHEC (15 %) and ETEC + EPEC (3 %). The STEC pathotype (30 %) was also found more frequently in the Pantanal, followed by EHEC (12 %), ETEC (9 %) and EPEC (6 %). The STEC pathotype had a significantly higher frequency of multidrug resistance (p = 0.0486) compared to the other pathotypes identified. The frequency of resistance was lower in strains from the Pantanal biome compared to those from the Cerrado biome. Although some factors are discussed in this paper, it is necessary to clarify the reasons for this difference and the possible impacts of these findings on both animal and human health in the region.
Collapse
Affiliation(s)
- J F Tutija
- Federal University of Mato Grosso do Sul, Campo Grande, Brazil.
| | - M G Freitas
- Federal University of Mato Grosso do Sul, Campo Grande, Brazil.
| | - E V Martinez
- Federal University of Mato Grosso do Sul, Campo Grande, Brazil.
| | - J F G Silva
- Federal University of Mato Grosso do Sul, Campo Grande, Brazil.
| | - M B M Araripe
- Federal University of Mato Grosso do Sul, Campo Grande, Brazil.
| | - C R B Leal
- Federal University of Mato Grosso do Sul, Campo Grande, Brazil.
| | - A F Souza Filho
- Federal University of Mato Grosso do Sul, Campo Grande, Brazil.
| | - C A N Ramos
- Federal University of Mato Grosso do Sul, Campo Grande, Brazil.
| |
Collapse
|
7
|
Łopucki R, Stępień-Pyśniak D, Christensen H, Kubiński K, Lenarczyk E, Martinez-de-Tejada G, Kitowski I, Masłyk M. Interspecies transmission of antimicrobial-resistant bacteria between wild birds and mammals in urban environment. Vet Microbiol 2024; 294:110130. [PMID: 38820727 DOI: 10.1016/j.vetmic.2024.110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
The transmission of antibiotic-resistant bacteria among wild animal species may hold significant epidemiological implications. However, this issue is seldom explored due to the perceived complexity of these systems, which discourages experimental investigation. To address this knowledge gap, we chose a configuration of birds and mammals coexisting in an urban green area as a research model: the rook Corvus frugilegus and the striped field mouse Apodemus agrarius. The indirect transmission of antimicrobial-resistant bacteria between these species is possible because rodents inhabiting rook colonies frequently come into contact with the birds' faeces and pellets. The study was conducted in two cities in eastern Poland (Central Europe) - Lublin and Chełm. Among 71 Escherichia (E.) coli isolates studied, 19.7% showed resistance to from one to six of the antibiotics tested, with much higher prevalence of antibiotic-resistant bacteria in the birds (32%) than in the rodents (7%). Whole genome sequencing was performed on 10 selected E. coli isolates representing similar resistance phenotypes. The following antimicrobial resistance genes were detected: blaTEM-1b, tet(A), tet(B), aph(6)-Id, aph(3'')-Ib, aadA1, aadA2, catA1, floR, cmlA, sul2, sul3, dfrA14, and dfrA2. Birds from the same city and also from both neighbouring cities shared E. coli bacteria with the same sequence types, whereas isolates detected in birds were not found to have been transferred to the mammalian population, despite close contact. This demonstrates that even intensive exposure to sources of these pathogens does not necessarily lead to effective transmission of antibiotic-resistant E. coli strains between birds and mammals. Further efforts should be dedicated to investigating actual transmission of antimicrobial-resistant bacteria in various ecological systems, including those that are crucial for public health, such as urban environments. This will facilitate the development of more accurate models for epidemiological threats and the formulation of well-balanced decisions regarding the coexistence of humans and urban wildlife.
Collapse
Affiliation(s)
- Rafał Łopucki
- John Paul II Catholic University of Lublin, Institute of Biological Sciences, Department of Biomedicine and Environmental Research, Konstantynów 1J, Lublin 20-708, Poland
| | - Dagmara Stępień-Pyśniak
- University of Life Sciences in Lublin, Faculty of Veterinary Medicine, Department of Veterinary Prevention and Avian Diseases, Głęboka 30, Lublin 20-612, Poland.
