1
|
Kosciessa JQ, Mayr U, Lindenberger U, Garrett DD. Broadscale dampening of uncertainty adjustment in the aging brain. Nat Commun 2024; 15:10717. [PMID: 39715747 DOI: 10.1038/s41467-024-55416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
The ability to prioritize among input features according to relevance enables adaptive behaviors across the human lifespan. However, relevance often remains ambiguous, and such uncertainty increases demands for dynamic control. While both cognitive stability and flexibility decline during healthy ageing, it is unknown whether aging alters how uncertainty impacts perception and decision-making, and if so, via which neural mechanisms. Here, we assess uncertainty adjustment across the adult lifespan (N = 100; cross-sectional) via behavioral modeling and a theoretically informed set of EEG-, fMRI-, and pupil-based signatures. On the group level, older adults show a broad dampening of uncertainty adjustment relative to younger adults. At the individual level, older individuals whose modulation more closely resembled that of younger adults also exhibit better maintenance of cognitive control. Our results highlight neural mechanisms whose maintenance plausibly enables flexible task-set, perception, and decision computations across the adult lifespan.
Collapse
Affiliation(s)
- Julian Q Kosciessa
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - Ulrich Mayr
- Department of Psychology, University of Oregon, Eugene, OR, USA
| | - Ulman Lindenberger
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
| |
Collapse
|
2
|
Dutt S, Bachman SL, Dahl MJ, Li Y, Yew B, Jang JY, Ho JK, Nashiro K, Min J, Yoo HJ, Gaubert A, Nguyen A, Blanken AE, Sible IJ, Marshall AJ, Kapoor A, Alitin JPM, Hoang K, Rouanet J, Sordo L, Head E, Shao X, Wang DJJ, Mather M, Nation DA. Locus coeruleus MRI contrast, cerebral perfusion, and plasma Alzheimer's disease biomarkers in older adults. Neurobiol Aging 2024; 147:12-21. [PMID: 39637519 DOI: 10.1016/j.neurobiolaging.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
The locus coeruleus (LC) is among the first brain structures impacted by Alzheimer's disease (AD), and noradrenergic denervation may contribute to early neurovascular dysfunction in AD. Mechanistic links between the LC and cerebral perfusion have been demonstrated in rodents, but there have been no similar studies in aging humans. Community-dwelling older adults with no history of stroke or dementia (N=66) underwent structural (T1-MPRAGE; T1-FSE) and perfusion (resting pCASL) MRI. Plasma AD biomarkers levels were evaluated for Aβ42/40 ratio (n=56) and pTau181 (n=60). Higher rostral LC structural MRI contrast was associated with lower perfusion in entorhinal and limbic regions but higher perfusion in lateral and medial orbitofrontal cortices. Relationships between LC structure and regional cerebral perfusion were attenuated in older adults with higher plasma pTau levels and lower plasma Aβ42/40 ratios. Previously unstudied links between LC structure and cerebral perfusion are detectible in older adults using MRI and are attenuated in those showing greater AD pathophysiologic change, suggesting an uncoupling of LC-cerebral perfusion relationships in older adults with aggregating AD-related pathophysiology.
Collapse
Affiliation(s)
- Shubir Dutt
- Department of Psychology, University of Southern California, Los Angeles, CA, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Shelby L Bachman
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Martin J Dahl
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Yanrong Li
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Belinda Yew
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jung Yun Jang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Jean K Ho
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Kaoru Nashiro
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jungwon Min
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hyun Joo Yoo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Aimée Gaubert
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Amy Nguyen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Anna E Blanken
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA; San Francisco Veterans Affairs Health Care System, CA, USA
| | - Isabel J Sible
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Anisa J Marshall
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - John Paul M Alitin
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kim Hoang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Jeremy Rouanet
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA
| | - Lorena Sordo
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA
| | - Elizabeth Head
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA
| | - Xingfeng Shao
- Laboratory of FMRI Technology, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, CA, Los Angeles, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, CA, Los Angeles, USA
| | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Daniel A Nation
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, CA, Los Angeles, USA.
