1
|
Lyon JG, Carr ALJ, Smith NP, Marfil-Garza B, Spigelman AF, Bautista A, O’Gorman D, Kin T, Shapiro AMJ, Senior PA, MacDonald PE. Human research islet cell culture outcomes at the Alberta Diabetes Institute IsletCore. Islets 2024; 16:2385510. [PMID: 39097865 PMCID: PMC11299626 DOI: 10.1080/19382014.2024.2385510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024] Open
Abstract
Human islets from deceased organ donors have made important contributions to our understanding of pancreatic endocrine function and continue to be an important resource for research studies aimed at understanding, treating, and preventing diabetes. Understanding the impacts of isolation and culture upon the yield of human islets for research is important for planning research studies and islet distribution to distant laboratories. Here, we examine islet isolation and cell culture outcomes at the Alberta Diabetes Institute (ADI) IsletCore (n = 197). Research-focused isolations typically have a lower yield of islet equivalents (IEQ), with a median of 252,876 IEQ, but a higher purity (median 85%) than clinically focused isolations before culture. The median recovery of IEQs after culture was 75%, suggesting some loss. This was associated with a shift toward smaller islet particles, indicating possible islet fragmentation, and occurred within 24 h with no further loss after longer periods of culture (up to 136 h). No overall change in stimulation index as a measure of islet function was seen with culture time. These findings were replicated in a representative cohort of clinical islet preparations from the Clinical Islet Transplant Program at the University of Alberta. Thus, loss of islets occurs within 24 h of isolation, and there is no further impact of extended culture prior to islet distribution for research.
Collapse
Affiliation(s)
- James G Lyon
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Alice LJ Carr
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Nancy P Smith
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Braulio Marfil-Garza
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, Canada
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | - Aliya F Spigelman
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Austin Bautista
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Doug O’Gorman
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Canada
| | - Tatsuya Kin
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Canada
| | - AM James Shapiro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Canada
| | - Peter A Senior
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Patrick E MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| |
Collapse
|
2
|
Alver CG, Dominguez-Bendala J, Agarwal A. Engineered tools to study endocrine dysfunction of pancreas. BIOPHYSICS REVIEWS 2024; 5:041303. [PMID: 39449867 PMCID: PMC11498943 DOI: 10.1063/5.0220396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
Pancreas, a vital organ with intricate endocrine and exocrine functions, is central to the regulation of the body's glucose levels and digestive processes. Disruptions in its endocrine functions, primarily regulated by islets of Langerhans, can lead to debilitating diseases such as diabetes mellitus. Murine models of pancreatic dysfunction have contributed significantly to the understanding of insulitis, islet-relevant immunological responses, and the optimization of cell therapies. However, genetic differences between mice and humans have severely limited their clinical translational relevance. Recent advancements in tissue engineering and microfabrication have ushered in a new era of in vitro models that offer a promising solution. This paper reviews the state-of-the-art engineered tools designed to study endocrine dysfunction of the pancreas. Islet on a chip devices that allow precise control of various culture conditions and noninvasive readouts of functional outcomes have led to the generation of physiomimetic niches for primary and stem cell derived islets. Live pancreatic slices are a new experimental tool that could more comprehensively recapitulate the complex cellular interplay between the endocrine and exocrine parts of the pancreas. Although a powerful tool, live pancreatic slices require more complex control over their culture parameters such as local oxygenation and continuous removal of digestive enzymes and cellular waste products for maintaining experimental functionality over long term. The combination of islet-immune and slice on chip strategies can guide the path toward the next generation of pancreatic tissue modeling for better understanding and treatment of endocrine pancreatic dysfunctions.
