1
|
Li S, Li Z, Zhang G, Urlacher VB, Ma L, Li S. Functional analysis of the whole CYPome and Fdxome of Streptomyces venezuelae ATCC 15439. ENGINEERING MICROBIOLOGY 2024; 4:100166. [PMID: 39628593 PMCID: PMC11610998 DOI: 10.1016/j.engmic.2024.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 12/06/2024]
Abstract
Cytochrome P450 enzymes (CYPs or P450s) and ferredoxins (Fdxs) are ubiquitously distributed in all domains of life. Bacterial P450s are capable of catalyzing various oxidative reactions with two electrons usually donated by Fdxs. Particularly in Streptomyces, there are abundant P450s that have exhibited outstanding biosynthetic capacity of bioactive metabolites and great potential for xenobiotic metabolisms. However, no systematic study has been conducted on physiological functions of the whole cytochrome P450 complement (CYPome) and ferredoxin complement (Fdxome) of any Streptomyces strain to date, leaving a significant knowledge gap in microbial functional genomics. Herein, we functionally analyze the whole CYPome and Fdxome of Streptomyces venezuelae ATCC 15439 by investigating groups of single and sequential P450 deletion mutants, single P450 overexpression mutants, and Fdx gene deletion or repression mutants. Construction of an unprecedented P450-null mutant strain indicates that none of P450 genes are essential for S. venezuelae in maintaining its survival and normal morphology. The non-housekeeping Fdx1 and housekeeping Fdx3 not only jointly support the cellular activity of the prototypic P450 enzyme PikC, but also play significant regulatory functions. These findings significantly advance the understandings of the native functionality of P450s and Fdxs as well as their cellular interactions.
Collapse
Affiliation(s)
- Shuai Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Zhong Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Guoqiang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Vlada B. Urlacher
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| |
Collapse
|
2
|
Schultes FPJ, Welter L, Hufnagel D, Heghmanns M, Kasanmascheff M, Mügge C. An Active and Versatile Electron Transport System for Cytochrome P450 Monooxygenases from the Alkane Degrading Organism Acinetobacter sp. OC4. Chembiochem 2024; 25:e202400098. [PMID: 38787654 DOI: 10.1002/cbic.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
Cytochrome P450 monooxygenases (CYPs) are valuable biocatalysts for the oxyfunctionalization of non-activated carbon-hydrogen bonds. Most CYPs rely on electron transport proteins as redox partners. In this study, the ferredoxin reductase (FdR) and ferredoxin (FD) for a cytochrome P450 monooxygenase from Acinetobacter sp. OC4 are investigated. Upon heterologous production of both proteins independently in Escherichia coli, spectral analysis showed their reduction capability towards reporter electron acceptors, e. g., cytochrome c. The individual proteins' specific activity towards cytochrome c reduction was 25 U mg-1. Furthermore, the possibility to enhance electron transfer by artificial fusion of the units was elucidated. FdR and FD were linked by helical linkers [EAAAK]n, flexible glycine linkers [GGGGS]n or rigid proline linkers [EPPPP]n of n=1-4 sequence repetitions. The system with a glycine linker (n=4) reached an appreciable specific activity of 19 U mg-1 towards cytochrome c. Moreover, their ability to drive different members of the CYP153A subfamily is demonstrated. By creating artificial self-sufficient P450s with FdR, FD, and a panel of four CYP153A representatives, effective hydroxylation of n-hexane in a whole-cell system was achieved. The results indicate this protein combination to constitute a functional and versatile surrogate electron transport system for this subfamily.
