2
|
Åberg S, Webb DL, Nordin E, Hellström PM, Landberg R. Postprandial Effects of Four Test Meals Containing Wholegrain Rye or Refined Wheat Foods on Circulating Incretins, Ghrelin, Glucose, and Inflammatory Markers. J Nutr 2025; 155:185-196. [PMID: 39515756 DOI: 10.1016/j.tjnut.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND High intake of whole grains has consistently been associated with reduced risk of obesity, coronary artery disease, and type 2 diabetes. Dietary interventions have shown beneficial metabolic effects of whole grains, but the metabolic response varies with different types of cereals. OBJECTIVES We evaluate the metabolic effects of substituting refined wheat with wholegrain rye foods within a complex diet, examining the day-long postprandial response of glucose-dependent insulinotropic peptide (GIP), glucagon-like peptide-1 (GLP-1), ghrelin, glucose, and inflammatory biomarkers in individuals with overweight and obesity. METHODS Twenty-nine healthy adults with body mass index of 32 ± 9 kg/m2 were randomly assigned to 3 intervention days, separated by 1-wk washout. Participants adhered to a hypocaloric diet rich in wholegrain rye for 1 intervention and refined wheat for the second intervention and were randomly assigned to either diet for the third intervention with continuous blood sampling. RESULTS No differences in GIP, GLP-1, or ghrelin levels were found between the diets when measured throughout the whole intervention day. GIP total area under the curve after the rye-based lunch was 31% (P < 0.05) lower compared with the wheat-based lunch, and ghrelin concentrations were 29% (P < 0.05) lower after the rye-based dinner. Baseline Homeostatic Model Assessment for Insulin Resistance-adjusted model showed 61% (P = 0.015) lower whole-day GLP-1 and 40% (P = 0.03) lower GIP after the rye-based diet. Day-long glucose incremental area under the curve was 30% (P < 0.001) lower after the rye-based diet, and glycemic variability was measured as SD reduced (-0.13 mmol/L, P = 0.04). The rye-based diet compared with refined wheat induced higher glycoprotein N-acetylation A, as measured by z-scores (0.36, P = 0.014). CONCLUSIONS Overall, no day-long differences in gut hormone levels were observed, but the wholegrain rye-based compared with refined wheat-based dinner showed lower postprandial ghrelin concentrations. The rye-based diet improved day-long glycemic control in individuals with overweight and obesity. Observations of diet-induced inflammation after whole-grain rye intake warrant further investigation. TRIAL REGISTRATION NUMBER This study was registered at Clinical Trials Registry of clinicaltrials.gov (NCT05004584): https://clinicaltrials.gov/study/NCT05004584?locStr=Gothenburg,%20Sweden&country=Sweden&state=V%C3%A4stra%20G%C3%B6taland%20County&city=Gothenburg&distance=50&term=appetite&aggFilters=status:com&rank=1.
Collapse
Affiliation(s)
- Sebastian Åberg
- Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden.
| | - Dominic-Luc Webb
- Department of Medical Sciences, Gastroenterology and Hepatology, Uppsala University, Uppsala, Sweden
| | - Elise Nordin
- Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Per M Hellström
- Department of Medical Sciences, Gastroenterology and Hepatology, Uppsala University, Uppsala, Sweden
| | - Rikard Landberg
- Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
3
|
Grewal T, Nguyen MKL, Buechler C. Cholesterol and Cholesterol-Lowering Medications in COVID-19-An Unresolved Matter. Int J Mol Sci 2024; 25:10489. [PMID: 39408818 PMCID: PMC11477656 DOI: 10.3390/ijms251910489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause coronavirus disease 2019 (COVID-19), a disease with very heterogeneous symptoms. Dyslipidaemia is prevalent in at least 20% of Europeans, and dyslipidaemia before SARS-CoV-2 infection increases the risk for severe COVID-19 and mortality by 139%. Many reports described reduced serum cholesterol levels in virus-infected patients, in particular in those with severe disease. The liver is the major organ for lipid homeostasis and hepatic dysfunction appears to occur in one in five patients infected with SARS-CoV-2. Thus, SARS-CoV-2 infection, COVID-19 disease severity and liver injury may be related to impaired cholesterol homeostasis. These observations prompted efforts to assess the therapeutic opportunities of cholesterol-lowering medications to reduce COVID-19 severity. The majority of studies implicate statins to have beneficial effects on disease severity and outcome in COVID-19. Proprotein convertase subtilisin/kexin type 9 (PCSK9) antibodies have also shown potential to protect against COVID-19. This review describes the relationship between systemic cholesterol levels, liver injury and COVID-19 disease severity. The potential effects of statins and PCSK9 in COVID-19 are summarised. Finally, the relationship between cholesterol and lung function, the first organ to be affected by SARS-CoV-2, is described.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (T.G.); (M.K.L.N.)
| | - Mai Khanh Linh Nguyen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (T.G.); (M.K.L.N.)
