1
|
Piao M, Zhang N, Li J, Li C, Xun Z, Zhang L, Wang S, Sun B, Li S, Yang X, Yang X, Wang H, Zhao H. Peripheral blood PD-1 + T lymphocytes as biomarkers in liquid biopsies for solid tumors: Clinical significance and prognostic applications. Int Immunopharmacol 2025; 147:114052. [PMID: 39799737 DOI: 10.1016/j.intimp.2025.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
A shift toward a T cell exhaustion phenotype is associated with the upregulation of expression of programmed cell death protein 1 (PD-1) on T lymphocytes in patients with malignant solid tumors. The interaction between PD-1 and programmed death-ligand 1 (PD-L1) inhibits PD-1+ T lymphocyte function, impacting their anti-tumor immune activity. Immune checkpoint inhibitors targeting PD-1/PD-L1 have revolutionized the treatment of various solid malignancies, improving therapeutic efficacy and survival outcomes. Peripheral blood analysis of liquid biopsies is being increasingly used to identify populations most likely to benefit from various treatment modalities. PD-1+ T lymphocytes represent the primary cell population responsive to immunotherapeutic interventions for patients with solid malignancies, as evidenced by the altered PD-1 expression levels and proportion of cells comprising the overall population of immunocytes. PD-1+ T cells in peripheral blood exert an associative and reciprocal predictive effect on homologous intratumoral cells. Distinct subpopulations of PD-1+ T cells exhibit differential ability to proliferate in the periphery and can be characterized by tumor antigen-specific and exhaustion phenotypes. These characteristics have prognostic implications, aiding in the prediction of the efficacy of antitumor therapy and predicting survival outcomes. We highlight distinct subpopulations of PD-1+ T cells, their exhaustion and antigen-specific phenotypes, and their dynamic changes over treatment, providing insights into their utility for tailoring personalized therapies. For the first time, this review discusses the role of peripheral PD-1+ T lymphocytes as prognostic biomarkers in liquid biopsies, focusing on their clinical significance, predictive value during therapy, and future research directions.
Collapse
Affiliation(s)
- Mingjian Piao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Nan Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Jiongyuan Li
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Chengjie Li
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Ziyu Xun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Longhao Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Shanshan Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Boyu Sun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Shuofeng Li
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Xu Yang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Xiaobo Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China.
| | - Hanping Wang
- Division of Pulmonary and Critical Care Medicine, State Key Laboratory of Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China.
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Yohannes M, Massa C, Desalegn Z, Stückrath K, Mueller A, Anberber E, Bekuretsion Y, Assefa M, Santos P, Addissie A, Bauer M, Wickenhauser C, Taylor L, Vetter M, Kantelhardt EJ, Abebe T, Seliger B. Blood immune profiling of Ethiopian patients with breast cancer highlights different forms of immune escape. Oncoimmunology 2024; 13:2436227. [PMID: 39621040 PMCID: PMC11622621 DOI: 10.1080/2162402x.2024.2436227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
Breast cancer (BC) is a leading cause of death worldwide, particularly also among African woman. In order to better stratify patients for the most effective (immuno-) therapy, an in depth characterization of the immune status of BC patients is required. In this study, a cohort of 65 Ethiopian patients with primary BC underwent immune profiling by multicolor flow cytometry on peripheral blood samples collected prior to surgery and to any other therapy. Comparison with peripheral blood samples from healthy donors highlighted a general activation of the immune system, accompanied by the presence of exhausted CD4+ T cells and senescent CD8+ T cells with an inverted CD4/CD8 ratio in approximately 50% of BC cases. Enhanced frequencies of γδ T cells, myeloid-derived suppressor cells and regulatory T cells were also found. Correlation with clinical parameters demonstrated a progressive reduction in T cell frequencies with increasing histopathological grading of the tumor. Differences in CD8+ T cells and B cells were also noted among luminal and non-luminal BC subtypes. In conclusion, Ethiopian BC patients showed several alterations in the composition and activation status of the blood immune cell repertoire, which were phenotypically associated with immune suppression. The role of these immunological changes in the clinical outcome of patients with BC will have to be determined in follow-up studies and confirmed in additional patients' cohorts.
Collapse
Affiliation(s)
- Meron Yohannes
- Department of Microbiology, Immunology & Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Chiara Massa
- Institute of Translational Immunology, Brandenburg Medical School “Theodor Fontane”, Brandenburg an der Havel, Germany
| | - Zelalem Desalegn
- Department of Microbiology, Immunology & Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Kathrin Stückrath
- University Clinic and Polyclinic for Gynecology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Anja Mueller
- Institute of Medical Immunology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Endale Anberber
- Department of Surgery, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yonas Bekuretsion
- Department of Pathology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mathewos Assefa
- Department of Oncology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Pablo Santos
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Adamu Addissie
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
- School of Public Health, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Marcus Bauer
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Lesley Taylor
- City of Hope National Medical Center, Duarte, CA, USA
| | - Martina Vetter
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
- University Clinic and Polyclinic for Gynecology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Eva Johanna Kantelhardt
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
- University Clinic and Polyclinic for Gynecology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Tamrat Abebe
- Department of Microbiology, Immunology & Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Institute of Translational Immunology, Brandenburg Medical School “Theodor Fontane”, Brandenburg an der Havel, Germany
- Institute of Medical Immunology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Cell and Gene Therapy Development, Fraunhofer Institute, Leipzig, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School “Theodor Fontane”, Institute of Translational Immunology, Brandenburg, Germany
| |
Collapse
|
3
|
Pan X, Guo X, Wang J, Yang C, Chen M, Qiu H, Wu Q. Improved outcomes of palliative radiotherapy combined with immune checkpoint inhibitors in recurrent or metastatic cervical cancers. Int Immunopharmacol 2024; 143:113268. [PMID: 39357206 DOI: 10.1016/j.intimp.2024.113268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Immunotherapy provides a remarkable survival advantage for patients with recurrent or metastatic cervical cancer (R/M CC). However, the role of immunotherapy in combination with radiotherapy in R/M CC remains unclear. METHODS We retrospectively analyzed factors affecting immunotherapy effectiveness in patients with R/M CC. Clinical outcomes including tumor response and patient survival were assessed. Kaplan-Meier curves with the log-rank test were employed to compare survival data. Cox regression analysis was utilized to investigate prognostic factors. RESULTS A total of 65 R/M CC patients treated with immune checkpoint inhibitors were eligible for analysis. We found that immunotherapy combined with palliative radiotherapy showed a significant positive correlation with complete response (OR = 6.31; 95 %CI: 1.74-22.91; p = 0.005). The 36-month progression-free survival (PFS) rate (73.7 % vs 33.8 %, p = 0.0048) and 36-month overall survival (OS) rate (85.7 % vs 38.7 %, p = 0.0043) were also prominently increased. We further demonstrated that patients prolonged 36-month PFS rate (69.9 % vs 15.2 %; p < 0.001) and 36-month OS rate (64.6 % vs 39.7 %; p = 0.032) when they had more than 4 cycles of immunotherapy. Meanwhile, our findings showed that patients with only recurrence had longer 36-month OS rate (77.7 % vs 44.4 % vs 40.1 %; p = 0.024) compared to those with only metastasis and both. We also observed that patients with squamous carcinoma had higher 2-year PFS rate (57.9 % vs 14.6 %; p = 0.042) than those with other pathological subtypes (adenocarcinoma, adenosquamous carcinoma and neuroendocrine carcinoma). CONCLUSIONS The combination of immunotherapy and palliative radiotherapy increased complete response rates and improved survivals in recurrent or metastatic cervical cancer patients.
Collapse
Affiliation(s)
- Xinyu Pan
- School of Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaowan Guo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Juan Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chunxu Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Min Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Qiu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
4
|
Chin WL, Cook AM, Chee J, Principe N, Hoang TS, Kidman J, Hmon KPW, Yeow Y, Jones ME, Hou R, Denisenko E, McDonnell AM, Hon CC, Moody J, Anderson D, Yip S, Cummins MM, Stockler MR, Kok PS, Brown C, John T, Kao SCH, Karikios DJ, O'Byrne KJ, Hughes BGM, Lake RA, Forrest ARR, Nowak AK, Lassmann T, Lesterhuis WJ. Coupling of response biomarkers between tumor and peripheral blood in patients undergoing chemoimmunotherapy. Cell Rep Med 2024:101882. [PMID: 39731918 DOI: 10.1016/j.xcrm.2024.101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/14/2024] [Accepted: 11/29/2024] [Indexed: 12/30/2024]
Abstract
Platinum-based chemotherapy in combination with anti-PD-L1 antibodies has shown promising results in mesothelioma. However, the immunological mechanisms underlying its efficacy are not well understood and there are no predictive biomarkers to guide treatment decisions. Here, we combine time course RNA sequencing (RNA-seq) of peripheral blood mononuclear cells with pre-treatment tumor transcriptome data from the single-arm, phase 2 DREAM trial (N = 54). Single-cell RNA-seq and T cell receptor sequencing (TCR-seq) reveal that CD8+ T effector memory (TEM) cells with stem-like properties are more abundant in peripheral blood of responders and that this population expands upon treatment. These peripheral blood changes are linked to the transcriptional state of the tumor microenvironment. Combining information from both compartments, rather than individually, is most predictive of response. Our study highlights complex interactions between the tumor and immune cells in peripheral blood during objective tumor responses to chemoimmunotherapy. This trial is registered with the Australian New Zealand Clinical Trials Registry, number ACTRN12616001170415.
Collapse
Affiliation(s)
- Wee Loong Chin
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA 6009, Australia; Medical School, University of Western Australia, Crawley, WA 6009, Australia; Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| | - Alistair M Cook
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA 6009, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Jonathan Chee
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA 6009, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Nicola Principe
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA 6009, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Tracy S Hoang
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA 6009, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Joel Kidman
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA 6009, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Khaing P W Hmon
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA 6009, Australia
| | - Yen Yeow
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA 6009, Australia
| | - Matthew E Jones
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA 6009, Australia
| | - Rui Hou
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA 6009, Australia
| | - Elena Denisenko
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA 6009, Australia
| | - Alison M McDonnell
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA 6009, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; The Kids Research Institute, University of Western Australia, Nedlands WA 6009, Australia
| | - Chung-Chau Hon
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa 230-0045, Japan
| | - Jonathan Moody
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa 230-0045, Japan
| | - Denise Anderson
- The Kids Research Institute, University of Western Australia, Nedlands WA 6009, Australia
| | - Sonia Yip
- National Health and Medical Research Council, Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Michelle M Cummins
- National Health and Medical Research Council, Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Martin R Stockler
- National Health and Medical Research Council, Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Peey-Sei Kok
- National Health and Medical Research Council, Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Chris Brown
- National Health and Medical Research Council, Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Thomas John
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Steven C-H Kao
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
| | - Deme J Karikios
- Department of Medical Oncology, Nepean Hospital, Kingswood, NSW, Australia
| | - Kenneth J O'Byrne
- Department of Medical Oncology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Brett G M Hughes
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia; School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Richard A Lake
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA 6009, Australia; Medical School, University of Western Australia, Crawley, WA 6009, Australia
| | - Alistair R R Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA 6009, Australia.
| | - Anna K Nowak
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA 6009, Australia; Medical School, University of Western Australia, Crawley, WA 6009, Australia; Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia.
| | - Timo Lassmann
- The Kids Research Institute, University of Western Australia, Nedlands WA 6009, Australia.
| | - W Joost Lesterhuis
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA 6009, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; The Kids Research Institute, University of Western Australia, Nedlands WA 6009, Australia.
| |
Collapse
|
5
|
Song K, Xu H, Shi Y, Zou X, Da LT, Hao J. Investigating TCR-pMHC interactions for TCRs without identified epitopes by constructing a computational pipeline. Int J Biol Macromol 2024; 282:136502. [PMID: 39423970 DOI: 10.1016/j.ijbiomac.2024.136502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
The molecular mechanisms underlying epitope recognition by T cell receptors (TCRs) are critical for activating T cell immune responses and rationally designing TCR-based therapeutics. Single-cell sequencing techniques vastly boost the accumulation of TCR sequences, while the limitation of available TCR-pMHC structures hampers further investigations. In this study, we proposed a computational pipeline that incorporates structural information and single-cell sequencing data to investigate the epitope-recognition mechanisms for TCRs without identified epitopes. By antigen specificity clustering, we mapped the epitope sequences between epitope-known and epitope-unknown TCRs from COVID-19 patients. One reported SARS-CoV-2 epitope, NQKLIANQF (S919-927), was identified for a TCR expressed by 614 T cells (TCR-614). Epitope screening also identified a potential cross-reactive epitope, KLKTLVATA (NSP31790-1798), for a TCR expressed by 204 T cells (TCR-204). By molecular dynamics (MD) simulations, we revealed the detailed epitope-recognition mechanisms for both TCRs. The structural motifs responsible for epitope recognition revealed by the MD simulations are consistent with the sequential features recognized by the sequence-based clustering method. We hope that this strategy could facilitate the discovery and optimization of TCR-based therapeutics.