Collapse
Affiliation(s)
- Fabian Peter Josef Schultes
- Ruhr-University Bochum, Faculty of Biology and Biotechnology, Microbial Biotechnology, Universitätsstraße 150, 44780, Bochum, Germany
| | - Leon Welter
- Ruhr-University Bochum, Faculty of Biology and Biotechnology, Microbial Biotechnology, Universitätsstraße 150, 44780, Bochum, Germany
| | - Doreen Hufnagel
- Ruhr-University Bochum, Faculty of Biology and Biotechnology, Microbial Biotechnology, Universitätsstraße 150, 44780, Bochum, Germany
| | - Melanie Heghmanns
- Technical University Dortmund, Faculty for Chemistry and Chemical Biology, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Müge Kasanmascheff
- Technical University Dortmund, Faculty for Chemistry and Chemical Biology, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Carolin Mügge
- Ruhr-University Bochum, Faculty of Biology and Biotechnology, Microbial Biotechnology, Universitätsstraße 150, 44780, Bochum, Germany
| |
Collapse
|
3
|
Carrera-Pacheco SE, Mueller A, Puente-Pineda JA, Zúñiga-Miranda J, Guamán LP. Designing cytochrome P450 enzymes for use in cancer gene therapy. Front Bioeng Biotechnol 2024; 12:1405466. [PMID: 38860140 PMCID: PMC11164052 DOI: 10.3389/fbioe.2024.1405466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
Cancer is a significant global socioeconomic burden, as millions of new cases and deaths occur annually. In 2020, almost 10 million cancer deaths were recorded worldwide. Advancements in cancer gene therapy have revolutionized the landscape of cancer treatment. An approach with promising potential for cancer gene therapy is introducing genes to cancer cells that encode for chemotherapy prodrug metabolizing enzymes, such as Cytochrome P450 (CYP) enzymes, which can contribute to the effective elimination of cancer cells. This can be achieved through gene-directed enzyme prodrug therapy (GDEPT). CYP enzymes can be genetically engineered to improve anticancer prodrug conversion to its active metabolites and to minimize chemotherapy side effects by reducing the prodrug dosage. Rational design, directed evolution, and phylogenetic methods are some approaches to developing tailored CYP enzymes for cancer therapy. Here, we provide a compilation of genetic modifications performed on CYP enzymes aiming to build highly efficient therapeutic genes capable of bio-activating different chemotherapeutic prodrugs. Additionally, this review summarizes promising preclinical and clinical trials highlighting engineered CYP enzymes' potential in GDEPT. Finally, the challenges, limitations, and future directions of using CYP enzymes for GDEPT in cancer gene therapy are discussed.
Collapse
Affiliation(s)
- Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | | | | | | |
Collapse
|
4
|
He J, Liu X, Li C. Engineering Electron Transfer Pathway of Cytochrome P450s. Molecules 2024; 29:2480. [PMID: 38893355 PMCID: PMC11173547 DOI: 10.3390/molecules29112480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Cytochrome P450s (P450s), a superfamily of heme-containing enzymes, existed in animals, plants, and microorganisms. P450s can catalyze various regional and stereoselective oxidation reactions, which are widely used in natural product biosynthesis, drug metabolism, and biotechnology. In a typical catalytic cycle, P450s use redox proteins or domains to mediate electron transfer from NAD(P)H to heme iron. Therefore, the main factors determining the catalytic efficiency of P450s include not only the P450s themselves but also their redox-partners and electron transfer pathways. In this review, the electron transfer pathway engineering strategies of the P450s catalytic system are reviewed from four aspects: cofactor regeneration, selection of redox-partners, P450s and redox-partner engineering, and electrochemically or photochemically driven electron transfer.
Collapse
Affiliation(s)
- Jingting He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi 832003, China;
| | - Xin Liu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Chun Li
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Zhang M, Gao S, Pan K, Liu H, Li Q, Bai X, Zhu Q, Chen Z, Yan X, Hong Q. Functional analysis, diversity, and distribution of the ean cluster responsible for 17 β-estradiol degradation in sphingomonads. Appl Environ Microbiol 2024; 90:e0197423. [PMID: 38619269 PMCID: PMC11107178 DOI: 10.1128/aem.01974-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
17β-estradiol (E2) is a natural endocrine disruptor that is frequently detected in surface and groundwater sources, thereby threatening ecosystems and human health. The newly isolated E2-degrading strain Sphingomonas colocasiae C3-2 can degrade E2 through both the 4,5-seco pathway and the 9,10-seco pathway; the former is the primary pathway supporting the growth of this strain and the latter is a branching pathway. The novel gene cluster ean was found to be responsible for E2 degradation through the 4,5-seco pathway, where E2 is converted to estrone (E1) by EanA, which belongs to the short-chain dehydrogenases/reductases (SDR) superfamily. A three-component oxygenase system (including the P450 monooxygenase EanB1, the small iron-sulfur protein ferredoxin EanB2, and the ferredoxin reductase EanB3) was responsible for hydroxylating E1 to 4-hydroxyestrone (4-OH-E1). The enzymatic assay showed that the proportion of the three components is critical for its function. The dioxygenase EanC catalyzes ring A cleavage of 4-OH-E1, and the oxidoreductase EanD is responsible for the decarboxylation of the ring A-cleavage product of 4-OH-E1. EanR, a TetR family transcriptional regulator, acts as a transcriptional repressor of the ean cluster. The ean cluster was also found in other reported E2-degrading sphingomonads. In addition, the novel two-component monooxygenase EanE1E2 can open ring B of 4-OH-E1 via the 9,10-seco pathway, but its encoding genes are not located within the ean cluster. These results refine research on genes involved in E2 degradation and enrich the understanding of the cleavages of ring A and ring B of E2.IMPORTANCESteroid estrogens have been detected in diverse environments, ranging from oceans and rivers to soils and groundwater, posing serious risks to both human health and ecological safety. The United States National Toxicology Program and the World Health Organization have both classified estrogens as Group 1 carcinogens. Several model organisms (proteobacteria) have established the 4,5-seco pathway for estrogen degradation. In this study, the newly isolated Sphingomonas colocasiae C3-2 could degrade E2 through both the 4,5-seco pathway and the 9,10-seco pathway. The novel gene cluster ean (including eanA, eanB1, eanC, and eanD) responsible for E2 degradation by the 4,5-seco pathway was identified; the novel two-component monooxygenase EanE1E2 can open ring B of 4-OH-E1 through the 9,10-seco pathway. The TetR family transcriptional regulator EanR acts as a transcriptional repressor of the ean cluster. The cluster ean was also found to be present in other reported E2-degrading sphingomonads, indicating the ubiquity of the E2 metabolism in the environment.