| |
Collapse
|
3
|
Wengler K, Trujillo P, Cassidy CM, Horga G. Neuromelanin-sensitive MRI for mechanistic research and biomarker development in psychiatry. Neuropsychopharmacology 2024; 50:137-152. [PMID: 39160355 PMCID: PMC11526017 DOI: 10.1038/s41386-024-01934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Neuromelanin-sensitive MRI is a burgeoning non-invasive neuroimaging method with an increasing number of applications in psychiatric research. This MRI modality is sensitive to the concentration of neuromelanin, which is synthesized from intracellular catecholamines and accumulates in catecholaminergic nuclei including the dopaminergic substantia nigra and the noradrenergic locus coeruleus. Emerging data suggest the utility of neuromelanin-sensitive MRI as a proxy measure for variability in catecholamine metabolism and function, even in the absence of catecholaminergic cell loss. Given the importance of catecholamine function to several psychiatric disorders and their treatments, neuromelanin-sensitive MRI is ideally positioned as an informative and easy-to-acquire catecholaminergic index. In this review paper, we examine basic aspects of neuromelanin and neuromelanin-sensitive MRI and focus on its psychiatric applications in the contexts of mechanistic research and biomarker development. We discuss ongoing debates and state-of-the-art research into the mechanisms of the neuromelanin-sensitive MRI contrast, standardized protocols and optimized analytic approaches, and application of cutting-edge methods such as machine learning and artificial intelligence to enhance the feasibility and predictive power of neuromelanin-sensitive-MRI-based tools. We finally lay out important future directions to allow neuromelanin-sensitive-MRI to fulfill its potential as a key component of the research, and ultimately clinical, toolbox in psychiatry.
Collapse
Affiliation(s)
- Kenneth Wengler
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Vanderbilt, TN, USA
| | - Clifford M Cassidy
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Guillermo Horga
- New York State Psychiatric Institute, New York, NY, USA.
- Department of Psychiatry, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Crawford JL, Berry AS. Examining resilience to Alzheimer's disease through the lens of monoaminergic neuromodulator systems. Trends Neurosci 2024; 47:892-903. [PMID: 39368845 PMCID: PMC11563896 DOI: 10.1016/j.tins.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 10/07/2024]
Abstract
The monoaminergic nuclei are thought to be some of the earliest sites of Alzheimer's disease (AD) pathology in the brain, with tau-containing pretangles appearing in these nuclei decades before the onset of clinical impairments. It has increasingly been recognized that monoamine systems represent a critical target of investigation towards understanding the progression of AD and designing early detection and treatment approaches. This review synthesizes evidence across animal studies, human neuropathology, and state-of-the-art neuroimaging and daily life assessment methods in humans, which demonstrate robust relationships between monoamine systems and AD pathophysiology and behavior. Further, the review highlights the promise of multimethod, multisystem approaches to studying monoaminergic mechanisms of resilience to AD pathology.
Collapse
Affiliation(s)
| | - Anne S Berry
- Department of Psychology, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
5
|
Falgàs N, Peña‐González M, Val‐Guardiola A, Pérez‐Millan A, Guillén N, Sarto J, Esteller D, Bosch B, Fernández‐Villullas G, Tort‐Merino A, Mayà G, Augé JM, Iranzo A, Balasa M, Lladó A, Morales‐Ruiz M, Bargalló N, Muñoz‐Moreno E, Grinberg LT, Sánchez‐Valle R. Locus coeruleus integrity and neuropsychiatric symptoms in a cohort of early- and late-onset Alzheimer's disease. Alzheimers Dement 2024; 20:6351-6364. [PMID: 39051173 PMCID: PMC11497680 DOI: 10.1002/alz.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Early-onset Alzheimer's disease (EOAD) shows a higher burden of neuropsychiatric symptoms than late-onset Alzheimer's disease (LOAD). We aim to determine the differences in the severity of neuropsychiatric symptoms and locus coeruleus (LC) integrity between EOAD and LOAD accounting for disease stage. METHODS One hundred four subjects with AD diagnosis and 32 healthy controls were included. Participants underwent magnetic resonance imaging (MRI) to measure LC integrity, measures of noradrenaline levels in cerebrospinal fluid (CSF) and Neuropsychiatric Inventory (NPI). We analyzed LC-noradrenaline measurements and clinical and Alzheimer's disease (AD) biomarker associations. RESULTS EOAD showed higher NPI scores, lower LC integrity, and similar levels of CSF noradrenaline compared to LOAD. Notably, EOAD exhibited lower LC integrity independently of disease stage. LC integrity negatively correlated with neuropsychiatric symptoms. Noradrenaline levels were increased in AD correlating with AD biomarkers. DISCUSSION Decreased LC integrity negatively contributes to neuropsychiatric symptoms. The higher LC degeneration in EOAD compared to LOAD could explain the more severe neuropsychiatric symptoms in EOAD. HIGHLIGHTS LC degeneration is greater in early-onset AD (EOAD) compared to late-onset AD. Tau-derived LC degeneration drives a higher severity of neuropsychiatric symptoms. EOAD harbors a more profound selective vulnerability of the LC system. LC degeneration is associated with an increase of cerebrospinal fluid noradrenaline levels in AD.