Collapse
Affiliation(s)
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Ashutosh Agarwal
- Author to whom correspondence should be addressed:. Tel.: +1 305 243-8925
| |
Collapse
|
3
|
Evans-Molina C, Pettway YD, Saunders DC, Sharp SA, Bate TSR, Sun H, Durai H, Mei S, Coldren A, Davis C, Reihsmann CV, Hopkirk AL, Taylor J, Bradley A, Aramandla R, Poffenberger G, Eskaros A, Jenkins R, Shi D, Kang H, Rajesh V, Thaman S, Feng F, Cartailler JP, Powers AC, Abraham K, Gloyn AL, Niland JC, Brissova M. Heterogeneous endocrine cell composition defines human islet functional phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.623809. [PMID: 39605606 PMCID: PMC11601672 DOI: 10.1101/2024.11.20.623809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Phenotyping and genotyping initiatives within the Integrated Islet Distribution Program (IIDP), the largest source of human islets for research in the U.S., provide standardized assessment of islet preparations distributed to researchers, enabling the integration of multiple data types. Data from islets of the first 299 organ donors without diabetes, analyzed using this pipeline, highlights substantial heterogeneity in islet cell composition associated with hormone secretory traits, sex, reported race and ethnicity, genetically predicted ancestry, and genetic risk for type 2 diabetes (T2D). While α and β cell composition influenced insulin and glucagon secretory traits, the abundance of δ cells showed the strongest association with insulin secretion and was also associated with the genetic risk score (GRS) for T2D. These findings have important implications for understanding mechanisms underlying diabetes heterogeneity and islet dysfunction and may provide insight into strategies for personalized medicine and β cell replacement therapy.
Collapse
Affiliation(s)
- Carmella Evans-Molina
- Departments of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Departments of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Departments of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Departments of Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Departments of Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Yasminye D. Pettway
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Diane C. Saunders
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Seth A. Sharp
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Thomas SR. Bate
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Han Sun
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Heather Durai
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shaojun Mei
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anastasia Coldren
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Corey Davis
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Conrad V. Reihsmann
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alexander L. Hopkirk
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jay Taylor
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Amber Bradley
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Radhika Aramandla
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Greg Poffenberger
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Adel Eskaros
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Regina Jenkins
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Danni Shi
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Varsha Rajesh
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Swaraj Thaman
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Fan Feng
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Alvin C. Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| | - Kristin Abraham
- Division of Diabetes, Endocrinology, & Metabolic Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna L. Gloyn
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
- Stanford Diabetes Center, Stanford School of Medicine, Stanford, CA, USA
| | - Joyce C. Niland
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Yang L, Han Y, Zhang T, Dong X, Ge J, Roy A, Zhu J, Lu T, Jeya Vandana J, de Silva N, Robertson CC, Xiang JZ, Pan C, Sun Y, Que J, Evans T, Liu C, Wang W, Naji A, Parker SCJ, Schwartz RE, Chen S. Human vascularized macrophage-islet organoids to model immune-mediated pancreatic β cell pyroptosis upon viral infection. Cell Stem Cell 2024; 31:1612-1629.e8. [PMID: 39232561 PMCID: PMC11546835 DOI: 10.1016/j.stem.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/05/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
There is a paucity of human models to study immune-mediated host damage. Here, we utilized the GeoMx spatial multi-omics platform to analyze immune cell changes in COVID-19 pancreatic autopsy samples, revealing an accumulation of proinflammatory macrophages. Single-cell RNA sequencing (scRNA-seq) analysis of human islets exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coxsackievirus B4 (CVB4) viruses identified activation of proinflammatory macrophages and β cell pyroptosis. To distinguish viral versus proinflammatory-macrophage-mediated β cell pyroptosis, we developed human pluripotent stem cell (hPSC)-derived vascularized macrophage-islet (VMI) organoids. VMI organoids exhibited enhanced marker expression and function in both β cells and endothelial cells compared with separately cultured cells. Notably, proinflammatory macrophages within VMI organoids induced β cell pyroptosis. Mechanistic investigations highlighted TNFSF12-TNFRSF12A involvement in proinflammatory-macrophage-mediated β cell pyroptosis. This study established hPSC-derived VMI organoids as a valuable tool for studying immune-cell-mediated host damage and uncovered the mechanism of β cell damage during viral exposure.
Collapse
Affiliation(s)
- Liuliu Yang
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institute of Health Science, Tianjin 301600, China.