Collapse
Affiliation(s)
- Mingliang Zhang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Siyuan Gao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Kaihua Pan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Hongfei Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Qian Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Xuekun Bai
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Qian Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Zeyou Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, China
| | - Xin Yan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Qing Hong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| |
Collapse
|
6
|
Decembrino D, Cannella D. The thin line between monooxygenases and peroxygenases. P450s, UPOs, MMOs, and LPMOs: A brick to bridge fields of expertise. Biotechnol Adv 2024; 72:108321. [PMID: 38336187 DOI: 10.1016/j.biotechadv.2024.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Many scientific fields, although driven by similar purposes and dealing with similar technologies, often appear so isolated and far from each other that even the vocabularies to describe the very same phenomenon might differ. Concerning the vast field of biocatalysis, a special role is played by those redox enzymes that employ oxygen-based chemistry to unlock transformations otherwise possible only with metal-based catalysts. As such, greener chemical synthesis methods and environmentally-driven biotechnological approaches were enabled over the last decades by the use of several enzymes and ultimately resulted in the first industrial applications. Among what can be called today the environmental biorefinery sector, biomass transformation, greenhouse gas reduction, bio-gas/fuels production, bioremediation, as well as bulk or fine chemicals and even pharmaceuticals manufacturing are all examples of fields in which successful prototypes have been demonstrated employing redox enzymes. In this review we decided to focus on the most prominent enzymes (MMOs, LPMO, P450 and UPO) capable of overcoming the ∼100 kcal mol-1 barrier of inactivated CH bonds for the oxyfunctionalization of organic compounds. Harnessing the enormous potential that lies within these enzymes is of extreme value to develop sustainable industrial schemes and it is still deeply coveted by many within the aforementioned fields of application. Hence, the ambitious scope of this account is to bridge the current cutting-edge knowledge gathered upon each enzyme. By creating a broad comparison, scientists belonging to the different fields may find inspiration and might overcome obstacles already solved by the others. This work is organised in three major parts: a first section will be serving as an introduction to each one of the enzymes regarding their structural and activity diversity, whereas a second one will be encompassing the mechanistic aspects of their catalysis. In this regard, the machineries that lead to analogous catalytic outcomes are depicted, highlighting the major differences and similarities. Finally, a third section will be focusing on the elements that allow the oxyfunctionalization chemistry to occur by delivering redox equivalents to the enzyme by the action of diverse redox partners. Redox partners are often overlooked in comparison to the catalytic counterparts, yet they represent fundamental elements to better understand and further develop practical applications based on mono- and peroxygenases.
Collapse
Affiliation(s)
- Davide Decembrino
- Photobiocatalysis Unit - Crop Production and Biostimulation Lab (CPBL), and Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Belgium.
| | - David Cannella
- Photobiocatalysis Unit - Crop Production and Biostimulation Lab (CPBL), and Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Belgium.
