1
|
Du C, Park K, Hua Y, Liu Y, Volkow ND, Pan Y. Astrocytes modulate cerebral blood flow and neuronal response to cocaine in prefrontal cortex. Mol Psychiatry 2024; 29:820-834. [PMID: 38238549 DOI: 10.1038/s41380-023-02373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024]
Abstract
Cocaine affects both cerebral blood vessels and neuronal activity in brain. Cocaine can also disrupt astrocytes, which modulate neurovascular coupling-a process that regulates cerebral hemodynamics in response to neuronal activation. However, separating neuronal and astrocytic effects from cocaine's direct vasoactive effects has been challenging, partially due to limitations of neuroimaging techniques able to differentiate vascular from neuronal and glial effects at high temporal and spatial resolutions. Here, we used a newly-developed multi-channel fluorescence and optical coherence Doppler microscope (fl-ODM) that allows for simultaneous measurements of neuronal and astrocytic activities (reflected by the intracellular calcium changes in neurons Ca2+N and astrocytes Ca2+A, respectively) alongside their vascular interactions in vivo to address this challenge. Using green and red genetically-encoded Ca2+ indicators differentially expressed in astrocytes and neurons, fl-ODM enabled concomitant imaging of large-scale astrocytic and neuronal Ca2+ fluorescence and 3D cerebral blood flow velocity (CBFv) in vascular networks in the mouse cortex. We assessed cocaine's effects in the prefrontal cortex (PFC) and found that the CBFv changes triggered by cocaine were temporally correlated with astrocytic Ca2+A activity. Chemogenetic inhibition of astrocytes during the baseline state resulted in blood vessel dilation and CBFv increases but did not affect neuronal activity, suggesting modulation of spontaneous blood vessel's vascular tone by astrocytes. Chemogenetic inhibition of astrocytes during a cocaine challenge prevented its vasoconstricting effects alongside the CBFv decreases, but it also attenuated the neuronal Ca2+N increases triggered by cocaine. These results document a role of astrocytes both in regulating vascular tone and consequently blood flow, at baseline and for modulating the vasoconstricting and neuronal activation responses to cocaine in the PFC. Strategies to inhibit astrocytic activity could offer promise for ameliorating vascular and neuronal toxicity from cocaine misuse.
Collapse
Affiliation(s)
- Congwu Du
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kichon Park
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yueming Hua
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yanzuo Liu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20857, USA
| | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
2
|
Clare K, Park K, Pan Y, Lejuez CW, Volkow ND, Du C. Neurovascular effects of cocaine: relevance to addiction. Front Pharmacol 2024; 15:1357422. [PMID: 38455961 PMCID: PMC10917943 DOI: 10.3389/fphar.2024.1357422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024] Open
Abstract
Cocaine is a highly addictive drug, and its use is associated with adverse medical consequences such as cerebrovascular accidents that result in debilitating neurological complications. Indeed, brain imaging studies have reported severe reductions in cerebral blood flow (CBF) in cocaine misusers when compared to the brains of healthy non-drug using controls. Such CBF deficits are likely to disrupt neuro-vascular interaction and contribute to changes in brain function. This review aims to provide an overview of cocaine-induced CBF changes and its implication to brain function and to cocaine addiction, including its effects on tissue metabolism and neuronal activity. Finally, we discuss implications for future research, including targeted pharmacological interventions and neuromodulation to limit cocaine use and mitigate the negative impacts.
Collapse
Affiliation(s)
- Kevin Clare
- New York Medical College, Valhalla, NY, United States
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Kicheon Park
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Carl W. Lejuez
- Department of Psychology, Stony Brook University, Stony Brook, NY, United States
| | - Nora D. Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Congwu Du
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
3
|
Xia M, Anderson TL, Prantzalos ER, Hawkinson TR, Clarke HA, Keohane SB, Sun RC, Turner JR, Ortinski PI. Voltage-gated potassium channels control extended access cocaine seeking: a role for nucleus accumbens astrocytes. Neuropsychopharmacology 2024; 49:551-560. [PMID: 37660129 PMCID: PMC10789875 DOI: 10.1038/s41386-023-01718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Dopaminergic signaling in the nucleus accumbens shell (NAc) regulates neuronal activity relevant to reward-related learning, including cocaine-associated behaviors. Although astrocytes respond to dopamine and cocaine with structural changes, the impact of dopamine and cocaine on astrocyte functional plasticity has not been widely studied. Specifically, behavioral implications of voltage-gated channel activity in the canonically non-excitable astrocytes are not known. We characterized potassium channel function in NAc astrocytes following exposure to exogenous dopamine or cocaine self-administration training under short (2 h/day) and extended (6 h/day) access schedules. Electrophysiological, Ca2+ imaging, mRNA, and mass spectrometry tools were used for molecular characterization. Behavioral effects were examined after NAc-targeted microinjections of channel antagonists and astroglial toxins. Exogenous dopamine increased activity of currents mediated by voltage-gated (Kv7) channels in NAc astrocytes. This was associated with a ~5-fold increase in expression of Kcnq2 transcript level in homogenized NAc micropunches. Matrix-assisted laser desorption/ionization mass spectrometry revealed increased NAc dopamine levels in extended access, relative to short access, rats. Kv7 inhibition selectively increased frequency and amplitude of astrocyte intracellular Ca2+ transients in NAc of extended access rats. Inhibition of Kv7 channels in the NAc attenuated cocaine-seeking in extended access rats only, an effect that was occluded by microinjection of the astrocyte metabolic poison, fluorocitrate. These results suggest that voltage-gated K+ channel signaling in NAc astrocytes is behaviorally relevant, support Kv7-mediated regulation of astrocyte Ca2+ signals, and propose novel mechanisms of neuroglial interactions relevant to drug use.
