1
|
Miao J, Wu Y, Sun Z, Miao X, Lu T, Zhao J, Lu Q. Valid inference for machine learning-assisted genome-wide association studies. Nat Genet 2024; 56:2361-2369. [PMID: 39349818 DOI: 10.1038/s41588-024-01934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/29/2024] [Indexed: 11/10/2024]
Abstract
Machine learning (ML) has become increasingly popular in almost all scientific disciplines, including human genetics. Owing to challenges related to sample collection and precise phenotyping, ML-assisted genome-wide association study (GWAS), which uses sophisticated ML techniques to impute phenotypes and then performs GWAS on the imputed outcomes, have become increasingly common in complex trait genetics research. However, the validity of ML-assisted GWAS associations has not been carefully evaluated. Here, we report pervasive risks for false-positive associations in ML-assisted GWAS and introduce Post-Prediction GWAS (POP-GWAS), a statistical framework that redesigns GWAS on ML-imputed outcomes. POP-GWAS ensures valid and powerful statistical inference irrespective of imputation quality and choice of algorithm, requiring only GWAS summary statistics as input. We employed POP-GWAS to perform a GWAS of bone mineral density derived from dual-energy X-ray absorptiometry imaging at 14 skeletal sites, identifying 89 new loci and revealing skeletal site-specific genetic architecture. Our framework offers a robust analytic solution for future ML-assisted GWAS.
Collapse
Affiliation(s)
- Jiacheng Miao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Yixuan Wu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongxuan Sun
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Xinran Miao
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Tianyuan Lu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Jiwei Zhao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA.
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Nicoletti P, Zafer S, Matok L, Irron I, Patrick M, Haklai R, Evangelista JE, Marino GB, Ma’ayan A, Sewda A, Holmes G, Britton SR, Lee WJ, Wu M, Ru Y, Arnaud E, Botto L, Brody LC, Byren JC, Caggana M, Carmichael SL, Cilliers D, Conway K, Crawford K, Cuellar A, Di Rocco F, Engel M, Fearon J, Feldkamp ML, Finnell R, Fisher S, Freudlsperger C, Garcia-Fructuoso G, Hagge R, Heuzé Y, Harshbarger RJ, Hobbs C, Howley M, Jenkins MM, Johnson D, Justice CM, Kane A, Kay D, Gosain AK, Langlois P, Legal-Mallet L, Lin AE, Mills JL, Morton JE, Noons P, Olshan A, Persing J, Phipps JM, Redett R, Reefhuis J, Rizk E, Samson TD, Shaw GM, Sicko R, Smith N, Staffenberg D, Stoler J, Sweeney E, Taub PJ, Timberlake AT, Topczewska J, Wall SA, Wilson AF, Wilson LC, Boyadjiev SA, Wilkie AO, Richtsmeier JT, Jabs EW, Romitti PA, Karasik D, Birnbaum RY, Peter I. Regulatory elements in SEM1-DLX5-DLX6 (7q21.3) locus contribute to genetic control of coronal nonsyndromic craniosynostosis and bone density-related traits. GENETICS IN MEDICINE OPEN 2024; 2:101851. [PMID: 39345948 PMCID: PMC11434253 DOI: 10.1016/j.gimo.2024.101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Purpose The etiopathogenesis of coronal nonsyndromic craniosynostosis (cNCS), a congenital condition defined by premature fusion of 1 or both coronal sutures, remains largely unknown. Methods We conducted the largest genome-wide association study of cNCS followed by replication, fine mapping, and functional validation of the most significant region using zebrafish animal model. Results Genome-wide association study identified 6 independent genome-wide-significant risk alleles, 4 on chromosome 7q21.3 SEM1-DLX5-DLX6 locus, and their combination conferred over 7-fold increased risk of cNCS. The top variants were replicated in an independent cohort and showed pleiotropic effects on brain and facial morphology and bone mineral density. Fine mapping of 7q21.3 identified a craniofacial transcriptional enhancer (eDlx36) within the linkage region of the top variant (rs4727341; odds ratio [95% confidence interval], 0.48[0.39-0.59]; P = 1.2E-12) that was located in SEM1 intron and enriched in 4 rare risk variants. In zebrafish, the activity of the transfected human eDlx36 enhancer was observed in the frontonasal prominence and calvaria during skull development and was reduced when the 4 rare risk variants were introduced into the sequence. Conclusion Our findings support a polygenic nature of cNCS risk and functional role of craniofacial enhancers in cNCS susceptibility with potential broader implications for bone health.