| |
Collapse
|
7
|
Pardhe BD, Paudel L, Han SR, Oh TJ. Genomic insight into O-demethylation of 4-methoxybenzoate by a two-component system from Amycolatopsis magusensis KCCM40447. Heliyon 2024; 10:e25083. [PMID: 38317971 PMCID: PMC10838780 DOI: 10.1016/j.heliyon.2024.e25083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Cytochrome P450 monooxygenases perform a multitude of roles, including the generation of hydroxylated aromatic compounds that might be utilized by microorganisms for their survival. WGS data of Amycolatopsis magusensis KCCM40447 revealed a complete circular genome of 9,099,986 base pairs and functionally assigned 8601 protein-encoding genes. Genomic analysis confirmed that the gene for 4-methoxybenzoate monoxygenase (CYP199A35) was conserved in close proximity to the gene for 4-hydroxybenzoate transporter (PcaK). The co-localized genes encoding CYP199A35, and ferredoxin-NAD(P) reductase (Mbr) represent a two-component system for electron transfer. CYP199A35 was specific for O-demethylation of para O-methyl substituted benzoic acid derivatives, 4-methoxybenzoate (4 MB), and 4-methoxycinnamic acid (4MCA) using the native redox partner (Mbr); two-component system and non-physiological redox partners (Pdr/Pdx); three-component system. The catalytic efficiency for O-demethylation of 4 MB using Mbr and Pdr/Pdx was 0.02 ± 0.006 min-1 μM-1 and 0.07 ± 0.02 min-1 μM-1 respectively. Further, sequence annotation and function prediction by RAST and KEEG analysis revealed a complete catabolic pathway for the utilization of 4 MB by strain KCCM40447, which was also proved experimentally.
Collapse
Affiliation(s)
- Bashu Dev Pardhe
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan, Republic of Korea
| | - Lakshan Paudel
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan, Republic of Korea
| | - So-Ra Han
- Genome-based BioIT Convergence Institute, Asan, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan, Republic of Korea
- Genome-based BioIT Convergence Institute, Asan, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, Republic of Korea
| |
Collapse
|
8
|
Tüllinghoff A, Toepel J, Bühler B. Enlighting Electron Routes In Oxyfunctionalizing Synechocystis sp. PCC 6803. Chembiochem 2024; 25:e202300475. [PMID: 37994522 DOI: 10.1002/cbic.202300475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
Phototrophic microorganisms, like cyanobacteria, are gaining attention as host organisms for biocatalytic processes with light as energy source and water as electron source. Redox enzymes, especially oxygenases, can profit from in-situ supply of co-substrates, i. e., reduction equivalents and O2 , by the photosynthetic light reaction. The electron transfer downstream of PS I to heterologous electron consuming enzymes in principle can involve NADPH, NADH, and/or ferredoxin, whereas most direct and efficient transfer is desirable. Here, we use the model organism Synechocystis sp. PCC 6803 to investigate, to what extent host and/or heterologous constituents are involved in electron transfer to a heterologous cytochrome P450 monooxygenase from Acidovorax sp. CHX100. Interestingly, in this highly active light-fueled cycloalkane hydroxylating biocatalyst, host-intrinsic enzymes were found capable of completely substituting the function of the Acidovorax ferredoxin reductase. To a certain extent (20 %), this also was true for the Acidovorax ferredoxin. These results indicate the presence of a versatile set of electron carriers in cyanobacteria, enabling efficient and direct coupling of electron consuming reactions to photosynthetic water oxidation. This will both simplify and promote the use of phototrophic microorganisms for sustainable production processes.
Collapse
Affiliation(s)
- Adrian Tüllinghoff
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Jörg Toepel
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Bruno Bühler
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| |
Collapse
|
9
|
Wang Y, Pan H, Wang F, Shen C. Microbial P450 repertoire (P450ome) and its application feasibility in pharmaceutical industry, chemical industry, and environmental protection. Biotechnol Bioeng 2024; 121:7-25. [PMID: 37767638 DOI: 10.1002/bit.28565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/13/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Cytochrome P450s (CYPs) are heme-thiolated enzymes that catalyze the oxidation of C-H bonds in a regio- and stereo-selective manner. CYPs are widely present in the biological world. With the completion of more biological genome sequencing, the number and types of P450 enzymes have increased rapidly. P450 in microorganisms is easy to clone and express, rich in catalytic types, and strong in substrate adaptability, which has good application potential. Although the number of P450 enzymes found in microorganisms is huge, the function of most of the microorganism P450s has not been studied, and it contains a large number of excellent biocatalysts to be developed. This review is based on the P450 groups in microorganisms. First, it reviews the distribution of P450 groups in different microbial species, and then studies the application of microbial P450 enzymes in the pharmaceutical industry, chemical industry and environmental pollutant treatment in recent years. And focused on the application fields of P450 enzymes of different families to guide the selection of suitable P450s from the huge P450 library. In view of the current shortcomings of microbial P450 in the application process, the final solution is the most likely to assist the application of P450 enzymes in large-scale, that is, whole cell transformation combined with engineering, fusion P450 combined with immobilization technology.