| | - Henrik Christensen
- University of Copenhagen, Department of Veterinary and Animal Sciences, Stigbøjlen 4, Frederiksberg C, Denmark
| | - Konrad Kubiński
- John Paul II Catholic University of Lublin, Institute of Biological Sciences, Department of Molecular Biology, Konstantynów 1J, Lublin 20-708, Poland
| | - Ewa Lenarczyk
- John Paul II Catholic University of Lublin, Institute of Biological Sciences, Department of Biomedicine and Environmental Research, Konstantynów 1J, Lublin 20-708, Poland
| | - Guillermo Martinez-de-Tejada
- University of Navarra, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), Irunlarrea 1, Pamplona E-31008, Spain
| | - Ignacy Kitowski
- University College of Applied Sciences in Chełm, Pocztowa 54, Chełm 22-100, Poland
| | - Maciej Masłyk
- John Paul II Catholic University of Lublin, Institute of Biological Sciences, Department of Molecular Biology, Konstantynów 1J, Lublin 20-708, Poland
| |
Collapse
|
8
|
Fu G, Zhang M, Huang Y, Han R, Qi K, Yin L, Zhao D, Huang Y, Ma T, Wang L. Effects of different addition levels of CHM-JM113 on growth performance, antioxidant capacity, organ index, and intestinal health of AA broilers. Front Vet Sci 2024; 11:1388173. [PMID: 38812557 PMCID: PMC11133612 DOI: 10.3389/fvets.2024.1388173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024] Open
Abstract
The purpose of the present study was to investigate the effects of different levels of a Chinese herbal medicine formulation combined with JM113 (CHM-JM113) on growth performance, antioxidant capacity, organ index, and intestinal health of AA broilers. The AA broiler chicks were randomly allocated to 5 treatments as follows: a basic diet for the control group, the basic diet supplemented with 0.25% CHM-JM113, 0.5% CHM-JM113, 1% CHM-JM113 and 2% CHM-JM113 for the treatment group, respectively. The results showed that the addition of CHM-JM113 to the diet significantly reduced the mortality (p < 0.01) and improved the European Broiler Index (EBI) (p < 0.05), whereas it had no significance on growth performance of AA broilers (p > 0.05). Comparing the control group, 0.5 and 1% CHM-JM113 group significantly improved the organ index of liver, spleen and bursa (p < 0.05). In terms of intestinal morphology and structure, the addition of different levels of CHM-JM113 increased VH and VH/CD ratio, decreased CD in the small intestine compared to the control group, with 1 and 2% of the additive dose being more effective (p < 0.05). Chinese herbal medicine and probiotics as natural antioxidants also significantly increased the content of SOD in serum of 21-day-old broilers (p < 0.01), and significantly decreased the content of MDA in serum (p < 0.01). At 42 days of age, the addition of 1 and 2% CHM-JM113 significantly increased the content of SOD (p < 0.01) and significantly decreased the content of MDA in the organism (p < 0.01), accompanied by a significant increase in T-AOC and CAT content. In the study of the effect of CHM-JM113 on intestinal immunity, compared with the control group, we found that 1% or 2% CHM-JM113 had a better effect on the expression of occludin and claudin-1 in the intestinal segments of broilers (p < 0.05). For the expression of GATA-3, 0.5% CHM-JM113 may have a better effect (p < 0.05). CHM-JM113 may be used as an antibiotic alternative in broiler production.
Collapse
Affiliation(s)
- Guanhua Fu
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Mengyu Zhang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yuanyuan Huang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
- Breeding Branch, Muyuan Foods Co., Ltd., Nanyang, China
| | - Runyu Han
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Kaixuan Qi
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Lidong Yin
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Dongchen Zhao
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yueyan Huang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Tenghe Ma
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Lihong Wang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
9
|
Mateus-Vargas RH, Arias-Pérez V, Sandoval-Hernández I, Hammerl JA, Barquero-Calvo E. American crocodiles ( Crocodylus acutus: Reptilia: Crocodilidae) visiting the facilities of a freshwater aquaculture of the Northern Pacific region, Costa Rica, carry tetracycline-resistant Escherichia coli. Front Vet Sci 2024; 11:1374677. [PMID: 38645643 PMCID: PMC11027564 DOI: 10.3389/fvets.2024.1374677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 04/23/2024] Open
Abstract
Apex predators are exposed to antimicrobial compounds and resistant microbes, which accumulate at different trophic levels of the related ecosystems. The study aimed to characterize the presence and the antimicrobial resistance patterns of fecal Escherichia coli isolated from cloacal swab samples obtained from wild-living American crocodiles (Crocodylus acutus) (n = 53). Sampling was conducted within the distinctive context of a freshwater-intensive aquaculture farm in Costa Rica, where incoming crocodiles are temporarily held in captivity before release. Phenotypic antimicrobial susceptibility profiles were determined in all isolates, while resistant isolates were subjected to whole-genome sequencing and bioinformatics analyses. In total, 24 samples contained tetracycline-resistant E. coli (45.3%). Isolates carried either tet(A), tet(B), or tet(C) genes. Furthermore, genes conferring resistance to ß-lactams, aminoglycosides, fosfomycin, sulfonamides, phenicol, quinolones, trimethoprim, and colistin were detected in single isolates, with seven of them carrying these genes on plasmids. Genome sequencing further revealed that sequence types, prevalence of antibiotic resistance carriage, and antibiotic resistance profiles differed between the individuals liberated within the next 24 h after their capture in the ponds and those liberated from enclosures after longer abodes. The overall presence of tetracycline-resistant E. coli, coupled with potential interactions with various anthropogenic factors before arriving at the facilities, hinders clear conclusions on the sources of antimicrobial resistance for the studied individuals. These aspects hold significant implications for both the aquaculture farm's biosecurity and the planning of environmental monitoring programs using such specimens. Considering human-crocodile conflicts from the One Health perspective, the occurrence of antimicrobial resistance underscores the importance of systematical surveillance of antibiotic resistance development in American crocodiles.