| | - Yuling Han
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Tuo Zhang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Xue Dong
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jian Ge
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aadita Roy
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jiajun Zhu
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Tiankun Lu
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - J Jeya Vandana
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Neranjan de Silva
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Catherine C Robertson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jenny Z Xiang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chendong Pan
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yanjie Sun
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jianwen Que
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Wei Wang
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
5
|
Ewald JD, Lu Y, Ellis CE, Worton J, Kolic J, Sasaki S, Zhang D, Dos Santos T, Spigelman AF, Bautista A, Dai XQ, Lyon JG, Smith NP, Wong JM, Rajesh V, Sun H, Sharp SA, Rogalski JC, Moravcova R, Cen HH, Manning Fox JE, Atlas E, Bruin JE, Mulvihill EE, Verchere CB, Foster LJ, Gloyn AL, Johnson JD, Pepper AR, Lynn FC, Xia J, MacDonald PE. HumanIslets.com: Improving accessibility, integration, and usability of human research islet data. Cell Metab 2024:S1550-4131(24)00365-6. [PMID: 39357523 DOI: 10.1016/j.cmet.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
HumanIslets.com supports diabetes research by offering easy access to islet phenotyping data, analysis tools, and data download. It includes molecular omics, islet and cellular function assays, tissue processing metadata, and phenotypes from 547 donors. As it expands, the resource aims to improve human islet data quality, usability, and accessibility.
Collapse
Affiliation(s)
- Jessica D Ewald
- Institute of Parasitology, McGill University, Montreal, QC, Canada; Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yao Lu
- Institute of Parasitology, McGill University, Montreal, QC, Canada
| | - Cara E Ellis
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Jessica Worton
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Jelena Kolic
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Shugo Sasaki
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Dahai Zhang
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Theodore Dos Santos
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Aliya F Spigelman
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Austin Bautista
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Xiao-Qing Dai
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - James G Lyon
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Nancy P Smith
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Jordan M Wong
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Varsha Rajesh
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA, USA
| | - Han Sun
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA, USA
| | - Seth A Sharp
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA, USA
| | - Jason C Rogalski
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Renata Moravcova
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Haoning H Cen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jocelyn E Manning Fox
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Jennifer E Bruin
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Erin E Mulvihill
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - C Bruce Verchere
- Department of Surgery, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Leonard J Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA, USA; Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Andrew R Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Montreal, QC, Canada.
| | - Patrick E MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Department of Pharmacology, University of Alberta, Edmonton, AB, Canada; Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Yang L, Han Y, Zhang T, Dong X, Ge J, Roy A, Zhu J, Lu T, Vandana JJ, de Silva N, Robertson CC, Xiang JZ, Pan C, Sun Y, Que J, Evans T, Liu C, Wang W, Naji A, Parker SC, Schwartz RE, Chen S. Human Vascularized Macrophage-Islet Organoids to Model Immune-Mediated Pancreatic β cell Pyroptosis upon Viral Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606734. [PMID: 39149298 PMCID: PMC11326194 DOI: 10.1101/2024.08.05.606734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
There is a paucity of human models to study immune-mediated host damage. Here, we utilized the GeoMx spatial multi-omics platform to analyze immune cell changes in COVID-19 pancreatic autopsy samples, revealing an accumulation of proinflammatory macrophages. Single cell RNA-seq analysis of human islets exposed to SARS-CoV-2 or Coxsackievirus B4 (CVB4) viruses identified activation of proinflammatory macrophages and β cell pyroptosis. To distinguish viral versus proinflammatory macrophage-mediated β cell pyroptosis, we developed human pluripotent stem cell (hPSC)-derived vascularized macrophage-islet (VMI) organoids. VMI organoids exhibited enhanced marker expression and function in both β cells and endothelial cells compared to separately cultured cells. Notably, proinflammatory macrophages within VMI organoids induced β cell pyroptosis. Mechanistic investigations highlighted TNFSF12-TNFRSF12A involvement in proinflammatory macrophage-mediated β cell pyroptosis. This study established hPSC-derived VMI organoids as a valuable tool for studying immune cell-mediated host damage and uncovered mechanism of β cell damage during viral exposure.
Collapse
Affiliation(s)
- Liuliu Yang
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institute of Health Science, Tianjin 301600, China
| | - Yuling Han
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Tuo Zhang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Xue Dong
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Jian Ge
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aadita Roy
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Jiajun Zhu
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Tiankun Lu
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - J. Jeya Vandana
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Neranjan de Silva
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Catherine C. Robertson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jenny Z Xiang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chendong Pan
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yanjie Sun
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jianwen Que
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Wei Wang
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Stephen C.J. Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Robert E. Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA. New York 10021, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| |
Collapse
|
7
|
Huan Z, Li J, Luo Z, Yu Y, Li L. Hydrogel-Encapsulated Pancreatic Islet Cells as a Promising Strategy for Diabetic Cell Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0403. [PMID: 38966749 PMCID: PMC11221926 DOI: 10.34133/research.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024]
Abstract
Islet transplantation has now become a promising treatment for insulin-deficient diabetes mellitus. Compared to traditional diabetes treatments, cell therapy can restore endogenous insulin supplementation, but its large-scale clinical application is impeded by donor shortages, immune rejection, and unsuitable transplantation sites. To overcome these challenges, an increasing number of studies have attempted to transplant hydrogel-encapsulated islet cells to treat diabetes. This review mainly focuses on the strategy of hydrogel-encapsulated pancreatic islet cells for diabetic cell therapy, including different cell sources encapsulated in hydrogels, encapsulation methods, hydrogel types, and a series of accessorial manners to improve transplantation outcomes. In addition, the formation and application challenges as well as prospects are also presented.