Collapse
Affiliation(s)
- Yongfa Wang
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Hao Pan
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Fuhao Wang
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Chen Shen
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science & Technology, Shijiazhuang, China
| |
Collapse
|
10
|
Sun C, Hu B, Li Y, Wu Z, Zhou J, Li J, Chen J, Du G, Zhao X. Efficient stereoselective hydroxylation of deoxycholic acid by the robust whole-cell cytochrome P450 CYP107D1 biocatalyst. Synth Syst Biotechnol 2023; 8:741-748. [PMID: 38107826 PMCID: PMC10722395 DOI: 10.1016/j.synbio.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/12/2023] [Accepted: 11/18/2023] [Indexed: 12/19/2023] Open
Abstract
Deoxycholic acid (DCA) has been authorized by the Federal Drug Agency for cosmetic reduction of redundant submental fat. The hydroxylated product (6β-OH DCA) was developed to improve the solubility and pharmaceutic properties of DCA for further applications. Herein, a combinatorial catalytic strategy was applied to construct a powerful Cytochrome P450 biocatalyst (CYP107D1, OleP) to convert DCA to 6β-OH DCA. Firstly, the weak expression of OleP was significantly improved using pRSFDuet-1 plasmid in the E. coli C41 (DE3) strain. Next, the supply of heme was enhanced by the moderate overexpression of crucial genes in the heme biosynthetic pathway. In addition, a new biosensor was developed to select the appropriate redox partner. Furthermore, a cost-effective whole-cell catalytic system was constructed, resulting in the highest reported conversion rate of 6β-OH DCA (from 4.8% to 99.1%). The combinatorial catalytic strategies applied in this study provide an efficient method to synthesize high-value-added hydroxylated compounds by P450s.
Collapse
Affiliation(s)
- Chixiang Sun
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Baodong Hu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Yanchun Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Zhimeng Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
11
|
Lappe A, Luelf UJ, Keilhammer M, Bokel A, Urlacher VB. Bacterial cytochrome P450 enzymes: Semi-rational design and screening of mutant libraries in recombinant Escherichia coli cells. Methods Enzymol 2023; 693:133-170. [PMID: 37977729 DOI: 10.1016/bs.mie.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Bacterial cytochromes P450 (P450s) have been recognized as attractive targets for biocatalysis and protein engineering. They are soluble cytosolic enzymes that demonstrate higher stability and activity than their membrane-associated eukaryotic counterparts. Many bacterial P450s possess broad substrate spectra and can be produced in well-known expression hosts like Escherichia coli at high levels, which enables quick and convenient mutant libraries construction. However, the majority of bacterial P450s interacts with two auxiliary redox partner proteins, which significantly increase screening efforts. We have established recombinant E. coli cells for screening of P450 variants that rely on two separate redox partners. In this chapter, a case study on construction of a selective P450 to synthesize a precursor of several chemotherapeutics, (-)-podophyllotoxin, is described. The procedure includes co-expression of P450 and redox partner genes in E. coli with subsequent whole-cell conversion of the substrate (-)-deoxypodophyllotoxin in 96-deep-well plates. By omitting the chromatographic separation while measuring mass-to-charge ratios specific for the substrate and product via MS in so-called multiple injections in a single experimental run (MISER) LC/MS, the analysis time could be drastically reduced to roughly 1 min per sample. Screening results were verified by using isolated P450 variants and purified redox partners.
Collapse
Affiliation(s)
- Alessa Lappe
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - U Joost Luelf
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mirco Keilhammer
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ansgar Bokel
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
12
|
Kumar A, Estrada DF. Structural basis of bidirectional allostery across the heme in a cytochrome P450 enzyme. J Biol Chem 2023; 299:104977. [PMID: 37390989 PMCID: PMC10416055 DOI: 10.1016/j.jbc.2023.104977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
Cytochromes P450 (CYPs) are heme-containing enzymes that are present in all kingdoms of life and share a structurally homologous, globular protein fold. CYPs utilize structures distal to the heme to recognize and coordinate substrates, while the necessary interactions with redox partner proteins are mediated at the opposite, proximal surface. In the current study, we investigated the functional allostery across the heme for the bacterial enzyme CYP121A1, which utilizes a non-polar distal-to-distal dimer interface for specific binding of its dicyclotyrosine substrate. Fluorine-detected Nuclear Magnetic Resonance (19F-NMR) spectroscopy was combined with site-specific labeling of a distal surface residue (S171C of the FG-loop), one residue of the B-helix (N84C), and two proximal surface residues (T103C and T333C) with a thiol-reactive fluorine label. Adrenodoxin was used as a substitute redox protein and was found to promote a closed arrangement of the FG-loop, similar to the addition of substrate alone. Disruption of the protein-protein interface by mutagenesis of two CYP121 basic surface residues removed the allosteric effect. Moreover, 19F-NMR spectra of the proximal surface indicate that ligand-induced allostery modulates the environment at the C-helix but not the meander region of the enzyme. In light of the high degree of structural homology in this family of enzymes, we interpret the findings from this work to represent a conserved allosteric network in CYPs.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA
| | - D Fernando Estrada
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
13
|
Gable JA, Poulos TL, Follmer AH. Redox partner recognition and selectivity of cytochrome P450lin (CYP111A1). J Inorg Biochem 2023; 244:112212. [PMID: 37058990 PMCID: PMC10519177 DOI: 10.1016/j.jinorgbio.2023.112212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
The strict requirement of cytochrome P450cam for its native ferredoxin redox partner, putidaredoxin (Pdx), is not exhibited by any other known cytochrome P450 (CYP) system and the molecular details of redox partner selectivity are still not completely understood. We therefore examined the selectivity of a related Pseudomonas cytochrome P450, P450lin, by testing its activity with non-native redox partners. We found that P450lin could utilize Arx, the native redox partner of CYP101D1, to enable turnover of its substrate, linalool, while Pdx showed limited activity. Arx exhibited a higher sequence similarity to P450lins native redox partner, linredoxin (Ldx) than Pdx, including several residues that are believed to be at the interface of the two proteins, based on the P450cam-Pdx complex structure. We therefore mutated Pdx to resemble Ldx and Arx and found that a double mutant, D38L/∆106, displayed higher activity than Arx. In addition, Pdx D38L/∆106 does not induce a low-spin shift in linalool bound P450lin but does destabilize the P450lin-oxycomplex. Together our results suggest that P450lin and its redox partners may form a similar interface to P450cam-Pdx, but the interactions that allow for productive turnover are different.
Collapse
Affiliation(s)
- Jessica A Gable
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Thomas L Poulos
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-3900, USA; Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Alec H Follmer
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-3900, USA.
| |
Collapse
|
14
|
Liu R, Pan Y, Wang N, Tang D, Urlacher VB, Li S. Comparative biochemical characterization of mammalian-derived CYP11A1s with cholesterol side-chain cleavage activities. J Steroid Biochem Mol Biol 2023; 229:106268. [PMID: 36764495 DOI: 10.1016/j.jsbmb.2023.106268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Steroid drugs, the second largest class of pharmaceuticals after antibiotics, have shown significant anti-inflammatory, anti-allergic, and endocrine-regulating effects. A group of cytochrome P450 enzymes, namely, CYP11A1 isoenzymes from different organisms are capable of converting cholesterol into pregnenolone, which is a pivotal reaction in both steroid metabolism and (bio)synthetic network of steroid products. However, the low activity of CYP11A1s greatly restricts the industrial application of these cholesterol side-chain cleavage enzymes. Herein, we investigate ten CYP11A1 enzymes of different origins and in vitro characterize two CYP11A1s with a relatively higher expression level from Capra hircus and Sus scrofa, together with the CYP11A1s from Homo sapiens and Bos taurus as references. Towards five selected sterol substrates with different side chain structures, S. scrofa CYP11A1 displays relatively higher activities. Through redox partners combination screening, we reveal the optimal redox partner pair of S. scrofa adrenodoxin and C. hircus adrenodoxin reductase. Moreover, the semi-rational mutagenesis for the active sites and substrate entrance channels of human and bovine CYP11A1s is performed based on comparative analysis of their crystal structures. The mutant mBtCYP11A1-Q377A derived from mature B. taurus CYP11A1 shows a 1.46 times higher activity than the wild type enzyme. These results not only demonstrate the tunability of the highly conserved CYP11A1 isoenzymes, but also lay a foundation for the following engineering efforts on these industrially relevant P450 enzymes.
Collapse
Affiliation(s)
- Ruxin Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Yunjun Pan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Ning Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Dandan Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.
| |
Collapse
|
15
|
Luelf UJ, Böhmer LM, Li S, Urlacher VB. Effect of chromosomal integration on catalytic performance of a multi-component P450 system in Escherichia coli. Biotechnol Bioeng 2023. [PMID: 37186287 DOI: 10.1002/bit.28404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023]
Abstract
Cytochromes P450 are useful biocatalysts in synthetic chemistry and important bio-bricks in synthetic biology. Almost all bacterial P450s require separate redox partners for their activity, which are often expressed in recombinant Escherichia coli using multiple plasmids. However, the application of CRISPR/Cas recombineering facilitated chromosomal integration of heterologous genes which enables more stable and tunable expression of multi-component P450 systems for whole-cell biotransformations. Herein, we compared three E. coli strains W3110, JM109, and BL21(DE3) harboring three heterologous genes encoding a P450 and two redox partners either on plasmids or after chromosomal integration in two genomic loci. Both loci proved to be reliable and comparable for the model regio- and stereoselective two-step oxidation of (S)-ketamine. Furthermore, the CRISPR/Cas-assisted integration of the T7 RNA polymerase gene enabled an easy extension of T7 expression strains. Higher titers of soluble active P450 were achieved in E. coli harboring a single chromosomal copy of the P450 gene compared to E. coli carrying a medium copy pET plasmid. In addition, improved expression of both redox partners after chromosomal integration resulted in up to 80% higher (S)-ketamine conversion and more than fourfold increase in total turnover numbers.