Collapse
Affiliation(s)
- Neus Falgàs
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
- Global Brain Health InstituteUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Marta Peña‐González
- Magnetic Resonance Imaging Core FacilityInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCataloniaSpain
| | - Andrea Val‐Guardiola
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Agnès Pérez‐Millan
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Núria Guillén
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Jordi Sarto
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Diana Esteller
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Guadalupe Fernández‐Villullas
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Adrià Tort‐Merino
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Gerard Mayà
- Neurology ServiceHospital Clínic de BarcelonaIDIBAPSCIBERNEDUniversitat de BarcelonaBarcelonaSpain
| | - Josep Maria Augé
- Biochemistry and Molecular Genetics Department‐CDBHospital ClinicIDIBAPSCIBERehdBarcelonaSpain
| | - Alex Iranzo
- Neurology ServiceHospital Clínic de BarcelonaIDIBAPSCIBERNEDUniversitat de BarcelonaBarcelonaSpain
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Manuel Morales‐Ruiz
- Biochemistry and Molecular Genetics Department‐CDBHospital ClinicIDIBAPSCIBERehdBarcelonaSpain
| | - Núria Bargalló
- Magnetic Resonance Imaging Core FacilityInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCataloniaSpain
| | - Emma Muñoz‐Moreno
- Magnetic Resonance Imaging Core FacilityInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCataloniaSpain
| | - Lea T. Grinberg
- Global Brain Health InstituteUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of NeurologyMemory & Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of PathologyUniversity of Sao Paulo Medical SchoolSao PauloBrazil
| | - Raquel Sánchez‐Valle
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| |
Collapse
|
6
|
Bennett IJ, Langley J, Sun A, Solis K, Seitz AR, Hu XP. Locus coeruleus contrast and diffusivity metrics differentially relate to age and memory performance. Sci Rep 2024; 14:15372. [PMID: 38965363 PMCID: PMC11224383 DOI: 10.1038/s41598-024-66238-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024] Open
Abstract
Neurocognitive aging researchers are increasingly focused on the locus coeruleus, a neuromodulatory brainstem structure that degrades with age. With this rapid growth, the field will benefit from consensus regarding which magnetic resonance imaging (MRI) metrics of locus coeruleus structure are most sensitive to age and cognition. To address this need, the current study acquired magnetization transfer- and diffusion-weighted MRI images in younger and older adults who also completed a free recall memory task. Results revealed significantly larger differences between younger and older adults for maximum than average magnetization transfer-weighted contrast (MTC), axial than mean or radial single-tensor diffusivity (DTI), and free than restricted multi-compartment diffusion (NODDI) metrics in the locus coeruleus; with maximum MTC being the best predictor of age group. Age effects for all imaging modalities interacted with sex, with larger age group differences in males than females for MTC and NODDI metrics. Age group differences also varied across locus coeruleus subdivision for DTI and NODDI metrics, and across locus coeruleus hemispheres for MTC. Within older adults, however, there were no significant effects of age on MTC or DTI metrics, only an interaction between age and sex for free diffusion. Finally, independent of age and sex, higher restricted diffusion in the locus coeruleus was significantly related to better (lower) recall variability, but not mean recall. Whereas MTC has been widely used in the literature, our comparison between the average and maximum MTC metrics, inclusion of DTI and NODDI metrics, and breakdowns by locus coeruleus subdivision and hemisphere make important and novel contributions to our understanding of the aging of locus coeruleus structure.