Collapse
Affiliation(s)
| | | | | | - Jens Andre Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Elías Barquero-Calvo
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|
10
|
Yang S, Deng W, Li G, Jin L, Huang Y, He Y, Wu D, Li D, Zhang A, Liu C, Li C, Zhang H, Xu H, Penttinen P, Zhao K, Zou L. Reference gene catalog and metagenome-assembled genomes from the gut microbiome reveal the microbial composition, antibiotic resistome, and adaptability of a lignocellulose diet in the giant panda. ENVIRONMENTAL RESEARCH 2024; 245:118090. [PMID: 38163545 DOI: 10.1016/j.envres.2023.118090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
The giant panda, a strict herbivore that feeds on bamboo, still retains a typical carnivorous digestive system. Reference catalogs of microbial genes and genomes are lacking, largely limiting the antibiotic resistome and functional exploration of the giant panda gut microbiome. Here, we integrated 177 fecal metagenomes of captive and wild giant pandas to construct a giant panda integrated gene catalog (GPIGC) comprised of approximately 4.5 million non-redundant genes and reconstruct 393 metagenome-assembled genomes (MAGs). Taxonomic and functional characterization of genes revealed that the captivity of the giant panda significantly changed the core microbial composition and the distribution of microbial genes. Higher abundance and prevalence of antibiotic resistance genes (ARGs) were detected in the guts of captive giant pandas, and ARG distribution was influenced by geography, for both captive and wild individuals. Escherichia, as the prevalent genus in the guts of captive giant pandas, was the main carrier of ARGs, meaning there is a high risk of ARG transmission by Escherichia. We also found that multiple mcr gene variants, conferring plasmid-mediated mobile colistin resistance, were widespread in the guts of captive and wild giant pandas. There were low proportions of carbohydrate-active enzyme (CAZyme) genes in GPIGC and MAGs compared with several omnivorous and herbivorous mammals. Many members of Clostridium MAGs were significantly enriched in the guts of adult, old and wild giant pandas. The genomes of isolates and MAGs of Clostridiaceae harbored key genes or enzymes in complete pathways for degrading lignocellulose and producing short-chain fatty acids (SCFAs), indicating the potential of these bacteria to utilize the low-nutrient bamboo diet. Overall, our data presented an exhaustive reference gene catalog and MAGs in giant panda gut and provided a comprehensive understanding of the antibiotic resistome and microbial adaptability for a high-lignocellulose diet.
Collapse
Affiliation(s)
- Shengzhi Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Wenwen Deng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Guo Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Lei Jin
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Yongguo He
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Daifu Wu
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Desheng Li
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Anyun Zhang
- College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Chengxi Liu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Hemin Zhang
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
11
|
Karmacharya D, Herrero-García G, Luitel B, Rajbhandari R, Balseiro A. Shared infections at the wildlife-livestock interface and their impact on public health, economy, and biodiversity. Anim Front 2024; 14:20-29. [PMID: 38369992 PMCID: PMC10873012 DOI: 10.1093/af/vfad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Affiliation(s)
- Dibesh Karmacharya
- One Health Division, Center for Molecular Dynamics Nepal, 44600 Kathmandu, Nepal
- One Health Division, BIOVAC Nepal, 45210 Nala, Nepal
- Department of Biological Sciences, University of Queensland, 4072 Brisbane, Australia
| | - Gloria Herrero-García
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071 León, Spain
| | - Bibhu Luitel
- One Health Division, BIOVAC Nepal, 45210 Nala, Nepal
| | - Rajesh Rajbhandari
- One Health Division, Center for Molecular Dynamics Nepal, 44600 Kathmandu, Nepal
| | - Ana Balseiro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071 León, Spain
| |
Collapse
|
12
|
Abdullahi IN, Latorre-Fernández J, Reuben RC, Trabelsi I, González-Azcona C, Arfaoui A, Usman Y, Lozano C, Zarazaga M, Torres C. Beyond the Wild MRSA: Genetic Features and Phylogenomic Review of mecC-Mediated Methicillin Resistance in Non- aureus Staphylococci and Mammaliicocci. Microorganisms 2023; 12:66. [PMID: 38257893 PMCID: PMC10818522 DOI: 10.3390/microorganisms12010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Methicillin resistance, mediated by the mecA gene in staphylococci and mammaliicocci, has caused tremendous setbacks in the use of antibiotics in human and veterinary medicine due to its high potential of presenting the multidrug resistance (MDR) phenotype. Three other mec analogs exist, of which the mecC has evolutionary been associated with methicillin-resistant Staphylococcus aureus (MRSA) in wild animals, thus loosely referred to as the wild MRSA. In this study, we present an epidemiological review and genomic analysis of non-aureus staphylococci and mammaliicocci that carry the mecC-mediated methicillin resistance trait and determine whether this trait has any relevant link with the One Health niches. All previous studies (2007 till 2023) that described the mecC gene in non-aureus staphylococci and mammaliicocci were obtained from bibliometric databases, reviewed, and systematically analyzed to obtain the antimicrobial resistance (AMR) and virulence determinants, mobilome, and other genetic contents. Moreover, core genome single-nucleotide polymorphism analysis was used to assess the relatedness of these strains. Of the 533 articles analyzed, only 16 studies (on livestock, environmental samples, milk bulk tanks, and wild animals) were eligible for inclusion, of which 17 genomes from 6 studies were used for various in silico genetic analyses. Findings from this systematic review show that all mecC-carrying non-aureus staphylococci were resistant to only beta-lactam antibiotics and associated with the classical SCCmec XI of S. aureusLGA251. Similarly, two studies on wild animals reported mecC-carrying Mammaliicoccus stepanovicii associated with SCCmec XI. Nevertheless, most of the mecC-carrying Mammaliicoccus species presented an MDR phenotype (including linezolid) and carried the SCCmec-mecC hybrid associated with mecA. The phylogenetic analysis of the 17 genomes revealed close relatedness (<20 SNPs) and potential transmission of M. sciuri and M. lentus strains in livestock farms in Algeria, Tunisia, and Brazil. Furthermore, closely related M. sciuri strains from Austria, Brazil, and Tunisia (<40 SNPs) were identified. This systematic review enhances our comprehension of the epidemiology and genetic organization of mecC within the non-aureus staphylococci and mammaliicocci. It could be hypothesized that the mecC-carrying non-aureus staphylococci are evolutionarily related to the wild MRSA-mecC. The potential implications of clonal development of a lineage of mecA/mecC carrying strains across multiple dairy farms in a vast geographical region with the dissemination of MDR phenotype is envisaged. It was observed that most mecC-carrying non-aureus staphylococci and mammaliicocci were reported in mastitis cases. Therefore, veterinarians and veterinary microbiology laboratories must remain vigilant regarding the potential existence of mecA/mecC strains originating from mastitis as a potential niche for this resistance trait.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Javier Latorre-Fernández
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Islem Trabelsi
- Bioresources, Environment and Biotechnology Laboratory, Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia;
| | - Carmen González-Azcona
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Ameni Arfaoui
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia;
| | - Yahaya Usman
- Department of Medical Laboratory Science, Ahmadu Bello University, Zaria 810107, Nigeria;
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| |
Collapse
|
13
|
Endale H, Mathewos M, Abdeta D. Potential Causes of Spread of Antimicrobial Resistance and Preventive Measures in One Health Perspective-A Review. Infect Drug Resist 2023; 16:7515-7545. [PMID: 38089962 PMCID: PMC10715026 DOI: 10.2147/idr.s428837] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 07/04/2024] Open
Abstract
Antimicrobial resistance, referring to microorganisms' capability to subsist and proliferate even when there are antimicrobials is a foremost threat to public health globally. The appearance of antimicrobial resistance can be ascribed to anthropological, animal, and environmental factors. Human-related causes include antimicrobial overuse and misuse in medicine, antibiotic-containing cosmetics and biocides utilization, and inadequate sanitation and hygiene in public settings. Prophylactic and therapeutic antimicrobial misuse and overuse, using antimicrobials as feed additives, microbes resistant to antibiotics and resistance genes in animal excreta, and antimicrobial residue found in animal-origin food and excreta are animals related contributive factors for the antibiotic resistance emergence and spread. Environmental factors including naturally existing resistance genes, improper disposal of unused antimicrobials, contamination from waste in public settings, animal farms, and pharmaceutical industries, and the use of agricultural and sanitation chemicals facilitatet its emergence and spread. Wildlife has a plausible role in the antimicrobial resistance spread. Adopting a one-health approach involving using antimicrobials properly in animals and humans, improving sanitation in public spaces and farms, and implementing coordinated governmental regulations is crucial for combating antimicrobial resistance. Collaborative and cooperative involvement of stakeholders in public, veterinary and ecological health sectors is foremost to circumvent the problem effectively.