Collapse
Affiliation(s)
- Zhikun Huan
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Jingbo Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory,
Åbo Akademi University, Turku 20520, Finland
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| |
Collapse
|
8
|
Ewald JD, Lu Y, Ellis CE, Worton J, Kolic J, Sasaki S, Zhang D, dos Santos T, Spigelman AF, Bautista A, Dai XQ, Lyon JG, Smith NP, Wong JM, Rajesh V, Sun H, Sharp SA, Rogalski JC, Moravcova R, Cen HH, Manning Fox JE, Atlas E, Bruin JE, Mulvihill EE, Verchere CB, Foster LJ, Gloyn AL, Johnson JD, Pepper AR, Lynn FC, Xia J, MacDonald PE. HumanIslets: An integrated platform for human islet data access and analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599613. [PMID: 38948734 PMCID: PMC11212983 DOI: 10.1101/2024.06.19.599613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Comprehensive molecular and cellular phenotyping of human islets can enable deep mechanistic insights for diabetes research. We established the Human Islet Data Analysis and Sharing (HI-DAS) consortium to advance goals in accessibility, usability, and integration of data from human islets isolated from donors with and without diabetes at the Alberta Diabetes Institute (ADI) IsletCore. Here we introduce HumanIslets.com, an open resource for the research community. This platform, which presently includes data on 547 human islet donors, allows users to access linked datasets describing molecular profiles, islet function and donor phenotypes, and to perform various statistical and functional analyses at the donor, islet and single-cell levels. As an example of the analytic capacity of this resource we show a dissociation between cell culture effects on transcript and protein expression, and an approach to correct for exocrine contamination found in hand-picked islets. Finally, we provide an example workflow and visualization that highlights links between type 2 diabetes status, SERCA3b Ca2+-ATPase levels at the transcript and protein level, insulin secretion and islet cell phenotypes. HumanIslets.com provides a growing and adaptable set of resources and tools to support the metabolism and diabetes research community.
Collapse
Affiliation(s)
- Jessica D. Ewald
- Institute of Parasitology, McGill University, Montreal, QC
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yao Lu
- Institute of Parasitology, McGill University, Montreal, QC
| | - Cara E. Ellis
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - Jessica Worton
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Surgery, University of Alberta, Edmonton, AB
| | - Jelena Kolic
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Shugo Sasaki
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC
| | - Dahai Zhang
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC
| | - Theodore dos Santos
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - Aliya F. Spigelman
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - Austin Bautista
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
| | - Xiao-Qing Dai
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - James G. Lyon
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
| | - Nancy P. Smith
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - Jordan M. Wong
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Surgery, University of Alberta, Edmonton, AB
| | - Varsha Rajesh
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA
| | - Han Sun
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA
| | - Seth A. Sharp
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA
| | - Jason C. Rogalski
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Renata Moravcova
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Haoning H Cen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Jocelyn E. Manning Fox
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | | | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON
| | - Jennifer E. Bruin
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON
| | - Erin E. Mulvihill
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON
- University of Ottawa Heart Institute, Ottawa, ON
| | - C. Bruce Verchere
- Department of Surgery, BC Children’s Hospital Research Institute and University of British Columbia, Vancouver, BC
- Department of Pathology and Laboratory Medicine, BC Children’s Hospital Research Institute and University of British Columbia, Vancouver, BC
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Anna L. Gloyn
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Surgery, University of Alberta, Edmonton, AB
| | - Francis C. Lynn
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Montreal, QC
| | - Patrick E. MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| |
Collapse
|
9
|
Azzarello F, Carli F, De Lorenzi V, Tesi M, Marchetti P, Beltram F, Raimondi F, Cardarelli F. Machine-learning-guided recognition of α and β cells from label-free infrared micrographs of living human islets of Langerhans. Sci Rep 2024; 14:14235. [PMID: 38902357 PMCID: PMC11190282 DOI: 10.1038/s41598-024-65161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