Collapse
Affiliation(s)
- U Joost Luelf
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Lisa M Böhmer
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
16
|
Pan Y, Li G, Liu R, Guo J, Liu Y, Liu M, Zhang X, Chi L, Xu K, Wu R, Zhang Y, Li Y, Gao X, Li S. Unnatural activities and mechanistic insights of cytochrome P450 PikC gained from site-specific mutagenesis by non-canonical amino acids. Nat Commun 2023; 14:1669. [PMID: 36966128 PMCID: PMC10039885 DOI: 10.1038/s41467-023-37288-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/09/2023] [Indexed: 03/27/2023] Open
Abstract
Cytochrome P450 enzymes play important roles in the biosynthesis of macrolide antibiotics by mediating a vast variety of regio- and stereoselective oxidative modifications, thus improving their chemical diversity, biological activities, and pharmaceutical properties. Tremendous efforts have been made on engineering the reactivity and selectivity of these useful biocatalysts. However, the 20 proteinogenic amino acids cannot always satisfy the requirement of site-directed/random mutagenesis and rational protein design of P450 enzymes. To address this issue, herein, we practice the semi-rational non-canonical amino acid mutagenesis for the pikromycin biosynthetic P450 enzyme PikC, which recognizes its native macrolide substrates with a 12- or 14-membered ring macrolactone linked to a deoxyamino sugar through a unique sugar-anchoring mechanism. Based on a semi-rationally designed substrate binding strategy, non-canonical amino acid mutagenesis at the His238 position enables the unnatural activities of several PikC mutants towards the macrolactone precursors without any sugar appendix. With the aglycone hydroxylating activities, the pikromycin biosynthetic pathway is rewired by the representative mutant PikCH238pAcF carrying a p-acetylphenylalanine residue at the His238 position and a promiscuous glycosyltransferase. Moreover, structural analysis of substrate-free and three different enzyme-substrate complexes of PikCH238pAcF provides significant mechanistic insights into the substrate binding and catalytic selectivity of this paradigm biosynthetic P450 enzyme.
Collapse
Affiliation(s)
- Yunjun Pan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Guobang Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ruxin Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Yunjie Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Mingyu Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| | - Luping Chi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Kangwei Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuzhong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
17
|
Gable JA, Poulos TL, Follmer AH. Cooperative Substrate Binding Controls Catalysis in Bacterial Cytochrome P450terp (CYP108A1). J Am Chem Soc 2023; 145:10.1021/jacs.2c12388. [PMID: 36779970 PMCID: PMC10576961 DOI: 10.1021/jacs.2c12388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Despite being one of the most well-studied aspects of cytochrome P450 chemistry, important questions remain regarding the nature and ubiquity of allosteric regulation of catalysis. The crystal structure of a bacterial P450, P450terp, in the presence of substrate reveals two binding sites, one above the heme in position for regioselective hydroxylation and another in the substrate access channel. Unlike many bacterial P450s, P450terp does not exhibit an open to closed conformational change when substrate binds; instead, P450terp uses the second substrate molecule to hold the first substrate molecule in position for catalysis. Spectral titrations clearly show that substrate binding to P450terp is cooperative with a Hill coefficient of 1.4 and is supported by isothermal titration calorimetry. The importance of the allosteric site was explored by a series of mutations that weaken the second site and that help hold the first substrate in position for proper catalysis. We further measured the coupling efficiency of both the wild-type (WT) enzyme and the mutant enzymes. While the WT enzyme exhibits 97% efficiency, each of the variants showed lower catalytic efficiency. Additionally, the variants show decreased spin shifts upon binding of substrate. These results are the first clear example of positive homotropic allostery in a class 1 bacterial P450 with its natural substrate. Combined with our recent results from P450cam showing complex substrate allostery and conformational dynamics, our present study with P450terp indicates that bacterial P450s may not be as simple as once thought and share complex substrate binding properties usually associated with only mammalian P450s.