Collapse
Affiliation(s)
- Habtamu Endale
- School of Veterinary Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Mesfin Mathewos
- School of Veterinary Medicine, Wachemo University, Wachemo, Ethiopia
| | - Debela Abdeta
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| |
Collapse
|
14
|
Fu Y, Dou Q, Smalla K, Wang Y, Johnson TA, Brandt KK, Mei Z, Liao M, Hashsham SA, Schäffer A, Smidt H, Zhang T, Li H, Stedtfeld R, Sheng H, Chai B, Virta M, Jiang X, Wang F, Zhu Y, Tiedje JM. Gut microbiota research nexus: One Health relationship between human, animal, and environmental resistomes. MLIFE 2023; 2:350-364. [PMID: 38818274 PMCID: PMC10989101 DOI: 10.1002/mlf2.12101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 06/01/2024]
Abstract
The emergence and rapid spread of antimicrobial resistance is of global public health concern. The gut microbiota harboring diverse commensal and opportunistic bacteria that can acquire resistance via horizontal and vertical gene transfers is considered an important reservoir and sink of antibiotic resistance genes (ARGs). In this review, we describe the reservoirs of gut ARGs and their dynamics in both animals and humans, use the One Health perspective to track the transmission of ARG-containing bacteria between humans, animals, and the environment, and assess the impact of antimicrobial resistance on human health and socioeconomic development. The gut resistome can evolve in an environment subject to various selective pressures, including antibiotic administration and environmental and lifestyle factors (e.g., diet, age, gender, and living conditions), and interventions through probiotics. Strategies to reduce the abundance of clinically relevant antibiotic-resistant bacteria and their resistance determinants in various environmental niches are needed to ensure the mitigation of acquired antibiotic resistance. With the help of effective measures taken at the national, local, personal, and intestinal management, it will also result in preventing or minimizing the spread of infectious diseases. This review aims to improve our understanding of the correlations between intestinal microbiota and antimicrobial resistance and provide a basis for the development of management strategies to mitigate the antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qingyuan Dou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) Federal Research Centre for Cultivated PlantsBraunschweigGermany
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Kristian K. Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
- Sino‐Danish Center (SDC)BeijingChina
| | - Zhi Mei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Maoyuan Liao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Syed A. Hashsham
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
- Department of Civil and Environmental EngineeringMichigan State UniversityMichiganUSA
| | - Andreas Schäffer
- Institute for Environmental ResearchRWTH Aachen UniversityAachenGermany
| | - Hauke Smidt
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil EngineeringThe University of Hong KongPokfulamHong KongChina
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| | - Robert Stedtfeld
- Department of Civil and Environmental EngineeringMichigan State UniversityMichiganUSA
| | - Hongjie Sheng
- Institute of Agricultural Resources and EnvironmentJiangsu Academy of Agricultural SciencesNanjingChina
| | - Benli Chai
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| | - Marko Virta
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong‐Guan Zhu
- University of Chinese Academy of SciencesBeijingChina
- Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- State Key Laboratory of Urban and Regional EcologyChinese Academy of SciencesBeijingChina
| | - James M. Tiedje
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| |
Collapse
|
15
|
Tarabai H, Krejci S, Karyakin I, Bitar I, Literak I, Dolejska M. Clinically relevant antibiotic resistance in Escherichia coli from black kites in southwestern Siberia: a genetic and phenotypic investigation. mSphere 2023; 8:e0009923. [PMID: 37310717 PMCID: PMC10449506 DOI: 10.1128/msphere.00099-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/27/2023] [Indexed: 06/14/2023] Open
Abstract
Wild birds including raptors can act as vectors of clinically relevant bacteria with antibiotic resistance. The aim of this study was to investigate the occurrence of antibiotic-resistant Escherichia coli in black kites (Milvus migrans) inhabiting localities in proximity to human-influenced environments in southwestern Siberia and investigate their virulence and plasmid contents. A total of 51 E. coli isolates mostly with multidrug resistance (MDR) profiles were obtained from cloacal swabs of 35 (64%, n = 55) kites. Genomic analyses of 36 whole genome sequenced E. coli isolates showed: (i) high prevalence and diversity of their antibiotic resistance genes (ARGs) and common association with ESBL/AmpC production (27/36, 75%), (ii) carriage of mcr-1 for colistin resistance on IncI2 plasmids in kites residing in proximity of two large cities, (iii) frequent association with class one integrase (IntI1, 22/36, 61%), and (iv) presence of sequence types (STs) linked to avian-pathogenic (APEC) and extra-intestinal pathogenic E. coli (ExPEC). Notably, numerous isolates had significant virulence content. One E. coli with APEC-associated ST354 carried qnrE1 encoding fluoroquinolone resistance on IncHI2-ST3 plasmid, the first detection of such a gene in E. coli from wildlife. Our results implicate black kites in southwestern Siberia as reservoirs for antibiotic-resistant E. coli. It also highlights the existing link between proximity of wildlife to human activities and their carriage of MDR bacteria including pathogenic STs with significant and clinically relevant antibiotic resistance determinants. IMPORTANCE Migratory birds have the potential to acquire and disperse clinically relevant antibiotic-resistant bacteria (ARB) and their associated antibiotic resistance genes (ARGs) through vast geographical regions. The opportunistic feeding behavior associated with some raptors including black kites and the growing anthropogenic influence on their natural habitats increase the transmission risk of multidrug resistance (MDR) and pathogenic bacteria from human and agricultural sources into the environment and wildlife. Thus, monitoring studies investigating antibiotic resistance in raptors may provide essential data that facilitate understanding the fate and evolution of ARB and ARGs in the environment and possible health risks for humans and animals associated with the acquisition of these resistance determinants by wildlife.