Human islets of Langerhans are composed mostly of glucagon-secreting α cells and insulin-secreting β cells closely intermingled one another. Current methods for identifying α and β cells involve either fixing islets and using immunostaining or disaggregating islets and employing flow cytometry for classifying α and β cells based on their size and autofluorescence. Neither approach, however, allows investigating the dynamic behavior of α and β cells in a living and intact islet. To tackle this issue, we present a machine-learning-based strategy for identification α and β cells in label-free infrared micrographs of living human islets without immunostaining. Intrinsic autofluorescence is stimulated by infrared light and collected both in intensity and lifetime in the visible range, dominated by NAD(P)H and lipofuscin signals. Descriptive parameters are derived from micrographs for ~ 103 cells. These parameters are used as input for a boosted decision-tree model (XGBoost) pre-trained with immunofluorescence-derived cell-type information. The model displays an optimized-metrics performance of 0.86 (i.e. area under a ROC curve), with an associated precision of 0.94 for the recognition of β cells and 0.75 for α cells. This tool promises to enable longitudinal studies on the dynamic behavior of individual cell types at single-cell resolution within the intact tissue.
Collapse
Affiliation(s)
| | - Francesco Carli
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | | | - Marta Tesi
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Fabio Beltram
- NEST Laboratory, Scuola Normale Superiore, Pisa, Italy
| | | | | |
Collapse
|
10
|
Di Piazza E, Todi L, Di Giuseppe G, Soldovieri L, Ciccarelli G, Brunetti M, Quero G, Alfieri S, Tondolo V, Pontecorvi A, Gasbarrini A, Nista EC, Giaccari A, Pani G, Mezza T. Advancing Diabetes Research: A Novel Islet Isolation Method from Living Donors. Int J Mol Sci 2024; 25:5936. [PMID: 38892122 PMCID: PMC11172646 DOI: 10.3390/ijms25115936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Pancreatic islet isolation is critical for type 2 diabetes research. Although -omics approaches have shed light on islet molecular profiles, inconsistencies persist; on the other hand, functional studies are essential, but they require reliable and standardized isolation methods. Here, we propose a simplified protocol applied to very small-sized samples collected from partially pancreatectomized living donors. Islet isolation was performed by digesting tissue specimens collected during surgery within a collagenase P solution, followed by a Lympholyte density gradient separation; finally, functional assays and staining with dithizone were carried out. Isolated pancreatic islets exhibited functional responses to glucose and arginine stimulation mirroring donors' metabolic profiles, with insulin secretion significantly decreasing in diabetic islets compared to non-diabetic islets; conversely, proinsulin secretion showed an increasing trend from non-diabetic to diabetic islets. This novel islet isolation method from living patients undergoing partial pancreatectomy offers a valuable opportunity for targeted study of islet physiology, with the primary advantage of being time-effective and successfully preserving islet viability and functionality. It enables the generation of islet preparations that closely reflect donors' clinical profiles, simplifying the isolation process and eliminating the need for a Ricordi chamber. Thus, this method holds promises for advancing our understanding of diabetes and for new personalized pharmacological approaches.
Collapse
Affiliation(s)
- Eleonora Di Piazza
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
| | - Laura Todi
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
| | - Gianfranco Di Giuseppe
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Laura Soldovieri
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Gea Ciccarelli
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Michela Brunetti
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Giuseppe Quero
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Digestive Surgery Unit, Ospedale Isola Tiberina—Gemelli Isola, 00186 Roma, Italy
| | - Sergio Alfieri
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Digestive Surgery Unit, Ospedale Isola Tiberina—Gemelli Isola, 00186 Roma, Italy
| | - Vincenzo Tondolo
- Digestive Surgery Unit, Ospedale Isola Tiberina—Gemelli Isola, 00186 Roma, Italy
| | - Alfredo Pontecorvi
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Antonio Gasbarrini
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Pancreas Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
| | - Enrico Celestino Nista
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Pancreas Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
| | - Andrea Giaccari
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Giovambattista Pani
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Teresa Mezza
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Pancreas Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
| |
Collapse
|
11
|
Lehrstrand J, Davies WIL, Hahn M, Korsgren O, Alanentalo T, Ahlgren U. Illuminating the complete ß-cell mass of the human pancreas- signifying a new view on the islets of Langerhans. Nat Commun 2024; 15:3318. [PMID: 38632302 PMCID: PMC11024155 DOI: 10.1038/s41467-024-47686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Pancreatic islets of Langerhans play a pivotal role in regulating blood glucose homeostasis, but critical information regarding their mass, distribution and composition is lacking within a whole organ context. Here, we apply a 3D imaging pipeline to generate a complete account of the insulin-producing islets throughout the human pancreas at a microscopic resolution and within a maintained spatial 3D context. These data show that human islets are far more heterogenous than previously accounted for with regards to their size distribution and cellular make up. By deep tissue 3D imaging, this in-depth study demonstrates that 50% of the human insulin-expressing islets are virtually devoid of glucagon-producing α-cells, an observation with significant implications for both experimental and clinical research.