Collapse
Affiliation(s)
- Kaiyuan Song
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Honglin Xu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Xin Zou
- Digital Diagnosis and Treatment Innovation Center for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China; Ninth People's Hospital, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China.
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jie Hao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Goswami S, Pauken KE, Wang L, Sharma P. Next-generation combination approaches for immune checkpoint therapy. Nat Immunol 2024; 25:2186-2199. [PMID: 39587347 DOI: 10.1038/s41590-024-02015-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/09/2024] [Indexed: 11/27/2024]
Abstract
Immune checkpoint therapy has revolutionized cancer treatment, leading to dramatic clinical outcomes for a subset of patients. However, many patients do not experience durable responses following immune checkpoint therapy owing to multiple resistance mechanisms, highlighting the need for effective combination strategies that target these resistance pathways and improve clinical responses. The development of combination strategies based on an understanding of the complex biology that regulates human antitumor immune responses has been a major challenge. In this Review, we describe the current landscape of combination therapies. We also discuss how the development of effective combination strategies will require the integration of small, tissue-rich clinical trials, to determine how therapy-driven perturbation of the human immune system affects downstream biological responses and eventual clinical outcomes, reverse translation of clinical observations to immunocompetent preclinical models, to interrogate specific biological pathways and their impact on antitumor immune responses, and novel computational methods and machine learning, to integrate multiple datasets across clinical and preclinical studies for the identification of the most relevant pathways that need to be targeted for successful combination strategies.
Collapse
Affiliation(s)
- Sangeeta Goswami
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- James P Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristen E Pauken
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- James P Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Data Sciences in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- James P Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Li C, Li J. Dysregulation of systemic immunity in colorectal cancer and its clinical applications as biomarkers and therapeutics. Crit Rev Oncol Hematol 2024; 204:104543. [PMID: 39454739 DOI: 10.1016/j.critrevonc.2024.104543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
The immune system plays critical roles in the initiation and progression of colorectal cancer (CRC), and the majority of studies have focused on immune perturbations within the tumor microenvironment. In recent years, systemic immunity, which mainly occurs in the periphery, has attracted much attention. In CRC, both the tumor itself and treatments have extensive effects on systemic immunity, characterized by alterations in circulating cytokines and immune cells. In addition, intact systemic immunity is critical for the efficacy of therapies for CRC, especially immunotherapy. Therefore, various strategies aimed at alleviating the detrimental effects of traditional therapies or directly harnessing the components of systemic immunity for CRC treatment have been developed. However, whether these improvements can translate to survival benefits requires further study. This review aims to comprehensively outline the current knowledge of systemic immunity in CRC.
Collapse
Affiliation(s)
- Changqin Li
- Department of Clinical Laboratory, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Jian Li
- Department of General Surgery, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China.
| |
Collapse
|
8
|
Davar D, Carneiro BA, Dy GK, Sheth S, Borad MJ, Harrington KJ, Patel SP, Galanis E, Samson A, Agrawal S, Chen Z, Fan C, Gong M, Burton J, Tu E, Durham N, Laubscher K, Arnaldez F, Zamarin D. Phase I study of a recombinant attenuated oncolytic virus, MEDI5395 (NDV-GM-CSF), administered systemically in combination with durvalumab in patients with advanced solid tumors. J Immunother Cancer 2024; 12:e009336. [PMID: 39551600 PMCID: PMC11574399 DOI: 10.1136/jitc-2024-009336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND MEDI5395 is a recombinant attenuated Newcastle disease virus engineered to express a human granulocyte-macrophage colony-stimulating factor transgene. Preclinically, MEDI5395 demonstrated broad oncolytic activity, augmented by concomitant programmed cell death-1/programmed cell death ligand-1 (PD-L1) axis blockade. Durvalumab is an anti-PD-L1 immune checkpoint inhibitor approved for the treatment of various solid tumors. We describe the results of the first-in-human study combining intravenous MEDI5395 with durvalumab in patients with advanced solid tumors. METHODS This phase I, open-label, multicenter, dose-escalation, dose-expansion study recruited adult patients with advanced solid tumors, who had relapsed or were refractory or intolerant to ≥1 prior line of standard treatment. MEDI5395 was administered intravenously as six doses over 15-18 days. The dose-escalation phase assessed four-dose levels (108, 109, 1010, 1011 focus forming units (FFU)) of MEDI5395, with sequential or delayed durvalumab. Durvalumab 1500 mg was administered intravenously every 4 weeks up to 2 years. The dose-expansion phase was not initiated. The primary objectives were to evaluate safety and tolerability, dose-limiting toxicities (DLTs) and the dose and schedule of MEDI5395 plus durvalumab administration. Secondary objectives included the assessment of the efficacy, pharmacokinetics, pharmacodynamics, and immunogenicity of MEDI5395. RESULTS 39 patients were treated with MEDI5395; 36 patients also received durvalumab. All 39 patients experienced ≥1 treatment-emergent adverse event (TEAE), most commonly fatigue (61.5%), nausea (53.8%) and chills (51.3%). Grade 3-4 TEAEs occurred in 27 (69.2%) patients; these were deemed MEDI5395-related in 12 (30.8%) patients. Two patients experienced a DLT, and the maximum tolerated dose of MEDI5395 with sequential and delayed durvalumab at study termination was 1011 and 1010 FFU, respectively. Four patients (10.3%) achieved a partial response (PR). Patients with PR or stable disease tended to have higher baseline PD-L1 and CD8+ levels in their tumor tissue. A tendency to dose-dependent pharmacokinetics of the viral genome was observed in whole blood and a tendency to dose-dependent viral shedding was observed in saliva and urine. Neutralizing antibodies were observed in all patients but did not appear to impact efficacy negatively. CONCLUSION This study demonstrates the feasibility, safety and preliminary efficacy of MEDI5395 with durvalumab in patients with advanced solid tumors. TRIAL REGISTRATION NUMBER NCT03889275.
Collapse
Affiliation(s)
- Diwakar Davar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Benedito A Carneiro
- Lifespan Cancer Institute, Legorreta Cancer Institute at Brown University, Providence, Rhode Island, USA
| | - Grace K Dy
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Siddharth Sheth
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Kevin J Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research / The Royal Marsden NIHR Biomedical Research Centre, London, UK
| | - Sandip P Patel
- University of California San Diego, La Jolla, California, USA
| | | | - Adel Samson
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Sonia Agrawal
- Oncology Data Science, Research and Early Development, Oncology R&D, AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Zhongying Chen
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences (CPSS), BioPharmaceuticals R&D, AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Chunling Fan
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences (CPSS), BioPharmaceuticals R&D, AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Maozhen Gong
- AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Jenny Burton
- Oncology R&D, AstraZeneca PLC, Cambridge, Cambridgeshire, UK
| | - Eric Tu
- Translational Medicine, Cell Therapy and Oncolytic Viruses, BioPharmaceuticals R&D, AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Nicholas Durham
- Translational Medicine, Cell Therapy and Oncolytic Viruses, BioPharmaceuticals R&D, AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Kevin Laubscher
- Oncology Data Science, Research and Early Development, Oncology R&D, AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Fernanda Arnaldez
- Clinical Development, Oncology R&D, AstraZeneca R&D Gaithersburg, Gaithersburg, Maryland, USA
| | - Dmitriy Zamarin
- Early Drug Development, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
9
|
Wang K, Coutifaris P, Brocks D, Wang G, Azar T, Solis S, Nandi A, Anderson S, Han N, Manne S, Kiner E, Sachar C, Lucas M, George S, Yan PK, Kier MW, Laughlin AI, Kothari S, Giles J, Mathew D, Ghinnagow R, Alanio C, Flowers A, Xu W, Tenney DJ, Xu X, Amaravadi RK, Karakousis GC, Schuchter LM, Buggert M, Oldridge D, Minn AJ, Blank C, Weber JS, Mitchell TC, Farwell MD, Herati RS, Huang AC. Combination anti-PD-1 and anti-CTLA-4 therapy generates waves of clonal responses that include progenitor-exhausted CD8 + T cells. Cancer Cell 2024; 42:1582-1597.e10. [PMID: 39214097 PMCID: PMC11387127 DOI: 10.1016/j.ccell.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Combination checkpoint blockade with anti-PD-1 and anti-CTLA-4 antibodies has shown promising efficacy in melanoma. However, the underlying mechanism in humans remains unclear. Here, we perform paired single-cell RNA and T cell receptor (TCR) sequencing across time in 36 patients with stage IV melanoma treated with anti-PD-1, anti-CTLA-4, or combination therapy. We develop the algorithm Cyclone to track temporal clonal dynamics and underlying cell states. Checkpoint blockade induces waves of clonal T cell responses that peak at distinct time points. Combination therapy results in greater magnitude of clonal responses at 6 and 9 weeks compared to single-agent therapies, including melanoma-specific CD8+ T cells and exhausted CD8+ T cell (TEX) clones. Focused analyses of TEX identify that anti-CTLA-4 induces robust expansion and proliferation of progenitor TEX, which synergizes with anti-PD-1 to reinvigorate TEX during combination therapy. These next generation immune profiling approaches can guide the selection of drugs, schedule, and dosing for novel combination strategies.
Collapse
Affiliation(s)
- Kevin Wang
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paulina Coutifaris
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Guanning Wang
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tarek Azar
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sabrina Solis
- Department of Medicine, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Ajeya Nandi
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shaneaka Anderson
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Han
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Minke Lucas
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Sangeeth George
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick K Yan
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melanie W Kier
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amy I Laughlin
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shawn Kothari
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josephine Giles
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Divij Mathew
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Reem Ghinnagow
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cecile Alanio
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France; Clinical Immunology and Immunomonitoring Laboratory, Institut Curie, Paris, France
| | - Ahron Flowers
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Xu
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Xiaowei Xu
- Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi K Amaravadi
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giorgos C Karakousis
- Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lynn M Schuchter
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcus Buggert
- Institute for Immunology and Immune Health, Philadelphia, PA 19104, USA
| | - Derek Oldridge
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Andy J Minn
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Philadelphia, PA 19104, USA
| | - Christian Blank
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden 2333 ZA, the Netherlands; Department of Hematology and Oncology, University Clinic of Regensburg (UKR), 93053 Regensburg, Germany
| | - Jeffrey S Weber
- Department of Medicine, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Tara C Mitchell
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael D Farwell
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramin S Herati
- Department of Medicine, Grossman School of Medicine, New York University, New York, NY 10016, USA.
| | - Alexander C Huang
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Zhang Y, Li J, Li J, Wang J. Dysregulation of systemic immunity and its clinical application in gastric cancer. Front Immunol 2024; 15:1450128. [PMID: 39301031 PMCID: PMC11410619 DOI: 10.3389/fimmu.2024.1450128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
Immunotherapy has profoundly changed the treatment of gastric cancer, but only a minority of patients benefit from immunotherapy. Therefore, numerous studies have been devoted to clarifying the mechanisms underlying resistance to immunotherapy or developing biomarkers for patient stratification. However, previous studies have focused mainly on the tumor microenvironment. Systemic immune perturbations have long been observed in patients with gastric cancer, and the involvement of the peripheral immune system in effective anticancer responses has attracted much attention in recent years. Therefore, understanding the distinct types of systemic immune organization in gastric cancer will aid personalized treatment designed to pair with traditional therapies to alleviate their detrimental effects on systemic immunity or to directly activate the anticancer response of systemic immunity. Herein, this review aims to comprehensively summarize systemic immunity in gastric cancer, including perturbations in systemic immunity induced by cancer and traditional therapies, and the potential clinical applications of systemic immunity in the detection, prediction, prognosis and therapy of gastric cancer.
Collapse
Affiliation(s)
- Yao Zhang
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Junfeng Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Jisheng Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| |
Collapse
|
11
|
Martínez-Vila C, González-Navarro EA, Teixido C, Martin R, Aya F, Juan M, Arance A. Lymphocyte T Subsets and Outcome of Immune Checkpoint Inhibitors in Melanoma Patients: An Oncologist's Perspective on Current Knowledge. Int J Mol Sci 2024; 25:9506. [PMID: 39273452 PMCID: PMC11394732 DOI: 10.3390/ijms25179506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Melanoma is the most aggressive and deadly form of skin cancer, and its incidence has been steadily increasing over the past few decades, particularly in the Caucasian population. Immune checkpoint inhibitors (ICI), anti-PD-1 monotherapy or in combination with anti-CTLA-4, and more recently, anti-PD-1 plus anti-LAG-3 have changed the clinical evolution of this disease. However, a significant percentage of patients do not benefit from these therapies. Therefore, to improve patient selection, it is imperative to look for novel biomarkers. Immune subsets, particularly the quantification of lymphocyte T populations, could contribute to the identification of ICI responders. The main purpose of this review is to thoroughly examine significant published data on the potential role of lymphocyte T subset distribution in peripheral blood (PB) or intratumorally as prognostic and predictive of response biomarkers in advanced melanoma patients treated with ICI regardless of BRAFV600 mutational status.