Collapse
Affiliation(s)
- Hassan Tarabai
- Central European Institute of Technology (CEITEC), University of Veterinary Sciences, Brno, Czech Republic
- Department of Parasitology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Simon Krejci
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | | | - Ibrahim Bitar
- Biomedical Center, Charles University, Prague, Czech Republic
| | - Ivan Literak
- Central European Institute of Technology (CEITEC), University of Veterinary Sciences, Brno, Czech Republic
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - Monika Dolejska
- Central European Institute of Technology (CEITEC), University of Veterinary Sciences, Brno, Czech Republic
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
- Biomedical Center, Charles University, Prague, Czech Republic
- Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital, Brno, Czech Republic
| |
Collapse
|
16
|
Almansour AM, Alhadlaq MA, Alzahrani KO, Mukhtar LE, Alharbi AL, Alajel SM. The Silent Threat: Antimicrobial-Resistant Pathogens in Food-Producing Animals and Their Impact on Public Health. Microorganisms 2023; 11:2127. [PMID: 37763971 PMCID: PMC10537193 DOI: 10.3390/microorganisms11092127] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) is a global health problem without geographic boundaries. This increases the risk of complications and, thus, makes it harder to treat infections, which can result in higher healthcare costs and a greater number of deaths. Antimicrobials are often used to treat infections from pathogens in food-producing animals, making them a potential source of AMR. Overuse and misuse of these drugs in animal agriculture can lead to the development of AMR bacteria, which can then be transmitted to humans through contaminated food or direct contact. It is therefore essential to take multifaceted, comprehensive, and integrated measures, following the One Health approach. To address this issue, many countries have implemented regulations to limit antimicrobial use. To our knowledge, there are previous studies based on AMR in food-producing animals; however, this paper adds novelty related to the AMR pathogens in livestock, as we include the recent publications of this field worldwide. In this work, we aim to describe the most critical and high-risk AMR pathogens among food-producing animals, as a worldwide health problem. We also focus on the dissemination of AMR genes in livestock, as well as its consequences in animals and humans, and future strategies to tackle this threat.
Collapse
Affiliation(s)
- Ayidh M. Almansour
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Meshari A. Alhadlaq
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Khaloud O. Alzahrani
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Lenah E. Mukhtar
- Antimicrobial Resistance Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia;
| | - Abdulmohsen L. Alharbi
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Sulaiman M. Alajel
- Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia;
| |
Collapse
|
17
|
Awosile B, Fritzler J, Levent G, Rahman MK, Ajulo S, Daniel I, Tasnim Y, Sarkar S. Genomic Characterization of Fecal Escherichia coli Isolates with Reduced Susceptibility to Beta-Lactam Antimicrobials from Wild Hogs and Coyotes. Pathogens 2023; 12:929. [PMID: 37513776 PMCID: PMC10383658 DOI: 10.3390/pathogens12070929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
This study was carried out to determine the antimicrobial resistance (AMR) genes and mobile genetic elements of 16 Escherichia coli isolates-with reduced susceptibility to ceftazidime and imipenem-that were recovered from the fecal samples of coyotes and wild hogs from West Texas, USA. Whole-genome sequencing data analyses revealed distinct isolates with a unique sequence type and serotype designation. Among 16 isolates, 4 isolates were multidrug resistant, and 5 isolates harbored at least 1 beta-lactamase gene (blaCMY-2, blaCTX-M-55, or blaCTX-M-27) that confers resistance to beta-lactam antimicrobials. Several isolates carried genes conferring resistance to tetracyclines (tet(A), tet(B), and tet(C)), aminoglycosides (aac(3)-IId, ant(3″)-Ia, aph(3')-Ia, aph(3″)-lb, aadA5, and aph(6)-ld), sulfonamides (sul1, sul2, and sul3), amphenicol (floR), trimethoprim (dfrA1 and dfrA17), and macrolide, lincosamide, and streptogramin B (MLSB) agents (Inu(F), erm(B), and mph(A)). Nine isolates showed chromosomal mutations in the promoter region G of ampC beta-lactamase gene, while three isolates showed mutations in gyrA, parC, and parE quinolone resistance-determining regions, which confer resistance to quinolones. We also detected seven incompatibility plasmid groups, with incF being the most common. Different types of virulence genes were detected, including those that enhance bacterial fitness and pathogenicity. One blaCMY-2 positive isolate (O8:H28) from a wild hog was also a Shiga toxin-producing E. coli and was a carrier of the stx2A virulence toxin subtype. We report the detection of blaCMY-2, blaCTX-M-55, and blaCTX-M-27 beta-lactamase genes in E. coli from coyotes for the first time. This study demonstrates the importance of wildlife as reservoirs of important multi-drug-resistant bacteria and provides information for future comparative genomic analysis with the limited literature on antimicrobial resistance dynamics in wildlife such as coyotes.