Collapse
Affiliation(s)
- Ilana J Bennett
- Department of Psychology, University of California, 900 University Avenue, 2127 Psychology Building, Riverside, CA, 92521-0426, USA.
| | - Jason Langley
- Center for Advanced Neuroimaging, University of California Riverside, Riverside, CA, USA
| | - Andrew Sun
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Kitzia Solis
- Department of Psychology, University of California, 900 University Avenue, 2127 Psychology Building, Riverside, CA, 92521-0426, USA
| | - Aaron R Seitz
- Department of Psychology, University of California, 900 University Avenue, 2127 Psychology Building, Riverside, CA, 92521-0426, USA
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Xiaoping P Hu
- Center for Advanced Neuroimaging, University of California Riverside, Riverside, CA, USA
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
7
|
Wearn A, Tremblay SA, Tardif CL, Leppert IR, Gauthier CJ, Baracchini G, Hughes C, Hewan P, Tremblay-Mercier J, Rosa-Neto P, Poirier J, Villeneuve S, Schmitz TW, Turner GR, Spreng RN. Neuromodulatory subcortical nucleus integrity is associated with white matter microstructure, tauopathy and APOE status. Nat Commun 2024; 15:4706. [PMID: 38830849 PMCID: PMC11148077 DOI: 10.1038/s41467-024-48490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/01/2024] [Indexed: 06/05/2024] Open
Abstract
The neuromodulatory subcortical nuclei within the isodendritic core (IdC) are the earliest sites of tauopathy in Alzheimer's disease (AD). They project broadly throughout the brain's white matter. We investigated the relationship between IdC microstructure and whole-brain white matter microstructure to better understand early neuropathological changes in AD. Using multiparametric quantitative magnetic resonance imaging we observed two covariance patterns between IdC and white matter microstructure in 133 cognitively unimpaired older adults (age 67.9 ± 5.3 years) with familial risk for AD. IdC integrity related to 1) whole-brain neurite density, and 2) neurite orientation dispersion in white matter tracts known to be affected early in AD. Pattern 2 was associated with CSF concentration of phosphorylated-tau, indicating AD specificity. Apolipoprotein-E4 carriers expressed both patterns more strongly than non-carriers. IdC microstructure variation is reflected in white matter, particularly in AD-affected tracts, highlighting an early mechanism of pathological development.
Collapse
Affiliation(s)
- Alfie Wearn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada.
| | - Stéfanie A Tremblay
- Department of Physics, Concordia University, Montreal, H4B 1R6, QC, Canada
- Montreal Heart Institute, Montreal, H1T 1C8, QC, Canada
- School of Health, Concordia University, Montreal, H4B 1R6, QC, Canada
| | - Christine L Tardif
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
- Department of Biomedical Engineering, McGill University, McGill, H3A 2B4, QC, Canada
| | - Ilana R Leppert
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
| | - Claudine J Gauthier
- Department of Physics, Concordia University, Montreal, H4B 1R6, QC, Canada
- Montreal Heart Institute, Montreal, H1T 1C8, QC, Canada
- School of Health, Concordia University, Montreal, H4B 1R6, QC, Canada
| | - Giulia Baracchini
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
| | - Colleen Hughes
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
| | - Patrick Hewan
- Department of Psychology, York University, Toronto, M3J 1P3, ON, Canada
| | | | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada
- Department of Psychiatry, McGill University, Montreal, H3A 1A1, QC, Canada
| | - Sylvia Villeneuve
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada
- Department of Psychiatry, McGill University, Montreal, H3A 1A1, QC, Canada
| | - Taylor W Schmitz
- Department of Physiology & Pharmacology, Western Institute for Neuroscience, Western University, London, N6A 5C1, ON, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, M3J 1P3, ON, Canada
| | - R Nathan Spreng
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada.
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada.
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada.