Collapse
Affiliation(s)
- Joakim Lehrstrand
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Wayne I L Davies
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Max Hahn
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Tomas Alanentalo
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Ulf Ahlgren
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden.
| |
Collapse
|
12
|
Walker JT, Saunders DC, Rai V, Chen HH, Orchard P, Dai C, Pettway YD, Hopkirk AL, Reihsmann CV, Tao Y, Fan S, Shrestha S, Varshney A, Petty LE, Wright JJ, Ventresca C, Agarwala S, Aramandla R, Poffenberger G, Jenkins R, Mei S, Hart NJ, Phillips S, Kang H, Greiner DL, Shultz LD, Bottino R, Liu J, Below JE, Parker SCJ, Powers AC, Brissova M. Genetic risk converges on regulatory networks mediating early type 2 diabetes. Nature 2023; 624:621-629. [PMID: 38049589 PMCID: PMC11374460 DOI: 10.1038/s41586-023-06693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/28/2023] [Indexed: 12/06/2023]
Abstract
Type 2 diabetes mellitus (T2D), a major cause of worldwide morbidity and mortality, is characterized by dysfunction of insulin-producing pancreatic islet β cells1,2. T2D genome-wide association studies (GWAS) have identified hundreds of signals in non-coding and β cell regulatory genomic regions, but deciphering their biological mechanisms remains challenging3-5. Here, to identify early disease-driving events, we performed traditional and multiplexed pancreatic tissue imaging, sorted-islet cell transcriptomics and islet functional analysis of early-stage T2D and control donors. By integrating diverse modalities, we show that early-stage T2D is characterized by β cell-intrinsic defects that can be proportioned into gene regulatory modules with enrichment in signals of genetic risk. After identifying the β cell hub gene and transcription factor RFX6 within one such module, we demonstrated multiple layers of genetic risk that converge on an RFX6-mediated network to reduce insulin secretion by β cells. RFX6 perturbation in primary human islet cells alters β cell chromatin architecture at regions enriched for T2D GWAS signals, and population-scale genetic analyses causally link genetically predicted reduced RFX6 expression with increased T2D risk. Understanding the molecular mechanisms of complex, systemic diseases necessitates integration of signals from multiple molecules, cells, organs and individuals, and thus we anticipate that this approach will be a useful template to identify and validate key regulatory networks and master hub genes for other diseases or traits using GWAS data.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vivek Rai
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Hung-Hsin Chen
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Orchard
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Chunhua Dai
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yasminye D Pettway
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexander L Hopkirk
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Conrad V Reihsmann
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yicheng Tao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Simin Fan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Shristi Shrestha
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arushi Varshney
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Lauren E Petty
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jordan J Wright
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christa Ventresca
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Samir Agarwala
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Radhika Aramandla
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Greg Poffenberger
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Regina Jenkins
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shaojun Mei
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nathaniel J Hart
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sharon Phillips
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dale L Greiner
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Rita Bottino
- Imagine Pharma, Devon, PA, USA
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Allegheny Health Network, Pittsburgh, PA, USA
| | - Jie Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- VA Tennessee Valley Healthcare System, Nashville, TN, USA.