Collapse
Affiliation(s)
- Babafela Awosile
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Jason Fritzler
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Gizem Levent
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Md Kaisar Rahman
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Samuel Ajulo
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Ian Daniel
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Yamima Tasnim
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Sumon Sarkar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| |
Collapse
|
18
|
Trościańczyk A, Nowakiewicz A, Kasela M, Malm A, Tracz AM, Hahaj-Siembida A, Osińska M, Gula S, Jankowiak I. Multi-Host Pathogen Staphylococcus aureus-Epidemiology, Drug Resistance and Occurrence in Humans and Animals in Poland. Antibiotics (Basel) 2023; 12:1137. [PMID: 37508233 PMCID: PMC10376275 DOI: 10.3390/antibiotics12071137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Staphylococcus aureus is a drug resistant pathogen with zoonotic potential commonly isolated from humans and animals. The aim of this study was to compare the occurrence of drug resistance, resistance genes, sequence types (STs), and genotypes of S. aureus isolated from humans, livestock, and wildlife in eastern Poland. A high percentage of isolates resistant to penicillin (63%), erythromycin (39%), clindamycin (37%), tetracycline (31%), and methicillin (MRSA-19%), an intermediate resistant to vancomycin (VISA-13%), and a multidrug resistant (MDR-39%) was obtained. Multilocus sequence typing analysis showed the presence of 35 different STs (with dominance ST 15, ST 45, ST 7, and ST 582 in human, and ST 398 and ST 8139 in porcine and cattle isolates, respectively), including 9 new ones that had never been reported before (ST 8133-8141). Identical genotypic patterns were detected among porcine and cattle isolates as well as from humans and cattle. A high percentage of MDR, MRSA, and VISA in humans and livestock combined with the presence of the same genotypes among S. aureus isolated from human and cattle indicates the circulation of strains common in the region and their zoonotic potential. There is a need to develop new strategies to counteract this phenomenon according to the One Health policy.
Collapse
Affiliation(s)
- Aleksandra Trościańczyk
- Sub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Aneta Nowakiewicz
- Sub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Martyna Kasela
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Anna Magdalena Tracz
- Sub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Agata Hahaj-Siembida
- Sub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Marcelina Osińska
- Sub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Szczepan Gula
- Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 13, 20-033 Lublin, Poland
| | - Igor Jankowiak
- Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 13, 20-033 Lublin, Poland
| |
Collapse
|
19
|
Cao K, Wang Y, Bai X, Wang J, Zhang L, Tang Y, Thuku RC, Hou W, Mo G, Chen F, Jin L. Comparison of Fecal Antimicrobial Resistance Genes in Captive and Wild Asian Elephants. Antibiotics (Basel) 2023; 12:859. [PMID: 37237762 PMCID: PMC10215966 DOI: 10.3390/antibiotics12050859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The Asian elephant (Elephas maximus) is a flagship species of tropical rainforests, and it has generated much concern. In this case, the gut bacterial communities of captive and wild Asian elephants are particularly noteworthy. We aim to compare the differences in bacterial diversity and antibiotic resistance gene (ARG) subtypes in fecal samples of Asian elephants from different habitats, which may affect host health. Analyses reveal that differences in the dominant species of gut bacteria between captive and wild Asian elephants may result in significant differences in ARGs. Network analysis of bacterial communities in captive Asian elephants has identified potentially pathogenic species. Many negative correlations in network analysis suggest that different food sources may lead to differences in bacterial communities and ARGs. Results also indicate that the ARG levels in local captive breeding of Asian elephants are close to those of the wild type. However, we found that local captive elephants carry fewer ARG types than their wild counterparts. This study reveals the profile and relationship between bacterial communities and ARGs in different sources of Asian elephant feces, providing primary data for captive breeding and rescuing wild Asian elephants.
Collapse
Affiliation(s)
- Kaixun Cao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (K.C.)
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yepeng Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xuewei Bai
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jishan Wang
- Asian Elephant Research Center of National Forestry and Grassland Administration, Kunming 650031, China
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming 650031, China
| | - Liting Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (K.C.)
| | - Yongjing Tang
- Asian Elephant Research Center of National Forestry and Grassland Administration, Kunming 650031, China
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming 650031, China
| | - Rebecca Caroline Thuku
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wei Hou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Guoxiang Mo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (K.C.)
| | - Fei Chen
- Asian Elephant Research Center of National Forestry and Grassland Administration, Kunming 650031, China
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming 650031, China
| | - Lin Jin
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
20
|
Ren H, Lu Z, Sun R, Wang X, Zhong J, Su T, He Q, Liao X, Liu Y, Lian X, Sun J. Functional metagenomics reveals wildlife as natural reservoirs of novel β-lactamases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161505. [PMID: 36626997 DOI: 10.1016/j.scitotenv.2023.161505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The antibiotic resistances in bacteria are believed to rapidly evolve over time in the anthropogenic environments which enriched with selection pressures. However, the knowledge regarding the development of antibiotic resistance in wildlife and their habitats is scarce. It is, therefore, of great interest and significance to unveil the yet-unknown antibiotic resistances in wildlife in accordance with One Health concept. To this end, we analyzed the samples taken from wildlife and surrounding environments using a functional metagenomics approach. By functional screening in combination with Illumina sequencing, a total of 32 candidate genes which encoding putative novel β-lactamase were identified. These putative β-lactamase were taxonomically assigned into bacteria of 23 genera from 7 phyla, where Proteobacteria, Actinobacteria and Firmicutes were dominant. The following functional assessment demonstrated that 4 novel β-lactamases, namely blaSSA, blaSSB1, blaSSB2 and blaSSD, were functionally active to confer the phenotypical resistance to bacteria by increasing MICs up to 128-fold. Further analysis indicated that the novel β-lactamases identified in the current study were able to hydrolyze a broad spectrum of β-lactams including cephalosporins, and they were genetically unique comparing with known β-lactamases. The plausible transmission of some novel β-lactamase genes was supported by our results as the same gene was detected in different samples from different sites. This study shed the light on the active role of wildlife and associated environments as natural reservoirs of novel β-lactamases, implying that the antibiotic resistances might evolve in absence of selection pressure and threaten public health once spread into clinically important pathogens.