Collapse
Affiliation(s)
- Paola Nicoletti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Samreen Zafer
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Lital Matok
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Inbar Irron
- Department of Life Sciences, Faculty of Natural Sciences and The Center for Evolutionarily Genomics and Medicine, Ben Gurion University, Beer Sheva, Israel
| | - Meidva Patrick
- Department of Life Sciences, Faculty of Natural Sciences and The Center for Evolutionarily Genomics and Medicine, Ben Gurion University, Beer Sheva, Israel
| | - Rotem Haklai
- Department of Life Sciences, Faculty of Natural Sciences and The Center for Evolutionarily Genomics and Medicine, Ben Gurion University, Beer Sheva, Israel
| | - John Erol Evangelista
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Giacomo B. Marino
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Avi Ma’ayan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anshuman Sewda
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sierra R. Britton
- Department of Population Health Sciences, Weill Cornell Medical College of Cornell University New York, NY
| | - Won Jun Lee
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ying Ru
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eric Arnaud
- Department of Neurosurgery, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lorenzo Botto
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah
| | - Lawrence C. Brody
- Social and Behavioral Research Branch, National Human Genome Research Institute, Bethesda, MD
| | - Jo C. Byren
- Craniofacial Unit, Department of Plastic Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Michele Caggana
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY
| | - Suzan L. Carmichael
- Department of Pediatrics, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA
| | - Deirdre Cilliers
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Kristin Conway
- Department of Epidemiology, University of Iowa, Iowa City, IA
| | - Karen Crawford
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Araceli Cuellar
- Department of Pediatrics, University of California, Davis, CA
| | - Federico Di Rocco
- Hôpital Femme Mère Enfant Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Michael Engel
- Department of Oral and Cranio-Maxillofacial Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Jeffrey Fearon
- The Craniofacial Center, Medical City Children’s Hospital Dallas, Dallas, TX
| | - Marcia L. Feldkamp
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah
| | - Richard Finnell
- Center for Precision Environmental Health, Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas
| | - Sarah Fisher
- Birth Defects Registry, New York State Department of Health, Albany, NY
| | - Christian Freudlsperger
- Department of Oral and Cranio-Maxillofacial Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Rhinda Hagge
- Department of Epidemiology, University of Iowa, Iowa City, IA
| | - Yann Heuzé
- Université de Bordeaux, CNRS, Ministère de la Culture, PACEA, Pessac, France
| | | | - Charlotte Hobbs
- Rady Children’s Institute for Genomic Medicine, San Diego, CA
| | - Meredith Howley
- Birth Defects Registry, New York State Department of Health, Albany, NY
| | - Mary M. Jenkins
- Division of Birth Defects and Infant Disorders, Centers for Disease Control and Prevention, Atlanta, GA
| | - David Johnson
- Craniofacial Unit, Department of Plastic Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Cristina M. Justice
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, Baltimore, MD
| | - Alex Kane
- Department of Plastic Surgery, UT Southwestern Medical Center, Dallas, TX
| | - Denise Kay
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY
| | - Arun Kumar Gosain
- Department of Surgery, Division of Pediatric Plastic Surgery, Children’s Hospital of Chicago, Northwestern University, Chicago, IL
| | - Peter Langlois
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Austin Campus, Austin, TX
| | - Laurence Legal-Mallet
- Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Université de Paris Cité, Imagine Institute, INSERM U1163, Paris, France
| | - Angela E. Lin
- Medical Genetics, Mass General Hospital for Children, Harvard Medical School, Boston, MA
| | - James L. Mills
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Jenny E.V. Morton
- Birmingham Health Partners, Birmingham Women’s and Children’s Hospitals NHS Foundation Trust, Birmingham, United Kingdom
| | - Peter Noons
- Birmingham Craniofacial Unit, Birmingham Women’s and Children’s Hospitals NHS Foundation Trust, Birmingham, United Kingdom
| | - Andrew Olshan
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC
| | - John Persing
- Division of Plastic and Reconstructive Surgery, Yale School of Medicine, New Haven, CT
| | - Julie M. Phipps
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Richard Redett
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University, Baltimore, MD
| | - Jennita Reefhuis
- Division of Birth Defects and Infant Disorders, Centers for Disease Control and Prevention, Atlanta, GA
| | - Elias Rizk
- Department of Neurosurgery, Pennsylvania State University Medical Center, Hershey, PA
| | - Thomas D. Samson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Pennsylvania State University Medical Center, Hershey, PA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University, Stanford, CA
| | - Robert Sicko
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY
| | - Nataliya Smith
- Neuroscience Institute, Pennsylvania State University, College of Medicine, Hershey Medical Center, Hershey, PA
| | - David Staffenberg
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Medical Center, Hassenfeld Children’s Hospital, New York, NY
| | - Joan Stoler
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
| | - Elizabeth Sweeney
- Department of Clinical Genetics, Liverpool Women’s Hospital NHS Trust, Liverpool, United Kingdom
| | - Peter J. Taub
- Division of Plastic and Reconstructive Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Andrew T. Timberlake
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Medical Center, Hassenfeld Children’s Hospital, New York, NY
| | - Jolanta Topczewska
- Department of Surgery, Division of Pediatric Plastic Surgery, Children’s Hospital of Chicago, Northwestern University, Chicago, IL
| | - Steven A. Wall
- Craniofacial Unit, Department of Plastic Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Alexander F. Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, Baltimore, MD
| | - Louise C. Wilson
- Clinical Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | | | - Andrew O.M. Wilkie
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Joan T. Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, PA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Paul A. Romitti