- Department of Psychiatry, McGill University, Montreal, H3A 1A1, QC, Canada.
| |
Collapse
|
8
|
Galgani A, Lombardo F, Frijia F, Martini N, Tognoni G, Pavese N, Giorgi FS. The degeneration of locus coeruleus occurring during Alzheimer's disease clinical progression: a neuroimaging follow-up investigation. Brain Struct Funct 2024; 229:1317-1325. [PMID: 38625557 PMCID: PMC11147916 DOI: 10.1007/s00429-024-02797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
The noradrenergic nucleus Locus Coeruleus (LC) is precociously involved in Alzheimer's Disease (AD) pathology, and its degeneration progresses during the course of the disease. Using Magnetic Resonance Imaging (MRI), researchers showed also in vivo in patients the disruption of LC, which can be observed both in Mild Cognitively Impaired individuals and AD demented patients. In this study, we report the results of a follow-up neuroradiological assessment, in which we evaluated the LC degeneration overtime in a group of cognitively impaired patients, submitted to MRI both at baseline and at the end of a 2.5-year follow-up. We found that a progressive LC disruption can be observed also in vivo, involving the entire nucleus and associated with clinical diagnosis. Our findings parallel neuropathological ones, which showed a continuous increase of neuronal death and volumetric atrophy within the LC with the progression of Braak's stages for neurofibrillary pathology. This supports the reliability of MRI as a tool for exploring the integrity of the central noradrenergic system in neurodegenerative disorders.
Collapse
Affiliation(s)
- Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Roma 55, Pisa, 56126, Italy
| | | | - Francesca Frijia
- Bioengineering Unit, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Nicola Martini
- Bioengineering Unit, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Gloria Tognoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicola Pavese
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, UK
- Institute of Clinical Medicine, PET Centre, Aarhus University, Aarhus, Denmark
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Roma 55, Pisa, 56126, Italy.
| |
Collapse
|
9
|
Turner GR, Hewan P, Wearn A, van Dooren R, Wyatt L, Leppert IR, Baracchini G, Hughes C, Williams KM, Sylvain E, Tremblay-Mercier J, Poirier J, Villeneuve S, Tardif C, Spreng RN. Locus coeruleus integrity is related to an exploitation-based decision-making bias in older adulthood. Proc Natl Acad Sci U S A 2024; 121:e2322617121. [PMID: 38771873 PMCID: PMC11145298 DOI: 10.1073/pnas.2322617121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/09/2024] [Indexed: 05/23/2024] Open
Abstract
Optimal decision-making balances exploration for new information against exploitation of known rewards, a process mediated by the locus coeruleus and its norepinephrine projections. We predicted that an exploitation-bias that emerges in older adulthood would be associated with lower microstructural integrity of the locus coeruleus. Leveraging in vivo histological methods from quantitative MRI-magnetic transfer saturation-we provide evidence that older age is associated with lower locus coeruleus integrity. Critically, we demonstrate that an exploitation bias in older adulthood, assessed with a foraging task, is sensitive and specific to lower locus coeruleus integrity. Because the locus coeruleus is uniquely vulnerable to Alzheimer's disease pathology, our findings suggest that aging, and a presymptomatic trajectory of Alzheimer's related decline, may fundamentally alter decision-making abilities in later life.
Collapse
Affiliation(s)
- Gary R. Turner
- Department of Psychology, York University, Toronto, ONM3J 1P3, Canada
| | - Patrick Hewan
- Department of Psychology, York University, Toronto, ONM3J 1P3, Canada
| | - Alfie Wearn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Roel van Dooren
- Institutes of Psychology & Brain and Cognition, Leiden University, Leiden2300 RC, The Netherlands
| | - Lindsay Wyatt
- Department of Psychology, York University, Toronto, ONM3J 1P3, Canada
| | - Ilana R. Leppert
- McConnell Brain Imaging Centre, McGill University, Montreal, QCH2A 2B4, Canada
| | - Giulia Baracchini
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Colleen Hughes
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Kayla M. Williams
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Elisabeth Sylvain
- Douglas Mental Health University Institute, Verdun, QCH4H 1R3, Canada
| | | | - Judes Poirier
- Douglas Mental Health University Institute, Verdun, QCH4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, QCH3A 1A1, Canada
| | - Sylvia Villeneuve
- McConnell Brain Imaging Centre, McGill University, Montreal, QCH2A 2B4, Canada
- Douglas Mental Health University Institute, Verdun, QCH4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, QCH3A 1A1, Canada
| | - Christine Tardif
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QCH2A 2B4, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QCH3A 2B4, Canada
| | - R. Nathan Spreng
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QCH2A 2B4, Canada
- Douglas Mental Health University Institute, Verdun, QCH4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, QCH3A 1A1, Canada
- Department of Psychology, McGill University, Montreal, QCH3A 1G1, Canada
| | | |
Collapse
|
10
|