Collapse
Affiliation(s)
- Mengfan Xia
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Tanner L Anderson
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Emily R Prantzalos
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Tara R Hawkinson
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Harrison A Clarke
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Shannon B Keohane
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Ramon C Sun
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Pavel I Ortinski
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
4
|
DeRon N, Fischer F, Norris T. Moyamoya Disease Causing Stroke in the Setting of Cocaine Use and Uncontrolled Hypertension Due to Primary Hyperaldosteronism. Cureus 2024; 16:e51578. [PMID: 38313982 PMCID: PMC10835197 DOI: 10.7759/cureus.51578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Moyamoya disease is a cerebrovascular disease characterized by stenosis of large intracranial arteries and the development of smaller collateral vessels. Moyamoya may cause strokes and stroke-like symptoms in young patients. It has also been linked to autoimmune diseases and neuropsychiatric conditions. We present a case of moyamoya disease in a young patient with concomitant hyperaldosteronism, uncontrolled hypertension, and cocaine use disorder, along with features of antisocial personality disorder. This is a unique presentation of an underlying neurological disease causing psychiatric features exacerbated by cocaine use, and it describes a rare clinical presentation that physicians should consider in patients with moyamoya disease.
Collapse
Affiliation(s)
- Nathan DeRon
- Internal Medicine, Methodist Health System, Dallas, USA
| | | | - Tara Norris
- Internal Medicine, Methodist Health System, Dallas, USA
| |
Collapse
|
5
|
Tomasi D, Manza P, Yan W, Shokri-Kojori E, Demiral ŞB, Yonga MV, McPherson K, Biesecker C, Dennis E, Johnson A, Zhang R, Wang GJ, Volkow ND. Examining the role of dopamine in methylphenidate's effects on resting brain function. Proc Natl Acad Sci U S A 2023; 120:e2314596120. [PMID: 38109535 PMCID: PMC10756194 DOI: 10.1073/pnas.2314596120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/14/2023] [Indexed: 12/20/2023] Open
Abstract
The amplitude of low-frequency fluctuations (ALFF) and global functional connectivity density (gFCD) are fMRI (Functional MRI) metrics widely used to assess resting brain function. However, their differential sensitivity to stimulant-induced dopamine (DA) increases, including the rate of DA rise and the relationship between them, have not been investigated. Here we used, simultaneous PET-fMRI to examine the association between dynamic changes in striatal DA and brain activity as assessed by ALFF and gFCD, following placebo, intravenous (IV), or oral methylphenidate (MP) administration, using a within-subject double-blind placebo-controlled design. In putamen, MP significantly reduced D2/3 receptor availability and strongly reduced ALFF and increased gFCD in the brain for IV-MP (Cohen's d > 1.6) but less so for oral-MP (Cohen's d < 0.6). Enhanced gFCD was associated with both the level and the rate of striatal DA increases, whereas decreased ALFF was only associated with the level of DA increases. These findings suggest distinct representations of neurovascular activation with ALFF and gFCD by stimulant-induced DA increases with differential sensitivity to the rate and the level of DA increases. We also observed an inverse association between gFCD and ALFF that was markedly enhanced during IV-MP, which could reflect an increased contribution from MP's vasoactive properties.