- Department of Epidemiology, University of Iowa, Iowa City, IA
| | - David Karasik
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Ramon Y. Birnbaum
- Department of Life Sciences, Faculty of Natural Sciences and The Center for Evolutionarily Genomics and Medicine, Ben Gurion University, Beer Sheva, Israel
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
5
|
Prijatelj V, Grgic O, Uitterlinden AG, Wolvius EB, Rivadeneira F, Medina-Gomez C. Bone health index in the assessment of bone health: The Generation R Study. Bone 2024; 182:117070. [PMID: 38460828 DOI: 10.1016/j.bone.2024.117070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Bone Health Index (BHI) has been proposed as a useful instrument for assessing bone health in children. However, its relationship with fracture risk remains unknown. We aimed to investigate whether BHI is associated with bone mineral density (BMD) and prevalent fracture odds in children from the Generation R Study. We also implemented genome-wide association study (GWAS) and polygenic score (PGS) approaches to improve our understanding of BHI and its potential. In total, 4150 children (49.4 % boys; aged 9.8 years) with genotyped data and bone assessments were included in this study. BMD was measured across the total body (less head following ISCD guidelines) using a GE-Lunar iDXA densitometer; and BHI was determined from the hand DXA scans using BoneXpert®. Fractures were self-reported collected with home questionnaires. The association of BHI with BMD and fractures was evaluated using linear models corrected for age, sex, ethnicity, height, and weight. We observed a positive correlation between BHI and BMD (ρ = 0.32, p-value<0.0001). Further, every SD decrease in BHI was associated with an 11 % increased risk of prevalent fractures (OR:1.11, 95 % CI 1.00-1.24, p-value = 0.05). Our BHI GWAS identified variants (lead SNP rs1404264-A, p-value = 2.61 × 10-14) mapping to the ING3/CPED1/WNT16 locus. Children in the extreme tails of the BMD PGS presented a difference in BHI values of -0.10 standard deviations (95% CI -0.14 to -0.07; p-value<0.0001). On top of the demonstrated epidemiological association of BHI with both BMD and fracture risk, our results reveal a partially shared biological background between BHI and BMD. These findings highlight the potential value of using BHI to screen children at risk of fracture.
Collapse
Affiliation(s)
- Vid Prijatelj
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, the Netherlands; Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, the Netherlands; The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015, GD, the Netherlands
| | - Olja Grgic
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, the Netherlands; Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, the Netherlands; The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015, GD, the Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, the Netherlands; The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015, GD, the Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, the Netherlands
| | - Eppo B Wolvius
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, the Netherlands; The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015, GD, the Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, the Netherlands; Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, the Netherlands; The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015, GD, the Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, the Netherlands
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, the Netherlands; The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015, GD, the Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, the Netherlands.
| |
Collapse
|
6
|
Ikram MA, Kieboom BCT, Brouwer WP, Brusselle G, Chaker L, Ghanbari M, Goedegebure A, Ikram MK, Kavousi M, de Knegt RJ, Luik AI, van Meurs J, Pardo LM, Rivadeneira F, van Rooij FJA, Vernooij MW, Voortman T, Terzikhan N. The Rotterdam Study. Design update and major findings between 2020 and 2024. Eur J Epidemiol 2024; 39:183-206. [PMID: 38324224 DOI: 10.1007/s10654-023-01094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/14/2023] [Indexed: 02/08/2024]
Abstract
The Rotterdam Study is a population-based cohort study, started in 1990 in the district of Ommoord in the city of Rotterdam, the Netherlands, with the aim to describe the prevalence and incidence, unravel the etiology, and identify targets for prediction, prevention or intervention of multifactorial diseases in mid-life and elderly. The study currently includes 17,931 participants (overall response rate 65%), aged 40 years and over, who are examined in-person every 3 to 5 years in a dedicated research facility, and who are followed-up continuously through automated linkage with health care providers, both regionally and nationally. Research within the Rotterdam Study is carried out along two axes. First, research lines are oriented around diseases and clinical conditions, which are reflective of medical specializations. Second, cross-cutting research lines transverse these clinical demarcations allowing for inter- and multidisciplinary research. These research lines generally reflect subdomains within epidemiology. This paper describes recent methodological updates and main findings from each of these research lines. Also, future perspective for coming years highlighted.
Collapse
Affiliation(s)
- M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands.
| | - Brenda C T Kieboom
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Willem Pieter Brouwer
- Department of Hepatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Guy Brusselle
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Pulmonology, University Hospital Ghent, Ghent, Belgium
| | - Layal Chaker
- Department of Epidemiology, and Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - André Goedegebure
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, and Department of Neurology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Rob J de Knegt
- Department of Hepatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Annemarie I Luik
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Joyce van Meurs
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Luba M Pardo
- Department of Dermatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Fernando Rivadeneira
- Department of Medicine, and Department of Oral & Maxillofacial Surgery, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Frank J A van Rooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, and Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Natalie Terzikhan
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|