Collapse
Affiliation(s)
- Clara Martínez-Vila
- Department of Medical Oncology, Althaia Xarxa Assistencial Universitària de Manresa, Dr. Joan Soler, 1-3, 08243 Manresa, Spain
- Programa de Doctorat en Medicina i Recerca Translacional, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), Roda 70, 08500 Vic, Spain
| | - Europa Azucena González-Navarro
- Department of Immunology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Cristina Teixido
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Roberto Martin
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Francisco Aya
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Manel Juan
- Department of Immunology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Ana Arance
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| |
Collapse
|
12
|
Hor JL, Schrom EC, Wong-Rolle A, Vistain L, Shang W, Dong Q, Zhao C, Jin C, Germain RN. PD-1 controls differentiation, survival, and TCR affinity evolution of stem-like CD8+ T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606241. [PMID: 39211103 PMCID: PMC11360996 DOI: 10.1101/2024.08.02.606241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Stem-like progenitors are a critical subset of cytotoxic T cells that self-renew and give rise to expanded populations of effector cells critical for successful checkpoint blockade immunotherapy. Emerging evidence suggests that the tumor-draining lymph nodes can support the continuous generation of these stem-like cells that replenish the tumor sites and act as a critical source of expanded effector populations, underlining the importance of understanding what factors promote and maintain activated T cells in the stem-like state. Using advanced 3D multiplex immunofluorescence imaging, here we identified antigen-presentation niches in tumor-draining lymph nodes that support the expansion, maintenance, and affinity evolution of a unique population of TCF-1+PD-1+SLAMF6 hi stem-like CD8+ T cells. Our results show that contrary to the prevailing view that persistent TCR signaling drives terminal effector differentiation, prolonged antigen engagement well beyond the initial priming phase sustained the proliferation and self-renewal of these stem-like T cells in vivo . The inhibitory PD-1 pathway plays a central role in this process by mediating the fine-tuning of TCR and co-stimulatory signal input that enables selective expansion of high affinity TCR stem-like clones, enabling them to act as a renewable source of high affinity effector cells. PD-1 checkpoint blockade disrupts this fine tuning of input signaling, leading to terminal differentiation to the effector state or death of the most avid anti-tumor stem-like cells. Our results thus reveal an unexpected relationship between TCR ligand affinity recognition, a key negative feedback regulatory loop, and T cell stemness programming. Furthermore, these findings raise questions about whether anti-PD-1 checkpoint blockade during cancer immunotherapy provides a short-term anti-tumor effect that comes at the cost of diminishing efficacy due to progressive loss of these critical high affinity stem-like precursors.
Collapse
|
13
|
Gao Y, Wang Y, Luo Y, Zhang Y, Wang S, Tang X, Qin P, Xu B, Gao Q, Li T. Pretreatment CD8 + PD-1 + to CD4 + PD-1 + ratio is associated with the prognosis of advanced melanoma patients treated with PD-1 inhibitors. Melanoma Res 2024; 34:376-381. [PMID: 38647119 DOI: 10.1097/cmr.0000000000000972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The aim of this study was to determine whether the pretreatment CD8 + PD-1 + to CD4 + PD-1 + (PERLS) ratio is an independent risk prognostic factor of advanced melanoma patients. We retrospectively analyzed the efficacy and flow cytometry data from advanced melanoma patients who received PD-1 inhibitor as monotherapy between January 1, 2018 and January 26, 2022. Fifty-nine patients were enrolled, the PERLS cutoff was 1.125. PERLS did not correlate with clinical characteristics but were significantly associated with baseline CD8 + , CD4 + , and CD8 + PD-1 + T cells. The mean overall survival and the progression-free survival were 45.8 and 17.1 months for the low PERLS group (n = 39), compared with 29.9 ( P = 0.001) and 9.7 ( P = 0.003) months for the high PERLS group ( n = 20), respectively. Pretreatment PERLS might contribute to selecting patients before receiving anti-PD-1 therapy.
Collapse
Affiliation(s)
- Yao Gao
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou
| | - Yao Wang
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou
| | - Yueyue Luo
- Department of Emergency, Zhoukou Centra Hospital, Zhoukou, China
| | - Yong Zhang
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou
| | - Saiqi Wang
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou
| | - Xiance Tang
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou
| | - Peng Qin
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou
| | - Benling Xu
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou
| | - Quanli Gao
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou
| | - Tiepeng Li
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou
| |
Collapse
|
14
|
Yu X, Pan M, Ye J, Hathaway CA, Tworoger SS, Lea J, Li B. Quantifiable TCR repertoire changes in prediagnostic blood specimens among patients with high-grade ovarian cancer. Cell Rep Med 2024; 5:101612. [PMID: 38878776 PMCID: PMC11293308 DOI: 10.1016/j.xcrm.2024.101612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/16/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024]
Abstract
High-grade ovarian cancer (HGOC) is a major cause of death in women. Early detection of HGOC usually leads to a cure, yet it remains a clinical challenge with over 90% HGOCs diagnosed at advanced stages. This is mainly because conventional biomarkers are not sensitive enough to detect the microscopic yet metastatic early lesions. In this study, we sequence the blood T cell receptor (TCR) repertoires of 466 patients with ovarian cancer and controls and systematically investigate the immune repertoire signatures in HGOCs. We observe quantifiable changes of selected TCRs in HGOCs that are reproducible in multiple independent cohorts. Importantly, these changes are stronger during stage I. Using pre-diagnostic patient blood samples from the Nurses' Health Study, we confirm that HGOC signals can be detected in the blood TCR repertoire up to 4 years preceding conventional diagnosis. Our findings may provide the basis for future immune-based HGOC early detection criteria.
Collapse
Affiliation(s)
- Xuexin Yu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mingyao Pan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianfeng Ye
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Shelley S Tworoger
- Knight Cancer Institute and Division of Oncological Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jayanthi Lea
- Department of Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Bo Li
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Chen Y, Wang D, Li Y, Qi L, Si W, Bo Y, Chen X, Ye Z, Fan H, Liu B, Liu C, Zhang L, Zhang X, Li Z, Zhu L, Wu A, Zhang Z. Spatiotemporal single-cell analysis decodes cellular dynamics underlying different responses to immunotherapy in colorectal cancer. Cancer Cell 2024; 42:1268-1285.e7. [PMID: 38981439 DOI: 10.1016/j.ccell.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/10/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Expanding the efficacy of immune checkpoint blockade (ICB) in colorectal cancer (CRC) presses for a comprehensive understanding of treatment responsiveness. Here, we analyze multiple sequential single-cell samples from 22 patients undergoing PD-1 blockade to map the evolution of local and systemic immunity of CRC patients. In tumors, we identify coordinated cellular programs exhibiting distinct response associations. Specifically, exhausted T (Tex) or tumor-reactive-like CD8+ T (Ttr-like) cells are closely related to treatment efficacy, and Tex cells show correlated proportion changes with multiple other tumor-enriched cell types following PD-1 blockade. In addition, we reveal the less-exhausted phenotype of blood-associated Ttr-like cells in tumors and find that their higher abundance suggests better treatment outcomes. Finally, a higher major histocompatibility complex (MHC) II-related signature in circulating CD8+ T cells at baseline is linked to superior responses. Our study provides insights into the spatiotemporal cellular dynamics following neoadjuvant PD-1 blockade in CRC.
Collapse
Affiliation(s)
- Yuqing Chen
- Biomedical Pioneering Innovative Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Dongfang Wang
- Biomedical Pioneering Innovative Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China.
| | - Yingjie Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Unit III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Lu Qi
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China
| | - Wen Si
- Biomedical Pioneering Innovative Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yufei Bo
- Biomedical Pioneering Innovative Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xueyan Chen
- Biomedical Pioneering Innovative Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhaochen Ye
- Biomedical Pioneering Innovative Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Hongtao Fan
- Biomedical Pioneering Innovative Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Baolin Liu
- Biomedical Pioneering Innovative Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Chang Liu
- Biomedical Pioneering Innovative Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Li Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaoyan Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Radiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhongwu Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Linna Zhu
- Biomedical Pioneering Innovative Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Aiwen Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Unit III, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovative Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
16
|
Lin S, Zhou H, Chen G, Xue J, Liu Q, Li J, Yang Y, Zhao Y, Bao H, Huang Y, Ma Y, Zhao H. Early change of plasma Epstein-Barr virus DNA load and the viral lytic genome level could positively predict clinical outcome in recurrent or metastatic nasopharyngeal carcinoma receiving anti-programmed cell death 1 monotherapy. BMC Cancer 2024; 24:797. [PMID: 38961378 PMCID: PMC11223362 DOI: 10.1186/s12885-024-12564-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
PURPOSE Patients with recurrent or metastatic nasopharyngeal carcinoma (RM-NPC) have proven benefit from anti-programmed cell death 1 (anti-PD-1) monotherapy. Here, we retrospectively analyze the association of plasma Epstein-Barr virus (EBV) DNA load and tumor viral lytic genome with clinical outcome from 2 registered phase I trials. METHODS Patients with RM-NPC from Checkmate 077 (nivolumab phase I trial in China) and Camrelizumab phase I trial between March 2016 and January 2018 were enrolled. Baseline EBV DNA titers were tested in 68 patients and EBV assessment was performed in 60 patients who had at least 3 post-baseline timepoints of EBV data and at least 1 post-baseline timepoint of radiographic assessment. We defined "EBV response" as 3 consecutive timepoints of load below 50% of baseline, and "EBV progression" as 3 consecutive timepoints of load above 150% of baseline. Whole-exome sequencing was performed in 60 patients with available tumor samples. RESULTS We found that the baseline EBV DNA load was positively correlated with tumor size (spearman p < 0.001). Both partial response (PR) and stable disease (SD) patients had significantly lower EBV load than progression disease (PD) patients. EBV assessment was highly consistent with radiographic evaluation. Patients with EBV response had significantly improved overall survival (OS) than patients with EBV progression (log-rank p = 0.004, HR = 0.351 [95% CI: 0.171-0.720], median 22.5 vs. 11.9 months). The median time to initial EBV response and progression were 25 and 36 days prior to initial radiographic response and progression, respectively. Patients with high levels of EBV lytic genomes at baseline, including BKRF2, BKRF3 and BKRF4, had better progression-free survival (PFS) and OS. CONCLUSION In summary, early clearance of plasma EBV DNA load and high levels of lytic EBV genes were associated with better clinical outcome in patients with RM-NPC receiving anti-PD-1 monotherapy.
Collapse
Affiliation(s)
- Shaoyan Lin
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China
| | - Huaqiang Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China
| | - Gang Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China
| | - Jinhui Xue
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China
| | - Qianwen Liu
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China
| | - Jianing Li
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China
| | - Yanhua Yang
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China
| | - Yuanyuan Zhao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China
| | - Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China.
| | - Yuxiang Ma
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China.
| | - Hongyun Zhao
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China.
| |
Collapse
|
17
|
Holder AM, Dedeilia A, Sierra-Davidson K, Cohen S, Liu D, Parikh A, Boland GM. Defining clinically useful biomarkers of immune checkpoint inhibitors in solid tumours. Nat Rev Cancer 2024; 24:498-512. [PMID: 38867074 DOI: 10.1038/s41568-024-00705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Although more than a decade has passed since the approval of immune checkpoint inhibitors (ICIs) for the treatment of melanoma and non-small-cell lung, breast and gastrointestinal cancers, many patients still show limited response. US Food and Drug Administration (FDA)-approved biomarkers include programmed cell death 1 ligand 1 (PDL1) expression, microsatellite status (that is, microsatellite instability-high (MSI-H)) and tumour mutational burden (TMB), but these have limited utility and/or lack standardized testing approaches for pan-cancer applications. Tissue-based analytes (such as tumour gene signatures, tumour antigen presentation or tumour microenvironment profiles) show a correlation with immune response, but equally, these demonstrate limited efficacy, as they represent a single time point and a single spatial assessment. Patient heterogeneity as well as inter- and intra-tumoural differences across different tissue sites and time points represent substantial challenges for static biomarkers. However, dynamic biomarkers such as longitudinal biopsies or novel, less-invasive markers such as blood-based biomarkers, radiomics and the gut microbiome show increasing potential for the dynamic identification of ICI response, and patient-tailored predictors identified through neoadjuvant trials or novel ex vivo tumour models can help to personalize treatment. In this Perspective, we critically assess the multiple new static, dynamic and patient-specific biomarkers, highlight the newest consortia and trial efforts, and provide recommendations for future clinical trials to make meaningful steps forwards in the field.