Collapse
Affiliation(s)
- Hao Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxiang Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ruanyang Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiran Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Tiantian Su
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Qian He
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yahong Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xinlei Lian
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
21
|
Pinnell LJ, Kuiper G, Huebner KL, Doster E, Parker JK, Alekozai N, Powers JG, Wallen RL, Belk KE, Morley PS. More than an anthropogenic phenomenon: Antimicrobial resistance in ungulates from natural and agricultural environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159789. [PMID: 36309273 DOI: 10.1016/j.scitotenv.2022.159789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Widely considered an anthropogenic phenomenon, antimicrobial resistance (AMR) is a naturally occurring mechanism that microorganisms use to gain competitive advantage. AMR represents a significant threat to public health and has generated criticism towards the overuse of antimicrobial drugs. Livestock have been proposed as important reservoirs for AMR accumulation. Here, we show that assemblages of AMR genes in cattle and ungulates from natural environments (Yellowstone and Rocky Mountain National Parks) are all dominated by genes conferring resistance to tetracyclines. However, cattle feces contained higher proportions of erm(A-X) genes conferring resistance to macrolide antibiotics. Medically important AMR genes differed between cattle and natural ungulates, but cumulatively were more predominant in natural soils. Our findings suggest that the commonly described predominance of tetracycline resistance in cattle feces is a natural phenomenon among multiple ungulate species and not solely a result of antimicrobial drug exposure. Yet, the virtual absence of macrolide resistance genes in natural ungulates suggests that macrolide usage in agriculture may enrich these genes in cattle. Our results show that antimicrobial use in agriculture may be promoting a potential reservoir for specific types of AMR (i.e., macrolide resistance) but that a significant proportion of the ungulate resistome appears to have natural origins.
Collapse
Affiliation(s)
- Lee J Pinnell
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX 79015, USA
| | - Grace Kuiper
- Colorado State University, Fort Collins, CO 80523, USA
| | | | - Enrique Doster
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX 79015, USA; Colorado State University, Fort Collins, CO 80523, USA
| | | | | | - Jenny G Powers
- Biological Resources Division, National Park Service, Fort Collins, CO 80521, USA
| | - Rick L Wallen
- Yellowstone National Park, National Park Service, Mammoth, WY 82190, USA
| | - Keith E Belk
- Colorado State University, Fort Collins, CO 80523, USA
| | - Paul S Morley
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX 79015, USA.
| |
Collapse
|
22
|
Lee JH, Oh M, Kim BS. Phage biocontrol of zoonotic food-borne pathogen Vibrio parahaemolyticus for seafood safety. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
23
|
Antibiotic-Resistant Bacteria Dissemination in the Wildlife, Livestock, and Water of Maiella National Park, Italy. Animals (Basel) 2023; 13:ani13030432. [PMID: 36766321 PMCID: PMC9913102 DOI: 10.3390/ani13030432] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global health concern that has been linked to humans, animals, and the environment. The One Health approach highlights the connection between humans, animals, and the environment and suggests that a multidisciplinary approached be used in studies investigating AMR. The present study was carried out to identify and characterize the antimicrobial resistance profiles of bacteria isolated from wildlife and livestock feces as well as from surface water samples in Maiella National Park, Italy. Ecological and georeferenced data were used to select two sampling locations, one where wildlife was caught within livestock grazing areas (sympatric group) and one where wildlife was caught outside of livestock grazing areas (non-sympatric group). Ninety-nine bacterial isolates from 132 feces samples and seven isolates from five water samples were collected between October and December 2019. The specimens were examined for species identification, antibiotic susceptibility and molecular detection of antibiotic resistance. Forty isolates were identified as Escherichia coli, forty-eight as Enterococcus spp., eight as Streptococcus spp. and ten as other gram-negative bacteria. Phenotypic antibiotic resistance to at least one antimicrobial agent, including some antibiotics that play a critical role in human medicine, was detected in 36/106 (33.9%, 95% CI: 25-43) isolates and multidrug resistance was detected in 9/106 isolates (8.49%, 95% CI: 3.9-15.5). In addition, genes associated with antibiotic resistance were identified in 61/106 (57.55%, 95% CI: 47.5-67) isolates. The samples from sympatric areas were 2.11 (95% CI: 1.2-3.5) times more likely to contain resistant bacterial isolates than the samples from non-sympatric areas. These data suggest that drug resistant bacteria may be transmitted in areas where wildlife and livestock cohabitate. This emphasizes the need for further investigations focusing on the interactions between humans, wildlife, and the environment, the results of which can aid in the early detection of emerging AMR profiles and possible transmission routes.
Collapse
|