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Roberts J, Whiley L, Gray N, Gay M, Nitschke P, Masuda R, Holmes E, Nicholson JK, Wist J, Lawler NG. Rapid and Self-Administrable Capillary Blood Microsampling Demonstrates Statistical Equivalence with Standard Venous Collections in NMR-Based Lipoprotein Analysis. Anal Chem 2024; 96:4505-4513. [PMID: 38372289 PMCID: PMC10955515 DOI: 10.1021/acs.analchem.3c05152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
We investigated plasma and serum blood derivatives from capillary blood microsamples (500 μL, MiniCollect tubes) and corresponding venous blood (10 mL vacutainers). Samples from 20 healthy participants were analyzed by 1H NMR, and 112 lipoprotein subfraction parameters; 3 supramolecular phospholipid composite (SPC) parameters from SPC1, SPC2, and SPC3 subfractions; 2 N-acetyl signals from α-1-acid glycoprotein (Glyc), GlycA, and GlycB; and 3 calculated parameters, SPC (total), SPC3/SPC2, and Glyc (total) were assessed. Using linear regression between capillary and venous collection sites, we explained that agreement (Adj. R2 ≥ 0.8, p < 0.001) was witnessed for 86% of plasma parameters (103/120) and 88% of serum parameters (106/120), indicating that capillary lipoprotein, SPC, and Glyc concentrations follow changes in venous concentrations. These results indicate that capillary blood microsamples are suitable for sampling in remote areas and for high-frequency longitudinal sampling of the majority of lipoproteins, SPCs, and Glycs.
Collapse
Affiliation(s)
- Jayden
Lee Roberts
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute,
Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
| | - Luke Whiley
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute,
Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
| | - Nicola Gray
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute,
Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
| | - Melvin Gay
- Bruker
Pty Ltd., Preston, VIC 3072, Australia
| | - Philipp Nitschke
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute,
Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
| | - Reika Masuda
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute,
Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
| | - Elaine Holmes
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute,
Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Department
of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, U.K.
| | - Jeremy K. Nicholson
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute,
Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Department
of Cardiology, Fiona Stanley Hospital, Medical School, University of Western Australia, Murdoch, WA 6150, Australia
- Institute
of Global Health Innovation, Faculty of Medicine, Imperial College London, Level 1, Faculty Building, South Kensington, London SW7 2NA, U.K.
| | - Julien Wist
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute,
Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Faculty
of Medicine, Department of Metabolism, Digestion and Reproduction,
Division of Digestive Diseases, Imperial
College, London SW7 2AZ, United Kingdom
- Chemistry
Department, Universidad del Valle, Melendez 76001, Cali, Colombia
| | - Nathan G. Lawler
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute,
Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
| |
Collapse
|
5
|
Dai J, Ma X, Wubshet AK, Li Q, Shang X, Luo Z, Liu J, Li Z, Li M, Song Y, Guo L, Zhang J, Zheng H. The Accumulation of Phenyllactic Acid Impairs Host Glutamine Metabolism and Inhibits African Swine Fever Virus Replication: A Novel Target for the Development of Anti-ASFV Drugs. Viruses 2024; 16:449. [PMID: 38543813 PMCID: PMC10975624 DOI: 10.3390/v16030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 05/23/2024] Open
Abstract
African swine fever (ASF) is a highly contagious and hemorrhagic disease caused by infection with the African swine fever virus (ASFV), resulting in a mortality rate of up to 100%. Currently, there are no effective treatments and commercially available vaccines for ASF. Therefore, it is crucial to identify biochemicals derived from host cells that can impede ASFV replication, with the aim of preventing and controlling ASF. The ASFV is an acellular organism that promotes self-replication by hijacking the metabolic machinery and biochemical resources of host cells. ASFV specifically alters the utilization of glucose and glutamine, which are the primary metabolic sources in mammalian cells. This study aimed to investigate the impact of glucose and glutamine metabolic dynamics on the rate of ASFV replication. Our findings demonstrate that ASFV infection favors using glutamine as a metabolic fuel to facilitate self-replication. ASFV replication can be substantially inhibited by blocking glutamine metabolism. The metabolomics analysis of the host cell after late-stage ASFV infection revealed a significant disruption of normal glutamine metabolic pathways due to the abundant expression of PLA (phenyllactic acid). Pretreatment with PLA also inhibited ASFV proliferation and glutamine consumption following infection. The metabolomic analysis also showed that PLA pretreatment greatly slowed down the metabolism of amino acids and nucleotides that depend on glutamine. The depletion of these building blocks directly hindered the replication of ASFV by decreasing the biosynthetic precursors produced during the replication of ASFV's progeny virus. These findings provide valuable insight into the possibility of pursuing the development of antiviral drugs against ASFV that selectively target metabolic pathways.