Collapse
Affiliation(s)
- Ashley M Holder
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Sonia Cohen
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - David Liu
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Aparna Parikh
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Genevieve M Boland
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
18
|
Davis JM, Rushton T, Nsiah F, Stone RL, Beavis AL, Gaillard SL, Dobi A, Fader AN. Long-term disease-free survival with chemotherapy and pembrolizumab in a patient with unmeasurable, advanced stage dedifferentiated endometrial carcinoma. Gynecol Oncol Rep 2024; 53:101380. [PMID: 38601712 PMCID: PMC11004511 DOI: 10.1016/j.gore.2024.101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Dedifferentiated endometrial carcinoma is a rare, highly aggressive subtype of endometrial cancer associated with poor survival outcomes. Current guidelines recommend treatment of advanced-stage disease with surgical staging or cytoreduction and platinum/taxane-based chemotherapy. Despite these approaches, the achievement of long-term remission or prolonged survival is challenging. Recent Phase III studies demonstrate that the addition of PD-1 inhibitors to standard chemotherapy significantly improves progression-free survival in patients with measurable, mismatch repair deficient (dMMR) and proficient (pMMR) advanced-stage or recurrent endometrial carcinoma. However, the role of PD-1 blockade in the treatment of undifferentiated and dedifferentiated endometrial carcinoma remains unclear, as very few patients with these cancer subtypes were included in the trials. In this case report, we present a patient with dMMR dedifferentiated endometrial carcinoma, treated with primary surgery to no gross residual disease, followed by carboplatin/paclitaxel chemotherapy and a short course of maintenance pembrolizumab. To date, the patient remains with a prolonged disease-free survival of 61 months, supporting the potential use of PD-1 inhibitors in the upfront treatment of unmeasurable, advanced-stage, dMMR dedifferentiated endometrial carcinoma.
Collapse
Affiliation(s)
- Joy M. Davis
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tullia Rushton
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Felicity Nsiah
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rebecca L. Stone
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Anna L. Beavis
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stéphanie L. Gaillard
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alice Dobi
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Amanda N. Fader
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Song L, Yang Y, Tian X. Current knowledge about immunotherapy resistance for melanoma and potential predictive and prognostic biomarkers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:17. [PMID: 38835341 PMCID: PMC11149101 DOI: 10.20517/cdr.2023.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 06/06/2024]
Abstract
Melanoma still reaches thousands of new diagnoses per year, and its aggressiveness makes recovery challenging, especially for those with stage III/IV unresectable melanoma. Immunotherapy, emerging as a beacon of hope, stands at the forefront of treatments for advanced melanoma. This review delves into the various immunotherapeutic strategies, prominently featuring cytokine immunotherapy, adoptive cell therapy, immune checkpoint inhibitors, and vaccinations. Among these, immune checkpoint inhibitors, notably anti-programmed cell death-1 (PD-1) and anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) antibodies, emerge as the leading strategy. However, a significant subset of melanoma patients remains unresponsive to these inhibitors, underscoring the need for potent biomarkers. Efficient biomarkers have the potential to revolutionize the therapeutic landscape by facilitating the design of personalized treatments for patients with melanoma. This comprehensive review highlights the latest advancements in melanoma immunotherapy and potential biomarkers at the epicenter of recent research endeavors.
Collapse
Affiliation(s)
- Lanni Song
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Bio-pharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
| | - Yixin Yang
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Bio-pharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, NJ 07083, USA
| | - Xuechen Tian
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Bio-pharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
| |
Collapse
|
20
|
Chen X, Liang W, Wu X, Wang Y, Hong Y, Xie M, Han R, Lin Z. A nomogram based on the SII3 and clinical indicators predicts survival in patients with nasopharyngeal carcinoma treated with PD-1 inhibitors. Medicine (Baltimore) 2024; 103:e38017. [PMID: 38728499 PMCID: PMC11081574 DOI: 10.1097/md.0000000000038017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Numerous inflammatory indicators have been demonstrated to be strongly correlated with tumor prognosis. However, the association between inflammatory indicators and the prognosis of patients with nasopharyngeal carcinoma (NPC) receiving treatment with programmed death receptor-1 (PD-1) immunosuppressant monoclonal antibodies remains uncertain. Inflammatory indicators in peripheral blood were collected from 161 NPC patients at 3 weeks after initial PD-1 treatment. Through univariate and multivariate analyses, as well as nomogram and survival analyses, we aimed to identify independent prognostic factors related to 1-year progression-free survival (PFS). Subsequently, a prognostic nomogram was devised, and its predictive and discriminating abilities were assessed utilizing calibration curves and the concordance index. Our univariate and multivariate analyses indicated that age (P = .012), M stage (P < .001), and systemic immune-inflammation index (SII) during the third week following initial PD-1 treatment (SII3, P = .005) were independently correlated with the 1-year PFS of NPC patients after PD-1 treatment. Notably, we constructed a novel nomogram based on the SII3, age, and M stage. Importantly, utilizing the derived cutoff point from the nomogram, the high-risk group exhibited significantly shorter PFS than did the low-risk group (P < .001). Furthermore, the nomogram demonstrated a greater concordance index for PFS than did the tumor node metastasis stage within the entire cohort. We successfully developed a nomogram that integrates the SII3 and clinical markers to accurately predict the 1-year PFS of NPC patients receiving PD-1 inhibitor treatment.
Collapse
Affiliation(s)
- Xiongyi Chen
- Department of Clinical Laboratory, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Wenjing Liang
- Department of Pharmacy, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Xiaowen Wu
- Department of Clinical Laboratory, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Yueying Wang
- Department of Clinical Laboratory, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Yansui Hong
- Department of Clinical Laboratory, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Meiyu Xie
- Department of Clinical Laboratory, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Runkun Han
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhifang Lin
- Department of Clinical Laboratory, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| |
Collapse
|
21
|
Kidman J, Zemek RM, Sidhom JW, Correa D, Principe N, Sheikh F, Fear VS, Forbes CA, Chopra A, Boon L, Zaitouny A, de Jong E, Holt RA, Jones M, Millward MJ, Lassmann T, Forrest AR, Nowak AK, Watson M, Lake RA, Lesterhuis WJ, Chee J. Immune checkpoint therapy responders display early clonal expansion of tumor infiltrating lymphocytes. Oncoimmunology 2024; 13:2345859. [PMID: 38686178 PMCID: PMC11057660 DOI: 10.1080/2162402x.2024.2345859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Immune checkpoint therapy (ICT) causes durable tumour responses in a subgroup of patients, but it is not well known how T cell receptor beta (TCRβ) repertoire dynamics contribute to the therapeutic response. Using murine models that exclude variation in host genetics, environmental factors and tumour mutation burden, limiting variation between animals to naturally diverse TCRβ repertoires, we applied TCRseq, single cell RNAseq and flow cytometry to study TCRβ repertoire dynamics in ICT responders and non-responders. Increased oligoclonal expansion of TCRβ clonotypes was observed in responding tumours. Machine learning identified TCRβ CDR3 signatures unique to each tumour model, and signatures associated with ICT response at various timepoints before or during ICT. Clonally expanded CD8+ T cells in responding tumours post ICT displayed effector T cell gene signatures and phenotype. An early burst of clonal expansion during ICT is associated with response, and we report unique dynamics in TCRβ signatures associated with ICT response.
Collapse
MESH Headings
- Animals
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Mice
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/metabolism
- Humans
- Mice, Inbred C57BL
- Female
Collapse
Affiliation(s)
- Joel Kidman
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Perth, Australia
| | | | | | - Debora Correa
- Complex Systems Group, Department of Mathematics and Statistics, University of Western Australia, Perth, Australia
| | - Nicola Principe
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Perth, Australia
| | - Fezaan Sheikh
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Perth, Australia
| | | | | | - Abha Chopra
- Medical Genomics Laboratories (IIID), Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Australia
| | | | - Ayham Zaitouny
- Complex Systems Group, Department of Mathematics and Statistics, University of Western Australia, Perth, Australia
- Department of Mathematical Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Emma de Jong
- Telethon Kids Institute, Perth, Australia
- Medical School, University of Western Australia, Perth, Australia
| | | | - Matt Jones
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | | | | | - Alistair R.R. Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Perth, Australia
- Medical School, University of Western Australia, Perth, Australia
| | - Mark Watson
- Medical Genomics Laboratories (IIID), Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Australia
| | - Richard A. Lake
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Perth, Australia
| | - W. Joost Lesterhuis
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth, Australia
| | - Jonathan Chee
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Perth, Australia
| |
Collapse
|
22
|
Hoang MH, Skidmore ZL, Rindt H, Chu S, Fisk B, Foltz JA, Fronick C, Fulton R, Zhou M, Bivens NJ, Reinero CN, Fehniger TA, Griffith M, Bryan JN, Griffith OL. Single-cell T-cell receptor repertoire profiling in dogs. Commun Biol 2024; 7:484. [PMID: 38649520 PMCID: PMC11035579 DOI: 10.1038/s42003-024-06174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Spontaneous cancers in companion dogs are robust models of human disease. Tracking tumor-specific immune responses in these models requires reagents to perform species-specific single cell T cell receptor sequencing (scTCRseq). scTCRseq and integration with scRNA data have not been demonstrated on companion dogs with cancer. Here, five healthy dogs, two dogs with T cell lymphoma and four dogs with melanoma are selected to demonstrate applicability of scTCRseq in a cancer immunotherapy setting. Single-cell suspensions of PBMCs or lymph node aspirates are profiled using scRNA and dog-specific scTCRseq primers. In total, 77,809 V(D)J-expressing cells are detected, with an average of 3498 (348 - 5,971) unique clonotypes identified per sample. In total, 29/34, 40/40, 22/22 and 9/9 known functional TRAV, TRAJ, TRBV and TRBJ gene segments are observed respectively. Pseudogene or otherwise defective gene segments are also detected supporting re-annotation of several as functional. Healthy dogs exhibit highly diverse repertoires, T cell lymphomas exhibit clonal repertoires, and vaccine-treated melanoma dogs are dominated by a small number of highly abundant clonotypes. scRNA libraries define large clusters of V(D)J-expressing CD8+ and CD4 + T cells. Dominant clonotypes observed in melanoma PBMCs are predominantly CD8 + T cells, with activated phenotypes, suggesting possible anti-tumor T cell populations.
Collapse
Affiliation(s)
- My H Hoang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Zachary L Skidmore
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Hans Rindt
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
| | - Shirley Chu
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
| | - Bryan Fisk
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Jennifer A Foltz
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Catrina Fronick
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Robert Fulton
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Mingyi Zhou
- Genomics Technology Core, University of Missouri, Columbia, MO, USA
| | - Nathan J Bivens
- Genomics Technology Core, University of Missouri, Columbia, MO, USA
| | - Carol N Reinero
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
| | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
| | - Malachi Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Jeffrey N Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA.
| | - Obi L Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
23
|
Zhang X, Li J, Lan X, Li J. Cell‐free DNA‐associated multi‐feature applications in cancer diagnosis and treatment. CLINICAL AND TRANSLATIONAL DISCOVERY 2024; 4. [DOI: 10.1002/ctd2.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 01/03/2025]
Abstract
AbstractMalignant tumours pose significant challenges in terms of high morbidity and mortality rates, primarily due to the lack of large‐scale applicable screening methods and efficient treatment strategies. However, the development of liquid biopsies, particularly circulating cell‐free DNA (cfDNA), offers promising solutions characterised by their non‐invasiveness and cost‐effectiveness, providing comprehensive tumour information on a global scale. The release of cfDNA is predominantly associated with cell death and turnover, while its elimination occurs through nuclease digestion, renal excretion into the urine and uptake by the liver and spleen. Extensive research into the biological properties of cfDNA has led to the identification of novel applications, including non‐invasive cancer screening, cancer subtype classification, tissue‐of‐origin detection and monitoring of treatment efficacy. Additionally, emerging fields such as methylation‐omics, fragment‐omics and nucleosome‐omics show immense potential as tissue‐ and disease‐specific markers. Therefore, this review aims to comprehensively introduce the latest detection techniques of cfDNA, along with detailed information on its characteristics and applications, providing valuable insights for cancer diagnosis and monitoring, which will assist us in purposefully enhancing relevant features for a more comprehensive application in clinical practice.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Basic Medical Sciences School of Medicine Tsinghua University Beijing China
- MOE Key Laboratory of Bioinformatics Tsinghua University Beijing China
- Tsinghua‐Peking Joint Center for Life Sciences Tsinghua University Beijing China
| | - Jingwei Li
- Department of Basic Medical Sciences School of Medicine Tsinghua University Beijing China
- MOE Key Laboratory of Bioinformatics Tsinghua University Beijing China
| | - Xun Lan
- Department of Basic Medical Sciences School of Medicine Tsinghua University Beijing China
- MOE Key Laboratory of Bioinformatics Tsinghua University Beijing China
- Tsinghua‐Peking Joint Center for Life Sciences Tsinghua University Beijing China
| | - Jie Li
- Department of Basic Medical Sciences School of Medicine Tsinghua University Beijing China
- Academy of Biomedical Engineering Kunming Medical University Kunming China
| |
Collapse
|
24
|
Hou J, Yang X, Xie S, Zhu B, Zha H. Circulating T cells: a promising biomarker of anti-PD-(L)1 therapy. Front Immunol 2024; 15:1371559. [PMID: 38576625 PMCID: PMC10991692 DOI: 10.3389/fimmu.2024.1371559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Anti-PD-(L)1 therapy has shown great efficacy in some patients with cancer. However, a significant proportion of patients with cancer do not respond to it. Another unmet clinical need for anti-PD-(L)1 therapy is the dynamic monitoring of treatment effects. Therefore, identifying biomarkers that can stratify potential responders before PD-(L)1 treatment and timely monitoring of the efficacy of PD-(L)1 treatment are crucial in the clinical setting. The identification of biomarkers by liquid biopsy has attracted considerable attention. Among the identified biomarkers, circulating T cells are one of the most promising because of their indispensable contribution to anti-PD-(L)1 therapy. The present review aimed to thoroughly explore the potential of circulating T cells as biomarkers of anti-PD-(L)1 therapy and its advantages and limitations.