Collapse
Affiliation(s)
- Jessica A Gable
- Departments of Chemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Thomas L Poulos
- Departments of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States
- Departments of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-3900, United States
- Departments of Chemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Alec H Follmer
- Departments of Chemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| |
Collapse
|
18
|
Mellor SB, Behrendorff JBYH, Ipsen JØ, Crocoll C, Laursen T, Gillam EMJ, Pribil M. Exploiting photosynthesis-driven P450 activity to produce indican in tobacco chloroplasts. FRONTIERS IN PLANT SCIENCE 2023; 13:1049177. [PMID: 36743583 PMCID: PMC9890960 DOI: 10.3389/fpls.2022.1049177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/14/2022] [Indexed: 05/28/2023]
Abstract
Photosynthetic organelles offer attractive features for engineering small molecule bioproduction by their ability to convert solar energy into chemical energy required for metabolism. The possibility to couple biochemical production directly to photosynthetic assimilation as a source of energy and substrates has intrigued metabolic engineers. Specifically, the chemical diversity found in plants often relies on cytochrome P450-mediated hydroxylations that depend on reductant supply for catalysis and which often lead to metabolic bottlenecks for heterologous production of complex molecules. By directing P450 enzymes to plant chloroplasts one can elegantly deal with such redox prerequisites. In this study, we explore the capacity of the plant photosynthetic machinery to drive P450-dependent formation of the indigo precursor indoxyl-β-D-glucoside (indican) by targeting an engineered indican biosynthetic pathway to tobacco (Nicotiana benthamiana) chloroplasts. We show that both native and engineered variants belonging to the human CYP2 family are catalytically active in chloroplasts when driven by photosynthetic reducing power and optimize construct designs to improve productivity. However, while increasing supply of tryptophan leads to an increase in indole accumulation, it does not improve indican productivity, suggesting that P450 activity limits overall productivity. Co-expression of different redox partners also does not improve productivity, indicating that supply of reducing power is not a bottleneck. Finally, in vitro kinetic measurements showed that the different redox partners were efficiently reduced by photosystem I but plant ferredoxin provided the highest light-dependent P450 activity. This study demonstrates the inherent ability of photosynthesis to support P450-dependent metabolic pathways. Plants and photosynthetic microbes are therefore uniquely suited for engineering P450-dependent metabolic pathways regardless of enzyme origin. Our findings have implications for metabolic engineering in photosynthetic hosts for production of high-value chemicals or drug metabolites for pharmacological studies.
Collapse
Affiliation(s)
- Silas B. Mellor
- Section for Plant Biochemistry, Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - James B. Y. H. Behrendorff
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, Australia
| | - Johan Ø. Ipsen
- Section for Forest, Nature and Biomass, Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Christoph Crocoll
- DynaMo Center, Section for Molecular Plant Biology, Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - Tomas Laursen
- Section for Plant Biochemistry, Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - Elizabeth M. J. Gillam
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Mathias Pribil
- Section for Molecular Plant Biology, Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
19
|
Hu B, Zhao X, Zhou J, Li J, Chen J, Du G. Efficient hydroxylation of flavonoids by using whole-cell P450 sca-2 biocatalyst in Escherichia coli. Front Bioeng Biotechnol 2023; 11:1138376. [PMID: 36873357 PMCID: PMC9977193 DOI: 10.3389/fbioe.2023.1138376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
The hydroxylation is an important way to generate the functionalized derivatives of flavonoids. However, the efficient hydroxylation of flavonoids by bacterial P450 enzymes is rarely reported. Here, a bacterial P450 sca-2mut whole-cell biocatalyst with an outstanding 3'-hydroxylation activity for the efficient hydroxylation of a variety of flavonoids was first reported. The whole-cell activity of sca-2mut was enhanced using a novel combination of flavodoxin Fld and flavodoxin reductase Fpr from Escherichia coli. In addition, the double mutant of sca-2mut (R88A/S96A) exhibited an improved hydroxylation performance for flavonoids through the enzymatic engineering. Moreover, the whole-cell activity of sca-2mut (R88A/S96A) was further enhanced by the optimization of whole-cell biocatalytic conditions. Finally, eriodictyol, dihydroquercetin, luteolin, and 7,3',4'-trihydroxyisoflavone, as examples of flavanone, flavanonol, flavone, and isoflavone, were produced by whole-cell biocatalysis using naringenin, dihydrokaempferol, apigenin, and daidzein as the substrates, with the conversion yield of 77%, 66%, 32%, and 75%, respectively. The strategy used in this study provided an effective method for the further hydroxylation of other high value-added compounds.
Collapse
Affiliation(s)
- Baodong Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|