Collapse
Affiliation(s)
- Junfei Dai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (J.D.); (X.M.); (A.K.W.)
| | - Xusheng Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (J.D.); (X.M.); (A.K.W.)
| | - Ashenafi Kiros Wubshet
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (J.D.); (X.M.); (A.K.W.)
- Department of Veterinary Basics and Diagnostic Sciences, College of Veterinary Science, Mekelle University, Mekelle 2084, Ethiopia
| | - Qian Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (J.D.); (X.M.); (A.K.W.)
| | - Xiaofen Shang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (J.D.); (X.M.); (A.K.W.)
| | - Zhikuan Luo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (J.D.); (X.M.); (A.K.W.)
| | - Jianan Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (J.D.); (X.M.); (A.K.W.)
| | - Zhiyu Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (J.D.); (X.M.); (A.K.W.)
| | - Mingxia Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (J.D.); (X.M.); (A.K.W.)
| | - Yujie Song
- China Agricultural Veterinary Bioscience and Technology Co., Ltd., Lanzhou 730046, China
| | - Lijun Guo
- China Agricultural Veterinary Bioscience and Technology Co., Ltd., Lanzhou 730046, China
| | - Jie Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (J.D.); (X.M.); (A.K.W.)
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (J.D.); (X.M.); (A.K.W.)
| |
Collapse
|
6
|
Ansone L, Rovite V, Brīvība M, Jagare L, Pelcmane L, Borisova D, Thews A, Leiminger R, Kloviņš J. Longitudinal NMR-Based Metabolomics Study Reveals How Hospitalized COVID-19 Patients Recover: Evidence of Dyslipidemia and Energy Metabolism Dysregulation. Int J Mol Sci 2024; 25:1523. [PMID: 38338803 PMCID: PMC10855192 DOI: 10.3390/ijms25031523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Long COVID, or post-acute sequelae of SARS-CoV-2 infection (PASC), can manifest as long-term symptoms in multiple organ systems, including respiratory, cardiovascular, neurological, and metabolic systems. In patients with severe COVID-19, immune dysregulation is significant, and the relationship between metabolic regulation and immune response is of great interest in determining the pathophysiological mechanisms. We aimed to characterize the metabolomic footprint of recovering severe COVID-19 patients at three consecutive timepoints and compare metabolite levels to controls. Our findings add proof of dysregulated amino acid metabolism in the acute phase and dyslipidemia, glycoprotein level alterations, and energy metabolism disturbances in severe COVID-19 patients 3-4 months post-hospitalization.
Collapse
Affiliation(s)
- Laura Ansone
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (V.R.); (M.B.); (L.J.); (L.P.); (D.B.)
| | - Vita Rovite
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (V.R.); (M.B.); (L.J.); (L.P.); (D.B.)
| | - Monta Brīvība
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (V.R.); (M.B.); (L.J.); (L.P.); (D.B.)
| | - Lauma Jagare
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (V.R.); (M.B.); (L.J.); (L.P.); (D.B.)
| | - Līva Pelcmane
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (V.R.); (M.B.); (L.J.); (L.P.); (D.B.)
| | - Daniella Borisova
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (V.R.); (M.B.); (L.J.); (L.P.); (D.B.)
| | - Anne Thews
- Bruker BioSpin GmbH & Co., Rudolf-Plank-Straße 23, 76275 Ettlingen, Germany; (A.T.); (R.L.)
| | - Roland Leiminger
- Bruker BioSpin GmbH & Co., Rudolf-Plank-Straße 23, 76275 Ettlingen, Germany; (A.T.); (R.L.)
| | - Jānis Kloviņš
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (V.R.); (M.B.); (L.J.); (L.P.); (D.B.)
| |
Collapse
|