Collapse
Affiliation(s)
- Junlei Hou
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xuezhi Yang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Shuanglong Xie
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Haoran Zha
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
25
|
Larkin J, Marais R, Porta N, Gonzalez de Castro D, Parsons L, Messiou C, Stamp G, Thompson L, Edmonds K, Sarker S, Banerji J, Lorigan P, Evans TRJ, Corrie P, Marshall E, Middleton MR, Nathan P, Nicholson S, Ottensmeier C, Plummer R, Bliss J, Valpione S, Turajlic S. Nilotinib in KIT-driven advanced melanoma: Results from the phase II single-arm NICAM trial. Cell Rep Med 2024; 5:101435. [PMID: 38417447 PMCID: PMC10982988 DOI: 10.1016/j.xcrm.2024.101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/01/2023] [Accepted: 01/26/2024] [Indexed: 03/01/2024]
Abstract
Mucosal (MM) and acral melanomas (AM) are rare melanoma subtypes of unmet clinical need; 15%-20% harbor KIT mutations potentially targeted by small-molecule inhibitors, but none yet approved in melanoma. This multicenter, single-arm Phase II trial (NICAM) investigates nilotinib safety and activity in KIT mutated metastatic MM and AM. KIT mutations are identified in 39/219 screened patients (18%); of 29/39 treated, 26 are evaluable for primary analysis. Six patients were alive and progression free at 6 months (local radiology review, 25%); 5/26 (19%) had objective response at 12 weeks; median OS was 7.7 months; ddPCR assay correctly identifies KIT alterations in circulating tumor DNA (ctDNA) in 16/17 patients. Nilotinib is active in KIT-mutant AM and MM, comparable to other KIT inhibitors, with demonstrable activity in nonhotspot KIT mutations, supporting broadening of KIT evaluation in AM and MM. Our results endorse further investigations of nilotinib for the treatment of KIT-mutated melanoma. This clinical trial was registered with ISRCTN (ISRCTN39058880) and EudraCT (2009-012945-49).
Collapse
Affiliation(s)
- James Larkin
- Skin and Renal Units, The Royal Marsden Hospital NHS Foundation Trust, London, UK; Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
| | - Richard Marais
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Nuria Porta
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - David Gonzalez de Castro
- Molecular Diagnostics, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Lisa Parsons
- University of Edinburgh, Edinburgh, UK; PDD - Thermo Fisher Scientific, Bend, Oregon, USA
| | - Christina Messiou
- Department of Radiology, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Gordon Stamp
- Department of Histopathology, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Lisa Thompson
- Centre for Molecular Pathology, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Kim Edmonds
- Skin and Renal Units, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Sarah Sarker
- Skin and Renal Units, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Jane Banerji
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Paul Lorigan
- Division of Cancer Sciences, Unviersity of Manchester, Manchester, UK; The Christie NHS Foundation Trust, Manchester, UK
| | | | - Pippa Corrie
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ernest Marshall
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
| | | | - Paul Nathan
- Mount Vernon Cancer Centre, East & North Herts NHS Trust, Northwood, UK
| | - Steve Nicholson
- University Hospitals of Leicester NHS Foundation Trust, Leicester, UK
| | | | - Ruth Plummer
- Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Judith Bliss
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Sara Valpione
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK; The Christie NHS Foundation Trust, Manchester, UK.
| | - Samra Turajlic
- Skin and Renal Units, The Royal Marsden Hospital NHS Foundation Trust, London, UK; Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK; Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
26
|
Wang Y, Liu Z, Tian Y, Zhao H, Fu X. Periampullary cancer and neurological interactions: current understanding and future research directions. Front Oncol 2024; 14:1370111. [PMID: 38567163 PMCID: PMC10985190 DOI: 10.3389/fonc.2024.1370111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Periampullary cancer is a malignant tumor occurring around the ampullary region of the liver and pancreas, encompassing a variety of tissue types and sharing numerous biological characteristics, including interactions with the nervous system. The nervous system plays a crucial role in regulating organ development, maintaining physiological equilibrium, and ensuring life process plasticity, a role that is equally pivotal in oncology. Investigations into nerve-tumor interactions have unveiled their key part in controlling cancer progression, inhibiting anti-tumor immune responses, facilitating invasion and metastasis, and triggering neuropathic pain. Despite many mechanisms by which nerve fibers contribute to cancer advancement still being incompletely understood, the growing emphasis on the significance of nerves within the tumor microenvironment in recent years has set the stage for the development of groundbreaking therapies. This includes combining current neuroactive medications with established therapeutic protocols. This review centers on the mechanisms of Periampullary cancer's interactions with nerves, the influence of various types of nerve innervation on cancer evolution, and outlines the horizons for ongoing and forthcoming research.
Collapse
Affiliation(s)
- Yuchen Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Zi’ang Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yanzhang Tian
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- General Surgery Department , Shanxi Bethune Hospital/General Surgery Department, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoliang Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- General Surgery Department , Shanxi Bethune Hospital/General Surgery Department, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xifeng Fu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- General Surgery Department , Shanxi Bethune Hospital/General Surgery Department, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Wang Y, Cho JW, Kastrunes G, Buck A, Razimbaud C, Culhane AC, Sun J, Braun DA, Choueiri TK, Wu CJ, Jones K, Nguyen QD, Zhu Z, Wei K, Zhu Q, Signoretti S, Freeman GJ, Hemberg M, Marasco WA. Immune-restoring CAR-T cells display antitumor activity and reverse immunosuppressive TME in a humanized ccRCC mouse model. iScience 2024; 27:108879. [PMID: 38327771 PMCID: PMC10847687 DOI: 10.1016/j.isci.2024.108879] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/01/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
One of the major barriers that have restricted successful use of chimeric antigen receptor (CAR) T cells in the treatment of solid tumors is an unfavorable tumor microenvironment (TME). We engineered CAR-T cells targeting carbonic anhydrase IX (CAIX) to secrete anti-PD-L1 monoclonal antibody (mAb), termed immune-restoring (IR) CAR G36-PDL1. We tested CAR-T cells in a humanized clear cell renal cell carcinoma (ccRCC) orthotopic mouse model with reconstituted human leukocyte antigen (HLA) partially matched human leukocytes derived from fetal CD34+ hematopoietic stem cells (HSCs) and bearing human ccRCC skrc-59 cells under the kidney capsule. G36-PDL1 CAR-T cells, haploidentical to the tumor cells, had a potent antitumor effect compared to those without immune-restoring effect. Analysis of the TME revealed that G36-PDL1 CAR-T cells restored active antitumor immunity by promoting tumor-killing cytotoxicity, reducing immunosuppressive cell components such as M2 macrophages and exhausted CD8+ T cells, and enhancing T follicular helper (Tfh)-B cell crosstalk.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Jae-Won Cho
- Harvard Medical School, Boston, MA 02215, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gabriella Kastrunes
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alicia Buck
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Cecile Razimbaud
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Aedin C. Culhane
- School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
| | - Jiusong Sun
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David A. Braun
- Harvard Medical School, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06525, USA
| | - Toni K. Choueiri
- Harvard Medical School, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Catherine J. Wu
- Harvard Medical School, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kristen Jones
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Zhu Zhu
- Harvard Medical School, Boston, MA 02215, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Kevin Wei
- Harvard Medical School, Boston, MA 02215, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Quan Zhu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Sabina Signoretti
- Harvard Medical School, Boston, MA 02215, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gordon J. Freeman
- Harvard Medical School, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Martin Hemberg
- Harvard Medical School, Boston, MA 02215, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Wayne A. Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
28
|
Hansen UK, Church CD, Carnaz Simões AM, Frej MS, Bentzen AK, Tvingsholm SA, Becker JC, Fling SP, Ramchurren N, Topalian SL, Nghiem PT, Hadrup SR. T antigen-specific CD8+ T cells associate with PD-1 blockade response in virus-positive Merkel cell carcinoma. J Clin Invest 2024; 134:e177082. [PMID: 38618958 PMCID: PMC11014655 DOI: 10.1172/jci177082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/23/2024] [Indexed: 04/16/2024] Open
Abstract
Merkel cell carcinoma (MCC) is a highly immunogenic skin cancer primarily induced by Merkel cell polyomavirus, which is driven by the expression of the oncogenic T antigens (T-Ags). Blockade of the programmed cell death protein-1 (PD-1) pathway has shown remarkable response rates, but evidence for therapy-associated T-Ag-specific immune response and therapeutic strategies for the nonresponding fraction are both limited. We tracked T-Ag-reactive CD8+ T cells in peripheral blood of 26 MCC patients under anti-PD1 therapy, using DNA-barcoded pMHC multimers, displaying all peptides from the predicted HLA ligandome of the oncoproteins, covering 33 class I haplotypes. We observed a broad T cell recognition of T-Ags, including identification of 20 T-Ag-derived epitopes we believe to be novel. Broadening of the T-Ag recognition profile and increased T cell frequencies during therapy were strongly associated with clinical response and prolonged progression-free survival. T-Ag-specific T cells could be further boosted and expanded directly from peripheral blood using artificial antigen-presenting scaffolds, even in patients with no detectable T-Ag-specific T cells. These T cells provided strong tumor-rejection capacity while retaining a favorable phenotype for adoptive cell transfer. These findings demonstrate that T-Ag-specific T cells are associated with the clinical outcome to PD-1 blockade and that Ag-presenting scaffolds can be used to boost such responses.
Collapse
Affiliation(s)
- Ulla Kring Hansen
- Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- PokeAcell Aps, BioInnovation Institute, Copenhagen, Denmark
| | - Candice D. Church
- Department of Dermatology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Marcus Svensson Frej
- Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- PokeAcell Aps, BioInnovation Institute, Copenhagen, Denmark
| | - Amalie Kai Bentzen
- Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Siri A. Tvingsholm
- Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jürgen C. Becker
- Department of Translational Skin Cancer Research, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | | | | | - Suzanne L. Topalian
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Paul T. Nghiem
- Department of Dermatology, Department of Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sine Reker Hadrup
- Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
29
|
Nenclares P, Larkeryd A, Manodoro F, Lee JY, Lalondrelle S, Gilbert DC, Punta M, O’Leary B, Rullan A, Sadanandam A, Chain B, Melcher A, Harrington KJ, Bhide SA. T-cell receptor determinants of response to chemoradiation in locally-advanced HPV16-driven malignancies. Front Oncol 2024; 13:1296948. [PMID: 38234396 PMCID: PMC10791873 DOI: 10.3389/fonc.2023.1296948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Background The effect of chemoradiation on the anti-cancer immune response is being increasingly acknowledged; however, its clinical implications in treatment responses are yet to be fully understood. Human papillomavirus (HPV)-driven malignancies express viral oncogenic proteins which may serve as tumor-specific antigens and represent ideal candidates for monitoring the peripheral T-cell receptor (TCR) changes secondary to chemoradiotherapy (CRT). Methods We performed intra-tumoral and pre- and post-treatment peripheral TCR sequencing in a cohort of patients with locally-advanced HPV16-positive cancers treated with CRT. An in silico computational pipeline was used to cluster TCR repertoire based on epitope-specificity and to predict affinity between these clusters and HPV16-derived epitopes. Results Intra-tumoral repertoire diversity, intra-tumoral and post-treatment peripheral CDR3β similarity clustering were predictive of response. In responders, CRT triggered an increase peripheral TCR clonality and clonal relatedness. Post-treatment expansion of baseline peripheral dominant TCRs was associated with response. Responders showed more baseline clustered structures of TCRs maintained post-treatment and displayed significantly more maintained clustered structures. When applying clustering by TCR-specificity methods, responders displayed a higher proportion of intra-tumoral TCRs predicted to recognise HPV16 peptides. Conclusions Baseline TCR characteristics and changes in the peripheral T-cell clones triggered by CRT are associated with treatment outcome. Maintenance and boosting of pre-existing clonotypes are key elements of an effective anti-cancer immune response driven by CRT, supporting a paradigm in which the immune system plays a central role in the success of CRT in current standard-of-care protocols.