Collapse
Affiliation(s)
- Dardo Tomasi
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Peter Manza
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Weizheng Yan
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Ehsan Shokri-Kojori
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Şükrü Barış Demiral
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Michele-Vera Yonga
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Katherine McPherson
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Catherine Biesecker
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Evan Dennis
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Allison Johnson
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Rui Zhang
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Gene-Jack Wang
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Nora D. Volkow
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| |
Collapse
|
6
|
Dykxhoorn DM, Wang H, Da Fonseca Ferreira A, Wei J, Dong C. MicroRNA-423-5p Mediates Cocaine-Induced Smooth Muscle Cell Contraction by Targeting Cacna2d2. Int J Mol Sci 2023; 24:6584. [PMID: 37047559 PMCID: PMC10094933 DOI: 10.3390/ijms24076584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Cocaine abuse increases the risk of atherosclerotic cardiovascular disease (CVD) and causes acute coronary syndromes (ACS) and hypertension (HTN). Significant research has explored the role of the sympathetic nervous system mediating the cocaine effects on the cardiovascular (CV) system. However, the response of the sympathetic nervous system alone is insufficient to completely account for the CV consequences seen in cocaine users. In this study, we examined the role of microRNAs (miRNAs) in mediating the effect of cocaine on the CV system. MiRNAs regulate many important biological processes and have been associated with both response to cocaine and CV disease development. Multiple miRNAs have altered expression in the CV system (CVS) upon cocaine exposure. To understand the molecular mechanisms underlying the cocaine response in the CV system, we studied the role of miRNA-423-5p and its target Cacna2d2 in the regulation of intracellular calcium concentration and SMC contractility, a critical factor in the modulation of blood pressure (BP). We used in vivo models to evaluate BP and aortic stiffness. In vitro, cocaine treatment decreased miR-423-5p expression and increased Cacna2d2 expression, which led to elevated intracellular calcium concentrations and increased SMC contractility. Overexpression of miR-423-5p, silencing of its target Cacna2d2, and treatment with a calcium channel blocker reversed the elevated SMC contractility caused by cocaine. In contrast, suppression of miR-423-5p increased the intracellular calcium concentration and SMC contractibility. In vivo, smooth muscle-specific overexpression of miR-423-5p ameliorated the increase in BP and aortic stiffness associated with cocaine use. Thus, miR-423-5p regulates SMC contraction by modulating Cacna2d2 expression increasing intracellular calcium concentrations. Modulation of the miR-423-5p-Cacna2d2-Calcium transport pathway may represent a novel therapeutic strategy to improve cocaine-induced HTN and aortic stiffness.
Collapse
Affiliation(s)
- Derek M. Dykxhoorn
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Huilan Wang
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrea Da Fonseca Ferreira
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jianqin Wei
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chunming Dong
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Section of Cardiology, Miami VA Health Systems, Miami, FL 33136, USA
- Biomedical Research Building, Suite 812, 1501 NW 10th Avenue, Miami, FL 33136, USA
| |
Collapse
|
7
|
Pan Y, Du C, Park K, Hua Y, Volkow N. Astrocytes mediate cerebral blood flow and neuronal response to cocaine in prefrontal cortex. RESEARCH SQUARE 2023:rs.3.rs-2626090. [PMID: 36993330 PMCID: PMC10055529 DOI: 10.21203/rs.3.rs-2626090/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cocaine affects both cerebral blood vessels and neuronal activity in brain. Cocaine can also disrupt astrocytes, which are involved in neurovascular coupling process that modulates cerebral hemodynamics in response to neuronal activity. However, separating neuronal and astrocytic effects from cocaine's direct vasoactive effects is challenging, partially due to limitations of neuroimaging techniques to differentiate vascular from neuronal and glial effects at high temporal and spatial resolutions. Here, we used a newly-developed multi-channel fluorescence and optical coherence Doppler microscope (fl-ODM) that allows for simultaneous measurements of neuronal and astrocytic activities alongside their vascular interactions in vivo to address this challenge. Using green and red genetically-encoded Ca2+ indicators differentially expressed in astrocytes and neurons, fl-ODM enabled concomitant imaging of large-scale astrocytic and neuronal Ca2+ fluorescence and 3D cerebral blood flow velocity (CBFv) in vascular networks in the mouse cortex. We assessed cocaine's effects in the prefrontal cortex (PFC) and found that the CBFv changes triggered by cocaine were temporally correlated with astrocytic Ca2 + A activity. Chemogenetic inhibition of astrocytes during the baseline state resulted in blood vessel dilation and CBFv increases but did not affect neuronal activity, suggesting modulation of spontaneous blood vessel's vascular tone by astrocytes. Chemogenetic inhibition of astrocytes during cocaine challenge prevented its vasoconstricting effects alongside the CBFv decreases but also attenuated the neuronal Ca2+ N increases triggered by cocaine. These results document a role of astrocytes both in regulating vascular tone of blood flow at baseline and for mediating the vasoconstricting responses to cocaine as well as its neuronal activation in the PFC. Strategies to inhibit astrocytic activity could offer promise for ameliorating vascular and neuronal toxicity from cocaine misuse.
Collapse
Affiliation(s)
| | | | | | | | - Nora Volkow
- National Institute on Drug Abuse National Institutes of Health
| |
Collapse
|