Kim AJ, Nguyen K, Mather M. Eye movements reveal age differences in how arousal modulates saliency priority but not attention processing speed. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592619. [PMID: 38766110 PMCID: PMC11100628 DOI: 10.1101/2024.05.06.592619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The arousal-biased competition theory posits that inducing arousal increases attentional priority of salient stimuli while reducing priority of non-pertinent stimuli. However, unlike in young adults, older adults rarely exhibit shifts in priority under increased arousal, and prior studies have proposed different neural mechanisms to explain how arousal differentially modulates selective attention in older adults. Therefore, we investigated how the threat of unpredictable shock differentially modulates attentional control mechanisms in young and older adults by observing eye movements. Participants completed two oculomotor search tasks in which the salient distractor was typically captured by attention (singleton search) or proactively suppressed (feature search). We found that arousal did not modulate attentional priority for any stimulus among older adults nor affect the speed of attention processing in either age group. Furthermore, we observed that arousal modulated pupil sizes and found a correlation between evoked pupil responses and oculomotor function. Our findings suggest age differences in how the locus coeruleus-noradrenaline system interacts with neural networks of attention and oculomotor function.
Collapse
Affiliation(s)
- Andy Jeesu Kim
- University of Southern California, School of Gerontology
| | | | - Mara Mather
- University of Southern California, School of Gerontology
| |
Collapse
|
11
|
Wee IC, Arulsamy A, Corrigan F, Collins-Praino L. Long-Term Impact of Diffuse Traumatic Brain Injury on Neuroinflammation and Catecholaminergic Signaling: Potential Relevance for Parkinson's Disease Risk. Molecules 2024; 29:1470. [PMID: 38611750 PMCID: PMC11013319 DOI: 10.3390/molecules29071470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/11/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Traumatic brain injury (TBI) is associated with an increased risk of developing Parkinson's disease (PD), though the exact mechanisms remain unclear. TBI triggers acute neuroinflammation and catecholamine dysfunction post-injury, both implicated in PD pathophysiology. The long-term impact on these pathways following TBI, however, remains uncertain. In this study, male Sprague-Dawley rats underwent sham surgery or Marmarou's impact acceleration model to induce varying TBI severities: single mild TBI (mTBI), repetitive mild TBI (rmTBI), or moderate-severe TBI (msTBI). At 12 months post-injury, astrocyte reactivity (GFAP) and microglial levels (IBA1) were assessed in the striatum (STR), substantia nigra (SN), and prefrontal cortex (PFC) using immunohistochemistry. Key enzymes and receptors involved in catecholaminergic transmission were measured via Western blot within the same regions. Minimal changes in these markers were observed, regardless of initial injury severity. Following mTBI, elevated protein levels of dopamine D1 receptors (DRD1) were noted in the PFC, while msTBI resulted in increased alpha-2A adrenoceptors (ADRA2A) in the STR and decreased dopamine beta-hydroxylase (DβH) in the SN. Neuroinflammatory changes were subtle, with a reduced number of GFAP+ cells in the SN following msTBI. However, considering the potential for neurodegenerative outcomes to manifest decades after injury, longer post-injury intervals may be necessary to observe PD-relevant alterations within these systems.
Collapse
Affiliation(s)
- Ing Chee Wee
- Cognition, Ageing and Neurodegenerative Disease Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia;
| | - Frances Corrigan
- Head Injury Lab, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lyndsey Collins-Praino
- Cognition, Ageing and Neurodegenerative Disease Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
12
|
Galgani A, Giorgi FS. Exploring the Role of Locus Coeruleus in Alzheimer's Disease: a Comprehensive Update on MRI Studies and Implications. Curr Neurol Neurosci Rep 2023; 23:925-936. [PMID: 38064152 PMCID: PMC10724305 DOI: 10.1007/s11910-023-01324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2023] [Indexed: 12/18/2023]
Abstract
PURPOSE OF REVIEW Performing a thorough review of magnetic resonance imaging (MRI) studies assessing locus coeruleus (LC) integrity in ageing and Alzheimer's disease (AD), and contextualizing them with current preclinical and neuropathological literature. RECENT FINDINGS MRI successfully detected LC alterations in ageing and AD, identifying degenerative phenomena involving this nucleus even in the prodromal stages of the disorder. The degree of LC disruption was also associated with the severity of AD cortical pathology, cognitive and behavioral impairment, and the risk of clinical progression. Locus coeruleus-MRI has proved to be a useful tool to assess the integrity of the central noradrenergic system in vivo in humans. It allowed to test in patients preclinical and experimental hypothesis, thus confirming the specific and marked involvement of the LC in AD and its key pathogenetic role. Locus coeruleus-MRI-related data might represent the theoretical basis on which to start developing noradrenergic drugs to target AD.