Collapse
Affiliation(s)
- Pablo Nenclares
- Radiotherapy and Imaging Division, The Institute of Cancer Research, London, United Kingdom
- Head and Neck Unit, The Royal Marsden Hospital, London, United Kingdom
| | - Adrian Larkeryd
- Bioinformatics Unit, The Centre for Translational Immunotherapy, The Institute of Cancer Research, London, United Kingdom
| | - Floriana Manodoro
- Genomics Facility, The Institute of Cancer Research, London, United Kingdom
| | - Jen Y. Lee
- Radiotherapy and Imaging Division, The Institute of Cancer Research, London, United Kingdom
| | - Susan Lalondrelle
- Radiotherapy and Imaging Division, The Institute of Cancer Research, London, United Kingdom
| | - Duncan C. Gilbert
- Sussex Cancer Centre, University Hospitals Sussex NHS Foundation Trust, Brighton, United Kingdom
| | - Marco Punta
- Unit of Immunogenetic, Leukemia Genomics and Immunobiology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ben O’Leary
- Radiotherapy and Imaging Division, The Institute of Cancer Research, London, United Kingdom
- Head and Neck Unit, The Royal Marsden Hospital, London, United Kingdom
| | - Antonio Rullan
- Radiotherapy and Imaging Division, The Institute of Cancer Research, London, United Kingdom
- Head and Neck Unit, The Royal Marsden Hospital, London, United Kingdom
| | - Anguraj Sadanandam
- Systems and Precision Cancer Medicine Team, The Institute of Cancer Research, London, United Kingdom
| | - Benny Chain
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Alan Melcher
- Radiotherapy and Imaging Division, The Institute of Cancer Research, London, United Kingdom
| | - Kevin J. Harrington
- Radiotherapy and Imaging Division, The Institute of Cancer Research, London, United Kingdom
- Head and Neck Unit, The Royal Marsden Hospital, London, United Kingdom
| | - Shreerang A. Bhide
- Radiotherapy and Imaging Division, The Institute of Cancer Research, London, United Kingdom
- Head and Neck Unit, The Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
30
|
Kverneland A, Thorsen S, Granhøj J, Hansen F, Konge M, Ellebæk E, Donia M, Svane I. Supervised clustering of peripheral immune cells associated with clinical response to checkpoint inhibitor therapy in patients with advanced melanoma. IMMUNO-ONCOLOGY TECHNOLOGY 2023; 20:100396. [PMID: 37810199 PMCID: PMC10558712 DOI: 10.1016/j.iotech.2023.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Background and purpose Immune therapy with checkpoint inhibitors (CPIs) is a highly successful therapy in many cancers including metastatic melanoma. Still, many patients do not respond well to therapy and there are no blood-borne biomarkers available to assess the clinical outcome. Materials and methods To investigate cellular changes after CPI therapy, we carried out flow cytometry-based immune monitoring in a cohort of 90 metastatic melanoma patients before and after CPI therapy using the FlowSOM algorithm. To evaluate associations to the clinical outcome with therapy, we divided the patients based on progression-free survival. Results We found significant associations with CPI therapy in both peripheral blood mononuclear cell and T-cell subsets, but with the most pronounced effects in the latter. Particularly CD4+ effector memory T-cell subsets were associated with response with a positive correlation between CD27+HLA-DR+CD4+ effector memory T cells in a univariate (odds ratio: 1.07 [95% confidence interval 1.02-1.12]) and multivariate regression model (odds ratio: 1.08 [95% confidence interval 1.03-1.14]). We also found a trend towards stronger accumulation of CD57+CD8+ T cells in non-responding patients. Conclusion Our results show significant associations between immune monitoring and clinical outcome of therapy that could be evaluated as biomarkers in a clinical setting.
Collapse
Affiliation(s)
- A.H. Kverneland
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen
| | - S.U. Thorsen
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - J.S. Granhøj
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev
| | - F.S. Hansen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev
| | - M. Konge
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev
| | - E. Ellebæk
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev
| | - M. Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev
| | - I.M. Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev
| |
Collapse
|
31
|
Cappuyns S, Philips G, Vandecaveye V, Boeckx B, Schepers R, Van Brussel T, Arijs I, Mechels A, Bassez A, Lodi F, Jaekers J, Topal H, Topal B, Bricard O, Qian J, Van Cutsem E, Verslype C, Lambrechts D, Dekervel J. PD-1 - CD45RA + effector-memory CD8 T cells and CXCL10 + macrophages are associated with response to atezolizumab plus bevacizumab in advanced hepatocellular carcinoma. Nat Commun 2023; 14:7825. [PMID: 38030622 PMCID: PMC10687033 DOI: 10.1038/s41467-023-43381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
The combination of atezolizumab plus bevacizumab (atezo/bev) has dramatically changed the treatment landscape of advanced HCC (aHCC), achieving durable responses in some patients. Using single-cell transcriptomics, we characterize the intra-tumoural and peripheral immune context of patients with aHCC treated with atezo/bev. Tumours from patients with durable responses are enriched for PDL1+ CXCL10+ macrophages and, based on cell-cell interaction analysis, express high levels of CXCL9/10/11 and are predicted to attract peripheral CXCR3+ CD8+ effector-memory T cells (CD8 TEM) into the tumour. Based on T cell receptor sharing and pseudotime trajectory analysis, we propose that CD8 TEM preferentially differentiate into clonally-expanded PD1- CD45RA+ effector-memory CD8+ T cells (CD8 TEMRA) with pronounced cytotoxicity. In contrast, in non-responders, CD8 TEM remain frozen in their effector-memory state. Finally, in responders, CD8 TEMRA display a high degree of T cell receptor sharing with blood, consistent with their patrolling activity. These findings may help understand the possible mechanisms underlying response to atezo/bev in aHCC.
Collapse
Affiliation(s)
- Sarah Cappuyns
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Gino Philips
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Vincent Vandecaveye
- Radiology Department, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Bram Boeckx
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Rogier Schepers
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Thomas Van Brussel
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Ingrid Arijs
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Aurelie Mechels
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Ayse Bassez
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Francesca Lodi
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Joris Jaekers
- Hepatobiliary- and pancreas Surgery, Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Halit Topal
- Hepatobiliary- and pancreas Surgery, Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Baki Topal
- Hepatobiliary- and pancreas Surgery, Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Orian Bricard
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Junbin Qian
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynaecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Eric Van Cutsem
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Chris Verslype
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium.
- VIB Centre for Cancer Biology, Leuven, Belgium.
| | - Jeroen Dekervel
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium.
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
32
|
Yao S, Han Y, Yang M, Jin K, Lan H. Integration of liquid biopsy and immunotherapy: opening a new era in colorectal cancer treatment. Front Immunol 2023; 14:1292861. [PMID: 38077354 PMCID: PMC10702507 DOI: 10.3389/fimmu.2023.1292861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Immunotherapy has revolutionized the conventional treatment approaches for colorectal cancer (CRC), offering new therapeutic prospects for patients. Liquid biopsy has shown significant potential in early screening, diagnosis, and postoperative monitoring by analyzing circulating tumor cells (CTC) and circulating tumor DNA (ctDNA). In the era of immunotherapy, liquid biopsy provides additional possibilities for guiding immune-based treatments. Emerging technologies such as mass spectrometry-based detection of neoantigens and flow cytometry-based T cell sorting offer new tools for liquid biopsy, aiming to optimize immune therapy strategies. The integration of liquid biopsy with immunotherapy holds promise for improving treatment outcomes in colorectal cancer patients, enabling breakthroughs in early diagnosis and treatment, and providing patients with more personalized, precise, and effective treatment strategies.
Collapse
Affiliation(s)
- Shiya Yao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yuejun Han
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Mengxiang Yang
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
33
|
Usaite I, Biswas D, Dijkstra K, Watkins TB, Pich O, Puttick C, Angelova M, Thakkar K, Hiley C, Birkbak N, Kok M, Zaccaria S, Wu Y, Litchfield K, Swanton C, Kanu N. Quantifying the impact of immunotherapy on RNA dynamics in cancer. J Immunother Cancer 2023; 11:e007870. [PMID: 37914385 PMCID: PMC10626770 DOI: 10.1136/jitc-2023-007870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Checkpoint inhibitor (CPI) immunotherapies have provided durable clinical responses across a range of solid tumor types for some patients with cancer. Nonetheless, response rates to CPI vary greatly between cancer types. Resolving intratumor transcriptomic changes induced by CPI may improve our understanding of the mechanisms of sensitivity and resistance. METHODS We assembled a cohort of longitudinal pre-therapy and on-therapy samples from 174 patients treated with CPI across six cancer types by leveraging transcriptomic sequencing data from five studies. RESULTS Meta-analyses of published RNA markers revealed an on-therapy pattern of immune reinvigoration in patients with breast cancer, which was not discernible pre-therapy, providing biological insight into the impact of CPI on the breast cancer immune microenvironment. We identified 98 breast cancer-specific correlates of CPI response, including 13 genes which are known IO targets, such as toll-like receptors TLR1, TLR4, and TLR8, that could hold potential as combination targets for patients with breast cancer receiving CPI treatment. Furthermore, we demonstrate that a subset of response genes identified in breast cancer are already highly expressed pre-therapy in melanoma, and additionally we establish divergent RNA dynamics between breast cancer and melanoma following CPI treatment, which may suggest distinct immune microenvironments between the two cancer types. CONCLUSIONS Overall, delineating longitudinal RNA dynamics following CPI therapy sheds light on the mechanisms underlying diverging response trajectories, and identifies putative targets for combination therapy.
Collapse
Affiliation(s)
- Ieva Usaite
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Dhruva Biswas
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Bill Lyons Informatics Centre, University College London Cancer Institute, London, UK
| | - Krijn Dijkstra
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Thomas Bk Watkins
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Clare Puttick
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Krupa Thakkar
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Crispin Hiley
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Nicolai Birkbak
- Department of Molecular Medicine, Aarhus Universitet, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus Universitet, Aarhus, Denmark
| | - Marleen Kok
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Yin Wu
- Department of Medical Oncology, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Peter Gorer Department of Immunobiology and Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| |
Collapse
|
34
|
Rainey MA, Allen CT, Craveiro M. Egress of resident memory T cells from tissue with neoadjuvant immunotherapy: Implications for systemic anti-tumor immunity. Oral Oncol 2023; 146:106570. [PMID: 37738775 PMCID: PMC10591905 DOI: 10.1016/j.oraloncology.2023.106570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
INTRODUCTION Resident memory T (TRM) cells are embedded in peripheral tissue and capable of acting as sentinels that can respond quickly to repeat pathogen exposure as part of an endogenous anti-microbial immune response. Recent evidence suggests that chronic antigen exposure and other microenvironment cues may promote the development of TRM cells within solid tumors as well, and that this TRM phenotype can sequester tumor-specific T cells into tumors and out of circulation resulting in limited systemic antitumor immunity. Here, we perform a review of the published English literature and describe tissue-specific mediators of TRM cell differentiation in states of infection and malignancy with special focus on the role of TGF-β and how targeting TGF-β signaling could be used as a therapeutical approach to promote tumor systemic immunity. DISCUSSION The presence of TRM cells with antigen specificity to neoepitopes in tumors associates with positive clinical prognosis and greater responsiveness to immunotherapy. Recent evidence indicates that solid tumors may act as reservoirs for tumor specific TRM cells and limit their circulation - possibly resulting in impaired systemic antitumor immunity. TRM cells utilize specific mechanisms to egress from peripheral tissues into circulation and other peripheral sites, and emerging evidence indicates that immunotherapeutic approaches may initiate these processes and increase systemic antitumor immunity. CONCLUSIONS Reversing tumor sequestration of tumor-specific T cells prior to surgical removal or radiation of tumor may increase systemic antitumor immunity. This finding may underlie the improved recurrence free survival observed with neoadjuvant immunotherapy in clinical trials.
Collapse
Affiliation(s)
- Magdalena A Rainey
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clint T Allen
- National Institutes of Health, 9000 Rockville Pike, Building 10, Room 7N240C, Bethesda, MD 20892, USA.
| | - Marco Craveiro
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
35
|
Luo H, Wang W, Mai J, Yin R, Cai X, Li Q. The nexus of dynamic T cell states and immune checkpoint blockade therapy in the periphery and tumor microenvironment. Front Immunol 2023; 14:1267918. [PMID: 37881432 PMCID: PMC10597640 DOI: 10.3389/fimmu.2023.1267918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapies, that is, using monoclonal antibodies to reinvigorate tumor-reactive, antigen-specific T cells from the inhibitory effects of CTLA-4, PD-1 and PD-L1 immune checkpoints, have revolutionized the therapeutic landscape of modern oncology. However, only a subset of patients can benefit from the ICB therapy. Biomarkers associated with ICB response, resistance and prognosis have been subjected to intensive research in the past decade. Early studies focused on the analysis of tumor specimens and their residing microenvironment. However, biopsies can be challenging to obtain in clinical practice, and do not reflect the dynamic changes of immunological parameters during the ICB therapy. Recent studies have investigated profiles of antigen-specific T cells derived from the peripheral compartment using multi-omics approaches. By tracking the clonotype and diversity of tumor-reactive T cell receptor repertoire, these studies collectively establish that de novo priming of antigen-specific T cells in peripheral blood occurs throughout the course of ICB, whereas preexisting T cells prior to ICB are exhausted to various degrees. Here, we review what is known about ICB-induced T cell phenotypic and functional changes in cancer patients both within the tumor microenvironment and in the peripheral compartment. A better understanding of parameters influencing the response to ICBs will provide rationales for developing novel diagnostics and combinatorial therapeutic strategies to maximize the clinical efficacies of ICB therapies.