| | - Marcela Brissova
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
13
|
Pasquier A, Pastore N, D'Orsi L, Colonna R, Esposito A, Maffia V, De Cegli R, Mutarelli M, Ambrosio S, Tufano G, Grimaldi A, Cesana M, Cacchiarelli D, Delalleau N, Napolitano G, Ballabio A. TFEB and TFE3 control glucose homeostasis by regulating insulin gene expression. EMBO J 2023; 42:e113928. [PMID: 37712288 PMCID: PMC10620765 DOI: 10.15252/embj.2023113928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/31/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023] Open
Abstract
To fulfill their function, pancreatic beta cells require precise nutrient-sensing mechanisms that control insulin production. Transcription factor EB (TFEB) and its homolog TFE3 have emerged as crucial regulators of the adaptive response of cell metabolism to environmental cues. Here, we show that TFEB and TFE3 regulate beta-cell function and insulin gene expression in response to variations in nutrient availability. We found that nutrient deprivation in beta cells promoted TFEB/TFE3 activation, which resulted in suppression of insulin gene expression. TFEB overexpression was sufficient to inhibit insulin transcription, whereas beta cells depleted of both TFEB and TFE3 failed to suppress insulin gene expression in response to amino acid deprivation. Interestingly, ChIP-seq analysis showed binding of TFEB to super-enhancer regions that regulate insulin transcription. Conditional, beta-cell-specific, Tfeb-overexpressing, and Tfeb/Tfe3 double-KO mice showed severe alteration of insulin transcription, secretion, and glucose tolerance, indicating that TFEB and TFE3 are important physiological mediators of pancreatic function. Our findings reveal a nutrient-controlled transcriptional mechanism that regulates insulin production, thus playing a key role in glucose homeostasis at both cellular and organismal levels.
Collapse
Affiliation(s)
- Adrien Pasquier
- Telethon Institute of Genetics and Medicine (TIGEM)NaplesItaly
| | - Nunzia Pastore
- Telethon Institute of Genetics and Medicine (TIGEM)NaplesItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Luca D'Orsi
- Telethon Institute of Genetics and Medicine (TIGEM)NaplesItaly
| | - Rita Colonna
- Telethon Institute of Genetics and Medicine (TIGEM)NaplesItaly
| | | | - Veronica Maffia
- Telethon Institute of Genetics and Medicine (TIGEM)NaplesItaly
| | | | - Margherita Mutarelli
- Institute of Applied Sciences and Intelligent SystemsNational Research Council (ISASI‐CNR)PozzuoliItaly
| | | | - Gennaro Tufano
- Telethon Institute of Genetics and Medicine (TIGEM)NaplesItaly
| | | | - Marcella Cesana
- Telethon Institute of Genetics and Medicine (TIGEM)NaplesItaly
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM)NaplesItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
- School for Advanced Studies, Genomics and Experimental Medicine ProgramUniversity of Naples "Federico II"NaplesItaly
| | | | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM)NaplesItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
- School for Advanced Studies, Genomics and Experimental Medicine ProgramUniversity of Naples "Federico II"NaplesItaly
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM)NaplesItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
- School for Advanced Studies, Genomics and Experimental Medicine ProgramUniversity of Naples "Federico II"NaplesItaly
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTXUSA
| |
Collapse
|
14
|
Hirano M, Yamada Y. Reprogramming of pancreatic islet cells for regeneration and rejuvenation. Curr Opin Genet Dev 2023; 82:102099. [PMID: 37611379 DOI: 10.1016/j.gde.2023.102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023]
Abstract
The pancreatic β cell, which produces insulin, is a terminally differentiated cell type that divides rarely. Consequently, the regenerative ability of β cells is limited and irreversible diabetes occurs after severe loss of β-cell function. In view of such poor regenerative capacity, considerable research efforts have been made to promote the expansion of functional insulin-producing cells as a regenerative therapy for diabetes. Here, we discuss recent findings regarding the robust expansion of functional mature islet cells both in vivo and ex vivo through MYCL-mediated reprogramming. We also describe the potential prospects for the application of reprogramming technologies to regenerative therapy and rejuvenation of islet cells.