Collapse
Affiliation(s)
- Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies School of Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies School of Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| |
Collapse
|
13
|
Yoo HJ, Nashiro K, Dutt S, Min J, Cho C, Thayer JF, Lehrer P, Chang C, Mather M. Daily biofeedback to modulate heart rate oscillations affects structural volume in hippocampal subregions targeted by the locus coeruleus in older adults but not younger adults. Neurobiol Aging 2023; 132:85-99. [PMID: 37769491 PMCID: PMC10840698 DOI: 10.1016/j.neurobiolaging.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
Using data from a clinical trial, we tested the hypothesis that daily sessions modulating heart rate oscillations affect older adults' volume of a region-of-interest (ROI) comprised of adjacent hippocampal subregions with relatively strong locus coeruleus (LC) noradrenergic input. Younger and older adults were randomly assigned to one of two daily biofeedback practices for 5 weeks: (1) engage in slow-paced breathing to increase the amplitude of oscillations in heart rate at their breathing frequency (Osc+); (2) engage in self-selected strategies to decrease heart rate oscillations (Osc-). The interventions did not significantly affect younger adults' hippocampal volume. Among older adults, the two conditions affected volume in the LC-targeted hippocampal ROI differentially as reflected in a significant condition × time-point interaction on ROI volume. These condition differences were driven by opposing changes in the two conditions (increased volume in Osc+ and decreased volume in Osc-) and were mediated by the degree of heart rate oscillation during training sessions.
Collapse
Affiliation(s)
- Hyun Joo Yoo
- University of Southern California, Los Angeles, CA 90089, USA
| | - Kaoru Nashiro
- University of Southern California, Los Angeles, CA 90089, USA
| | - Shubir Dutt
- University of Southern California, Los Angeles, CA 90089, USA
| | - Jungwon Min
- University of Southern California, Los Angeles, CA 90089, USA
| | - Christine Cho
- University of Southern California, Los Angeles, CA 90089, USA
| | | | - Paul Lehrer
- Rutgers University, New Brunswick, NJ 08852, USA
| | - Catie Chang
- Vanderbilt University, Nashville, TN 37235, USA
| | - Mara Mather
- University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
14
|
Riley E, Cicero N, Swallow K, De Rosa E, Anderson A. Locus coeruleus neuromelanin accumulation and dissipation across the lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562814. [PMID: 37905002 PMCID: PMC10614878 DOI: 10.1101/2023.10.17.562814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The pigment neuromelanin, produced in the locus coeruleus (LC) as a byproduct of catecholamine synthesis, gives the "blue spot" its name, and both identifies LC neurons and is thought to play an important yet complex role in normal and pathological aging. Using neuromelanin-sensitive T1-weighted turbo spin echo MRI scans we characterized volume and neuromelanin signal intensity in the LC of 96 participants between the ages of 19 and 86. Although LC volume did not change significantly throughout the lifespan, LC neuromelanin signal intensity increased from early adulthood, peaked around age 60 and precipitously declined thereafter. Neuromelanin intensity was greater in the caudal relative to rostral extent and in women relative to men. With regard to function, rostral LC neuromelanin intensity was associated with fluid cognition in older adults (60+) only in those above the 50th percentile of cognitive ability for age. The gradual accumulation of LC neuromelanin across the lifespan, its sudden dissipation in later life, and relation to preserved cognitive function, is consistent with its complex role in normal and pathological aging.
Collapse
Affiliation(s)
| | | | | | - Eve De Rosa
- Department of Psychology, Cornell University
| | | |
Collapse
|