Collapse
Affiliation(s)
- Hong Luo
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenxiang Wang
- Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jia Mai
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rutie Yin
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuyu Cai
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qintong Li
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
36
|
Wang MM, Coupland SE, Aittokallio T, Figueiredo CR. Resistance to immune checkpoint therapies by tumour-induced T-cell desertification and exclusion: key mechanisms, prognostication and new therapeutic opportunities. Br J Cancer 2023; 129:1212-1224. [PMID: 37454231 PMCID: PMC10575907 DOI: 10.1038/s41416-023-02361-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Immune checkpoint therapies (ICT) can reinvigorate the effector functions of anti-tumour T cells, improving cancer patient outcomes. Anti-tumour T cells are initially formed during their first contact (priming) with tumour antigens by antigen-presenting cells (APCs). Unfortunately, many patients are refractory to ICT because their tumours are considered to be 'cold' tumours-i.e., they do not allow the generation of T cells (so-called 'desert' tumours) or the infiltration of existing anti-tumour T cells (T-cell-excluded tumours). Desert tumours disturb antigen processing and priming of T cells by targeting APCs with suppressive tumour factors derived from their genetic instabilities. In contrast, T-cell-excluded tumours are characterised by blocking effective anti-tumour T lymphocytes infiltrating cancer masses by obstacles, such as fibrosis and tumour-cell-induced immunosuppression. This review delves into critical mechanisms by which cancer cells induce T-cell 'desertification' and 'exclusion' in ICT refractory tumours. Filling the gaps in our knowledge regarding these pro-tumoral mechanisms will aid researchers in developing novel class immunotherapies that aim at restoring T-cell generation with more efficient priming by APCs and leukocyte tumour trafficking. Such developments are expected to unleash the clinical benefit of ICT in refractory patients.
Collapse
Affiliation(s)
- Mona Meng Wang
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
- Singapore National Eye Centre and Singapore Eye Research Institute, Singapore, Singapore
| | - Sarah E Coupland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Liverpool Ocular Oncology Research Group (LOORG), Institute of Systems Molecular and Integrative Biology, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Tero Aittokallio
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Carlos R Figueiredo
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Turku Bioscience Centre, University of Turku, Turku, Finland.
| |
Collapse
|
37
|
Wang Z, Ahmed S, Labib M, Wang H, Wu L, Bavaghar-Zaeimi F, Shokri N, Blanco S, Karim S, Czarnecka-Kujawa K, Sargent EH, McGray AJR, de Perrot M, Kelley SO. Isolation of tumour-reactive lymphocytes from peripheral blood via microfluidic immunomagnetic cell sorting. Nat Biomed Eng 2023; 7:1188-1203. [PMID: 37037966 DOI: 10.1038/s41551-023-01023-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/11/2023] [Indexed: 04/12/2023]
Abstract
The clinical use of tumour-infiltrating lymphocytes for the treatment of solid tumours is hindered by the need to obtain large and fresh tumour fractions, which is often not feasible in patients with unresectable tumours or recurrent metastases. Here we show that circulating tumour-reactive lymphocytes (cTRLs) can be isolated from peripheral blood at high yield and purity via microfluidic immunomagnetic cell sorting, allowing for comprehensive downstream analyses of these rare cells. We observed that CD103 is strongly expressed by the isolated cTRLs, and that in mice with subcutaneous tumours, tumour-infiltrating lymphocytes isolated from the tumours and rapidly expanded CD8+CD103+ cTRLs isolated from blood are comparably potent and respond similarly to immune checkpoint blockade. We also show that CD8+CD103+ cTRLs isolated from the peripheral blood of patients and co-cultured with tumour cells dissociated from their resected tumours resulted in the enrichment of interferon-γ-secreting cell populations with T-cell-receptor clonotypes substantially overlapping those of the patients' tumour-infiltrating lymphocytes. Therapeutically potent cTRLs isolated from peripheral blood may advance the clinical development of adoptive cell therapies.
Collapse
Affiliation(s)
- Zongjie Wang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Sharif Ahmed
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Mahmoud Labib
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL, USA
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Hansen Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Licun Wu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Fatemeh Bavaghar-Zaeimi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Nastaran Shokri
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Soraly Blanco
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Saraf Karim
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Kasia Czarnecka-Kujawa
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - A J Robert McGray
- Department of Immunology, Division of Translational Immuno-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shana O Kelley
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL, USA.
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
- Department of Biochemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA.
| |
Collapse
|
38
|
Fortman DD, Hurd D, Davar D. The Microbiome in Advanced Melanoma: Where Are We Now? Curr Oncol Rep 2023; 25:997-1016. [PMID: 37269504 PMCID: PMC11090495 DOI: 10.1007/s11912-023-01431-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE OF REVIEW This review summarizes recent data linking gut microbiota composition to ICI outcomes and gut microbiota-specific interventional clinical trials in melanoma. RECENT FINDINGS Preclinical and clinical studies have demonstrated the effects of the gut microbiome modulation upon ICI response in advanced melanoma, with growing evidence supporting the ability of the gut microbiome to restore or improve ICI response in advanced melanoma through dietary fiber, probiotics, and FMT. Immune checkpoint inhibitors (ICI) targeting the PD-1, CTLA-4, and LAG-3 negative regulatory checkpoints have transformed the management of melanoma. ICIs are FDA-approved in advanced metastatic disease, stage III resected melanoma, and high-risk stage II melanoma and are being investigated more recently in the management of high-risk resectable melanoma in the peri-operative setting. The gut microbiome has emerged as an important tumor-extrinsic modulator of both response and immune-related adverse event (irAE) development in ICI-treated cancer in general, and melanoma in particular.
Collapse
Affiliation(s)
- Dylan D Fortman
- Division of General Internal Medicine, Department of Medicine, University of Pittsburgh Medical Center (UPMC) and University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Drew Hurd
- UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh, Pavilion, Suite 1.32d, 5115, Center Avenue, Pittsburgh, PA, 15213, USA
| | - Diwakar Davar
- UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh, Pavilion, Suite 1.32d, 5115, Center Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
39
|
LUO H, DAI S, LI Y, TIAN P, LI Q, CAI X. [Peripheral Blood Laboratory Test Results Combined with TCF1+CD8+ T Lymphocytes
Ratio to Predict the Response and Prognosis of Immunotherapy to
Advanced Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:605-614. [PMID: 37752540 PMCID: PMC10558764 DOI: 10.3779/j.issn.1009-3419.2023.102.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) therapy lacks viable biomarkers for response and prognosis prediction. This study aimed to investigate the correlation of peripheral blood laboratory test results combined with lymphocyte subset ratios to the response and prognosis of immunotherapy in advanced lung cancer. METHODS Advanced lung cancer patients admitted to West China Hospital, Sichuan University from May 2021 to July 2023 were prospectively enrolled in this study. Clinical data and peripheral blood were collected before and after treatment and lymphocyte subset ratios were analyzed by flow cytometry. Logistic regression was used to identify factors correlated to ICIs treatment efficacy. Cox modeling was applied to explore the prognostic factors. RESULTS Logistic regression showed that the baseline level of transcription factor T cell factor 1 (TCF1)+CD8+ T cell ratio and peripheral white blood cell (WBC) count, lymphocyte percentage, cytokeratin 19 fragment (CYFRA21-1) after 1 cycle of ICIs treatment were the potential predictors for ICIs response (P<0.05). Cox regression analysis showed that the baseline level of TCF1+CD8+ T cell ratio (P=0.020) and peripheral WBC count after 1 cycle of ICIs treatment (P<0.001) were prognostic factors. CONCLUSIONS Patients with high baseline TCF1+CD8+ T cell ratio combined with low WBC counts and low CYFRA21-1 level after 1 cycle of ICIs treatment are more likely to benefit from ICIs therapy.
Collapse
|
40
|
Kang H, Zhu X, Cui Y, Xiong Z, Zong W, Bao Y, Jia P. A Comprehensive Benchmark of Transcriptomic Biomarkers for Immune Checkpoint Blockades. Cancers (Basel) 2023; 15:4094. [PMID: 37627121 PMCID: PMC10452274 DOI: 10.3390/cancers15164094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Immune checkpoint blockades (ICBs) have revolutionized cancer therapy by inducing durable clinical responses, but only a small percentage of patients can benefit from ICB treatments. Many studies have established various biomarkers to predict ICB responses. However, different biomarkers were found with diverse performances in practice, and a timely and unbiased assessment has yet to be conducted due to the complexity of ICB-related studies and trials. In this study, we manually curated 29 published datasets with matched transcriptome and clinical data from more than 1400 patients, and uniformly preprocessed these datasets for further analyses. In addition, we collected 39 sets of transcriptomic biomarkers, and based on the nature of the corresponding computational methods, we categorized them into the gene-set-like group (with the self-contained design and the competitive design, respectively) and the deconvolution-like group. Next, we investigated the correlations and patterns of these biomarkers and utilized a standardized workflow to systematically evaluate their performance in predicting ICB responses and survival statuses across different datasets, cancer types, antibodies, biopsy times, and combinatory treatments. In our benchmark, most biomarkers showed poor performance in terms of stability and robustness across different datasets. Two scores (TIDE and CYT) had a competitive performance for ICB response prediction, and two others (PASS-ON and EIGS_ssGSEA) showed the best association with clinical outcome. Finally, we developed ICB-Portal to host the datasets, biomarkers, and benchmark results and to implement the computational methods for researchers to test their custom biomarkers. Our work provided valuable resources and a one-stop solution to facilitate ICB-related research.
Collapse
Affiliation(s)
- Hongen Kang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuli Zhu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Cui
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuang Xiong
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Wenting Zong
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Yiming Bao
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| |
Collapse
|
41
|
Yu P, Lian Y, Zuleger CL, Albertini RJ, Albertini MR, Newton MA. SURROGATE SELECTION OVERSAMPLES EXPANDED T CELL CLONOTYPES. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548950. [PMID: 37503118 PMCID: PMC10369934 DOI: 10.1101/2023.07.13.548950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Inference from immunological data on cells in the adaptive immune system may benefit from modeling specifications that describe variation in the sizes of various clonal sub-populations. We develop one such specification in order to quantify the effects of surrogate selection assays, which we confirm may lead to an enrichment for amplified, potentially disease-relevant T cell clones. Our specification couples within-clonotype birth-death processes with an exchangeable model across clonotypes. Beyond enrichment questions about the surrogate selection design, our framework enables a study of sampling properties of elementary sample diversity statistics; it also points to new statistics that may usefully measure the burden of somatic genomic alterations associated with clonal expansion. We examine statistical properties of immunological samples governed by the coupled model specification, and we illustrate calculations in surrogate selection studies of melanoma and in single-cell genomic studies of T cell repertoires.
Collapse
Affiliation(s)
- Peng Yu
- Department of Statistics, University of Wisconsin, Madison
| | - Yumin Lian
- Department of Chemistry, Laboratory of Genetics, University of Wisconsin, Madison
| | - Cindy L. Zuleger
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison
- Carbone Cancer Center, University of Wisconsin, Madison
| | | | - Mark R. Albertini
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison
- Carbone Cancer Center, University of Wisconsin, Madison
- Medical Service, William S. Middleton Memorial Veterans Hospital, Madison
| | - Michael A. Newton
- Department of Statistics, University of Wisconsin, Madison
- Carbone Cancer Center, University of Wisconsin, Madison
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison
| |
Collapse
|
42
|
Cedres S, Serna G, Gonzalez-Medina A, Valdivia A, Assaf-Pastrana JD, Iranzo P, Callejo A, Pardo N, Navarro A, Martinez-Marti A, Priano I, Fasani R, Guardia X, Gonzalo J, Carbonell C, Frigola J, Amat R, Navarro V, Dienstmann R, Vivancos A, Nuciforo P, Felip E. Expression of TILs and Patterns of Gene Expression from Paired Samples of Malignant Pleural Mesothelioma (MPM) Patients. Cancers (Basel) 2023; 15:3611. [PMID: 37509274 PMCID: PMC10377125 DOI: 10.3390/cancers15143611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
MPM is an aggressive disease with an immunosuppressive tumor microenvironment, and interest in exploring immunotherapy in this disease has been increasing. In the first line of treatment, the combination of nivolumab and ipilimumab demonstrated an improvement in survival over chemotherapy. The presence of TILs has been recognized as a marker of antitumor immune response to chemotherapy in solid tumors. The aim of our study is to identify the effect of treatment on immune cells and the immune gene profile in MPM. We investigated the changes in expression of TILs in 10 human MPM paired tumor tissues using immunohistochemistry and gene expression analysis from paired untreated and treated samples. In this small series, we demonstrated that during the evolution of disease without any treatment there was an increase in the inflammatory component in tumor samples. After systemic treatment there was a decrease in the number of TILs. We observed that after systemic treatment or disease progression immune gene signatures were suppressed. Our integrated analysis of paired samples with immune profile and genomic changes on MPM suggested that during the evolution of the disease the immune system tends to switch, turning off with treatment.