Collapse
Affiliation(s)
- Michitada Hirano
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yasuhiro Yamada
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
15
|
Urizar AI, Prause M, Ingerslev LR, Wortham M, Sui Y, Sander M, Williams K, Barrès R, Larsen MR, Christensen GL, Billestrup N. Beta cell dysfunction induced by bone morphogenetic protein (BMP)-2 is associated with histone modifications and decreased NeuroD1 chromatin binding. Cell Death Dis 2023; 14:399. [PMID: 37407581 DOI: 10.1038/s41419-023-05906-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Insufficient insulin secretion is a hallmark of type 2 diabetes and has been attributed to beta cell identity loss characterized by decreased expression of several key beta cell genes. The pro-inflammatory factor BMP-2 is upregulated in islets of Langerhans from individuals with diabetes and acts as an inhibitor of beta cell function and proliferation. Exposure to BMP-2 induces expression of Id1-4, Hes-1, and Hey-1 which are transcriptional regulators associated with loss of differentiation. The aim of this study was to investigate the mechanism by which BMP-2 induces beta cell dysfunction and loss of cell maturity. Mouse islets exposed to BMP-2 for 10 days showed impaired glucose-stimulated insulin secretion and beta cell proliferation. BMP-2-induced beta cell dysfunction was associated with decreased expression of cell maturity and proliferation markers specific to the beta cell such as Ins1, Ucn3, and Ki67 and increased expression of Id1-4, Hes-1, and Hey-1. The top 30 most regulated proteins significantly correlated with corresponding mRNA expression. BMP-2-induced gene expression changes were associated with a predominant reduction in acetylation of H3K27 and a decrease in NeuroD1 chromatin binding activity. These results show that BMP-2 induces loss of beta cell maturity and suggest that remodeling of H3K27ac and decreased NeuroD1 DNA binding activity participate in the effect of BMP-2 on beta cell dysfunction.
Collapse
Affiliation(s)
| | - Michala Prause
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Lars Roed Ingerslev
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Matthew Wortham
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yinghui Sui
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Kristine Williams
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice Côte d'Azur, Valbonne, France
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Nils Billestrup
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Blériot C, Dalmas É, Ginhoux F, Venteclef N. Inflammatory and immune etiology of type 2 diabetes. Trends Immunol 2023; 44:101-109. [PMID: 36604203 DOI: 10.1016/j.it.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 01/04/2023]
Abstract
Type 2 diabetes (T2D) represents a global threat affecting millions of patients worldwide. However, its causes remain incompletely dissected and we lack the tools to predict which individuals will develop T2D. Although there is a clear proven clinical association of T2D with metabolic disorders such as obesity and nonalcoholic fatty liver disease (NAFLD), the existence of a significant number of nondiabetic obese subjects suggests yet-uncovered features of such relationships. Here, we propose that a significant proportion of individuals may harbor an immune profile that renders them susceptible to developing T2D. We note the heterogeneity of circulating monocytes and tissue macrophages in organs that are key to metabolic disorders such as liver, white adipose tissue (WAT), and endocrine pancreas, as well as their contribution to T2D genesis.
Collapse
Affiliation(s)
- Camille Blériot
- Institut Necker-Enfants Malades (INEM), Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France.
| | - Élise Dalmas
- Institut Necker-Enfants Malades (INEM), Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France.
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif, France; Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A∗STAR), Singapore 138648, Singapore; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore; Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nicolas Venteclef
- Institut Necker-Enfants Malades (INEM), Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| |
Collapse
|
17
|
Shapira SN, Naji A, Atkinson MA, Powers AC, Kaestner KH. Understanding islet dysfunction in type 2 diabetes through multidimensional pancreatic phenotyping: The Human Pancreas Analysis Program. Cell Metab 2022; 34:1906-1913. [PMID: 36206763 PMCID: PMC9742126 DOI: 10.1016/j.cmet.2022.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/26/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
In this perspective, we provide an overview of a recently established National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) initiative, the Human Pancreas Analysis Program for Type 2 Diabetes (HPAP-T2D). This program is designed to define the molecular pathogenesis of islet dysfunction by studying human pancreatic tissue samples from organ donors with T2D. HPAP-T2D generates detailed datasets of physiological, histological, transcriptomic, epigenomic, and genomic information. Importantly, all data collected, generated, and analyzed by HPAP-T2D are made immediately and freely available through a centralized database, PANC-DB, thus providing a comprehensive data resource for the diabetes research community.
Collapse
Affiliation(s)
- Suzanne N Shapira
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA; The Human Pancreas Analysis Program (RRID: SCR_016202)
| | - Ali Naji
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Human Pancreas Analysis Program (RRID: SCR_016202)
| | - Mark A Atkinson
- Departments of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610, USA; The Human Pancreas Analysis Program (RRID: SCR_016202)
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA; The Human Pancreas Analysis Program (RRID: SCR_016202).
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA; The Human Pancreas Analysis Program (RRID: SCR_016202).
| |
Collapse
|