Collapse
Affiliation(s)
- Susana Cedres
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Garazi Serna
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | | | - Augusto Valdivia
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Juan David Assaf-Pastrana
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Patricia Iranzo
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Ana Callejo
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Nuria Pardo
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Alejandro Navarro
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Alex Martinez-Marti
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Ilaria Priano
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Roberta Fasani
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Xavier Guardia
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Javier Gonzalo
- Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Caterina Carbonell
- Clinical Research Department, Vall d'Hebron Institute of Oncology (VHIO), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Joan Frigola
- Clinical Research Department, Vall d'Hebron Institute of Oncology (VHIO), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Ramon Amat
- Clinical Research Department, Vall d'Hebron Institute of Oncology (VHIO), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Victor Navarro
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Rodrigo Dienstmann
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Lab, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Enriqueta Felip
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| |
Collapse
|
43
|
Luo J, Wang X, Zou Y, Chen L, Liu W, Zhang W, Li SC. Quantitative annotations of T-Cell repertoire specificity. Brief Bioinform 2023; 24:bbad175. [PMID: 37150761 DOI: 10.1093/bib/bbad175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Abstract
The specificity of a T-cell receptor (TCR) repertoire determines personalized immune capacity. Existing methods have modeled the qualitative aspects of TCR specificity, while the quantitative aspects remained unaddressed. We developed a package, TCRanno, to quantify the specificity of TCR repertoires. We created deep-learning-based, epitope-aware vector embeddings to infer individual TCR specificity. Then we aggregated clonotype frequencies of TCRs to obtain a quantitative profile of repertoire specificity at epitope, antigen and organism levels. Applying TCRanno to 4195 TCR repertoires revealed quantitative changes in repertoire specificity upon infections, autoimmunity and cancers. Specifically, TCRanno found cytomegalovirus-specific TCRs in seronegative healthy individuals, supporting the possibility of abortive infections. TCRanno discovered age-accumulated fraction of severe acute respiratory syndrome coronavirus 2 specific TCRs in pre-pandemic samples, which may explain the aggressive symptoms and age-related severity of coronavirus disease 2019. TCRanno also identified the encounter of Hepatitis B antigens as a potential trigger of systemic lupus erythematosus. TCRanno annotations showed capability in distinguishing TCR repertoires of healthy and cancers including melanoma, lung and breast cancers. TCRanno also demonstrated usefulness to single-cell TCRseq+gene expression data analyses by isolating T-cells with the specificity of interest.
Collapse
Affiliation(s)
- Jiaqi Luo
- Department of Computer Science, City University of Hong Kong, 83 Tat Tree Ave, Kowloon Tong, Hong Kong, China
| | - Xueying Wang
- Department of Computer Science, City University of Hong Kong, 83 Tat Tree Ave, Kowloon Tong, Hong Kong, China
| | - Yiping Zou
- Department of Computer Science, City University of Hong Kong, 83 Tat Tree Ave, Kowloon Tong, Hong Kong, China
| | - Lingxi Chen
- Department of Computer Science, City University of Hong Kong, 83 Tat Tree Ave, Kowloon Tong, Hong Kong, China
| | - Wei Liu
- Department of Computer Science, City University of Hong Kong, 83 Tat Tree Ave, Kowloon Tong, Hong Kong, China
| | - Wei Zhang
- Department of Computer Science, City University of Hong Kong, 83 Tat Tree Ave, Kowloon Tong, Hong Kong, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, 83 Tat Tree Ave, Kowloon Tong, Hong Kong, China
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Tree Ave, Kowloon Tong, Hong Kong, China
| |
Collapse
|
44
|
Abstract
Recent advances in cancer immunotherapy - ranging from immune-checkpoint blockade therapy to adoptive cellular therapy and vaccines - have revolutionized cancer treatment paradigms, yet the variability in clinical responses to these agents has motivated intense interest in understanding how the T cell landscape evolves with respect to response to immune intervention. Over the past decade, the advent of multidimensional single-cell technologies has provided the unprecedented ability to dissect the constellation of cell states of lymphocytes within a tumour microenvironment. In particular, the rapidly expanding capacity to definitively link intratumoural phenotypes with the antigen specificity of T cells provided by T cell receptors (TCRs) has now made it possible to focus on investigating the properties of T cells with tumour-specific reactivity. Moreover, the assessment of TCR clonality has enabled a molecular approach to track the trajectories, clonal dynamics and phenotypic changes of antitumour T cells over the course of immunotherapeutic intervention. Here, we review the current knowledge on the cellular states and antigen specificities of antitumour T cells and examine how fine characterization of T cell dynamics in patients has provided meaningful insights into the mechanisms underlying effective cancer immunotherapy. We highlight those T cell subsets associated with productive T cell responses and discuss how diverse immunotherapies might leverage the pre-existing tumour-reactive T cell pool or instruct de novo generation of antitumour specificities. Future studies aimed at elucidating the factors associated with the elicitation of productive antitumour T cell immunity are anticipated to instruct the design of more efficacious treatment strategies.
Collapse
Affiliation(s)
- Giacomo Oliveira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
45
|
Abstract
Over the past decade, melanoma has led the field in new cancer treatments, with impressive gains in on-treatment survival but more modest improvements in overall survival. Melanoma presents heterogeneity and transcriptional plasticity that recapitulates distinct melanocyte developmental states and phenotypes, allowing it to adapt to and eventually escape even the most advanced treatments. Despite remarkable advances in our understanding of melanoma biology and genetics, the melanoma cell of origin is still fiercely debated because both melanocyte stem cells and mature melanocytes can be transformed. Animal models and high-throughput single-cell sequencing approaches have opened new opportunities to address this question. Here, we discuss the melanocytic journey from the neural crest, where they emerge as melanoblasts, to the fully mature pigmented melanocytes resident in several tissues. We describe a new understanding of melanocyte biology and the different melanocyte subpopulations and microenvironments they inhabit, and how this provides unique insights into melanoma initiation and progression. We highlight recent findings on melanoma heterogeneity and transcriptional plasticity and their implications for exciting new research areas and treatment opportunities. The lessons from melanocyte biology reveal how cells that are present to protect us from the damaging effects of ultraviolet radiation reach back to their origins to become a potentially deadly cancer.
Collapse
Affiliation(s)
- Patricia P Centeno
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Valeria Pavet
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Richard Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK.
- Oncodrug Ltd, Alderly Park, Macclesfield, UK.
| |
Collapse
|
46
|
Venzel R, Campos MCP, de Oliveira LP, Dan Lins RV, Siena ÁDD, Mesquita KT, Moreira Dos Santos TP, Nohata N, Arruda LCM, Sales-Campos H, Neto MPC. Clinical and molecular overview of immunotherapeutic approaches for malignant skin melanoma: Past, present and future. Crit Rev Oncol Hematol 2023; 186:103988. [PMID: 37086955 DOI: 10.1016/j.critrevonc.2023.103988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023] Open
Abstract
Traditional therapeutic approaches for malignant melanoma, have proved to be limited and/or ineffective, especially with respect to their role in improving patient survival and tumor recurrence. In this regard, immunotherapy has been demonstrated to be a promising therapeutic alternative, boosting antitumor responses through the modulation of cell signaling pathways involved in the effector mechanisms of the immune system, particularly, the so-called "immunological checkpoints". Clinical studies on the efficacy and safety of immunotherapeutic regimens, alone or in combination with other antitumor approaches, have increased dramatically in recent decades, with very encouraging results. Hence, this review will discuss the current immunotherapeutic regimens used to treat malignant melanoma, as well as the molecular and cellular mechanisms involved. In addition, current clinical studies that have investigated the use, efficacy, and adverse events of immunotherapy in melanoma will also be discussed.
Collapse
Affiliation(s)
- Raphaelly Venzel
- Institute of Health and Biotechnology, Federal University of Amazonas, Coari, Brazil
| | | | | | | | | | | | - Tálita Pollyana Moreira Dos Santos
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA; Head & Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Nijiro Nohata
- Oncology Science Unit, MSD K.K, Chiyoda-ku, Tokyo, Japan
| | | | - Helioswilton Sales-Campos
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, GO, Brazil
| | | |
Collapse
|
47
|
Zheng H, Yu X, Ibrahim ML, Foresman D, Xie M, Johnson JO, Boyle TA, Ruffell B, Perez BA, Antonia SJ, Ready N, Saltos AN, Cantwell MJ, Beg AA. Combination IFNβ and Membrane-Stable CD40L Maximize Tumor Dendritic Cell Activation and Lymph Node Trafficking to Elicit Systemic T-cell Immunity. Cancer Immunol Res 2023; 11:466-485. [PMID: 36757308 PMCID: PMC10165690 DOI: 10.1158/2326-6066.cir-22-0927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Oncolytic virus therapies induce the direct killing of tumor cells and activation of conventional dendritic cells (cDC); however, cDC activation has not been optimized with current therapies. We evaluated the adenoviral delivery of engineered membrane-stable CD40L (MEM40) and IFNβ to locally activate cDCs in mouse tumor models. Combined tumor MEM40 and IFNβ expression induced the highest cDC activation coupled with increased lymph node migration, increased systemic antitumor CD8+ T-cell responses, and regression of established tumors in a cDC1-dependent manner. MEM40 + IFNβ combined with checkpoint inhibitors led to effective control of distant tumors and lung metastases. An oncolytic adenovirus (MEM-288) expressing MEM40 + IFNβ in phase I clinical testing induced cancer cell loss concomitant with enhanced T-cell infiltration and increased systemic presence of tumor T-cell clonotypes in non-small cell lung cancer (NSCLC) patients. This approach to simultaneously target two major DC-activating pathways has the potential to significantly affect the solid tumor immunotherapy landscape.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
| | - Xiaoqing Yu
- Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Mohammed L Ibrahim
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dana Foresman
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
| | - Mengyu Xie
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
| | | | - Theresa A Boyle
- Pathology, Moffitt Cancer Center, Tampa, Florida
- Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Brian Ruffell
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
| | | | - Scott J Antonia
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina
| | - Neal Ready
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina
| | | | | | - Amer A Beg
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
- Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
48
|
Ali LR, Garrido-Castro AC, Lenehan PJ, Bollenrucher N, Stump CT, Dougan M, Goel S, Shapiro GI, Tolaney SM, Dougan SK. PD-1 blockade and CDK4/6 inhibition augment nonoverlapping features of T cell activation in cancer. J Exp Med 2023; 220:e20220729. [PMID: 36688919 PMCID: PMC9884581 DOI: 10.1084/jem.20220729] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/08/2022] [Accepted: 01/03/2023] [Indexed: 02/02/2023] Open
Abstract
We performed single-cell RNA-sequencing and T cell receptor clonotype tracking of breast and ovarian cancer patients treated with the CDK4/6 inhibitor ribociclib and PD-1 blockade. We highlight evidence of two orthogonal treatment-associated phenomena: expansion of T cell effector populations and promotion of T cell memory formation. Augmentation of the antitumor memory pool by ribociclib boosts the efficacy of subsequent PD-1 blockade in mouse models of melanoma and breast cancer, pointing toward sequential therapy as a potentially safe and synergistic strategy in patients.
Collapse
Affiliation(s)
- Lestat R. Ali
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Ana C. Garrido-Castro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Patrick J. Lenehan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Naima Bollenrucher
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Courtney T. Stump
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Dougan
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Shom Goel
- Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Sara M. Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stephanie K. Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Fisher IF, Shemer R, Dor Y. Epigenetic liquid biopsies: a novel putative biomarker in immunology and inflammation. Trends Immunol 2023; 44:356-364. [PMID: 37012121 DOI: 10.1016/j.it.2023.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023]
Abstract
Immune and inflammatory processes occurring within tissues are often undetectable by blood cell counts, standard circulating biomarkers, or imaging, representing an unmet biomedical need. Here, we outline recent advances indicating that liquid biopsies can broadly inform human immune system dynamics. Nucleosome-size fragments of cell-free DNA (cfDNA) released from dying cells into blood contain rich epigenetic information such as methylation, fragmentation, and histone mark patterns. This information allows to infer the cfDNA cell of origin, as well as pre-cell death gene expression patterns. We propose that the analysis of epigenetic features of immune cell-derived cfDNA can shed light on immune cell turnover dynamics in healthy people, and inform the study and diagnosis of cancer, local inflammation, infectious or autoimmune diseases, as well as responses to vaccination.
Collapse
|
50
|
Zornikova KV, Sheetikov SA, Rusinov AY, Iskhakov RN, Bogolyubova AV. Architecture of the SARS-CoV-2-specific T cell repertoire. Front Immunol 2023; 14:1070077. [PMID: 37020560 PMCID: PMC10067759 DOI: 10.3389/fimmu.2023.1070077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
The T cell response plays an indispensable role in the early control and successful clearance of SARS-CoV-2 infection. However, several important questions remain about the role of cellular immunity in COVID-19, including the shape and composition of disease-specific T cell repertoires across convalescent patients and vaccinated individuals, and how pre-existing T cell responses to other pathogens—in particular, common cold coronaviruses—impact susceptibility to SARS-CoV-2 infection and the subsequent course of disease. This review focuses on how the repertoire of T cell receptors (TCR) is shaped by natural infection and vaccination over time. We also summarize current knowledge regarding cross-reactive T cell responses and their protective role, and examine the implications of TCR repertoire diversity and cross-reactivity with regard to the design of vaccines that confer broader protection against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ksenia V. Zornikova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Saveliy A. Sheetikov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander Yu Rusinov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Rustam N. Iskhakov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Apollinariya V. Bogolyubova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- *Correspondence: Apollinariya V. Bogolyubova,
| |
Collapse
|