1
|
Xiao YP, Wu J, Chen PH, Lei S, Lin J, Zhou X, Huang P. Biocatalytic cascade reactions for management of diseases. Chem Soc Rev 2025. [PMID: 39936523 DOI: 10.1039/d3cs00410d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Biocatalytic cascade reactions, which evolve from the confinement of multiple enzymes within living cells, represent a promising strategy for disease management. Using tailor-made nanoplatforms, reactions induced by multiple enzymes and/or nanozymes can be precisely triggered at pathogenic sites. These promote further cascade reactions that generate therapeutic species prompting effective therapeutic outcomes with minimal side effects. Over the past few years, this approach has seen widespread applications in disease management. This review attempts to critically assess and summarize the recent advances in the use of biocatalytic cascade reactions for the management of diseases. Emphasis is placed on the design of cascade catalytic systems of high efficiency and selectivity and the implementation of specific cascade processes that respond to the endogenous substances produced in the pathological processes. The various types of biocatalytic cascade reactions are outlined according to the timeline of the catalytic steps through a series of reported examples. The challenges and outlook in the field are also discussed to encourage the further development of personalized treatments based on biocatalytic cascade reactions.
Collapse
Affiliation(s)
- Ya-Ping Xiao
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
- School of Life and Health Technology, Dongguan University of Technology, Dongguan, 523808, China
| | - Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Peng-Hang Chen
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Shan Lei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Wang S, Hübner R, Karring H, Batista VF, Wu C. A Supramolecular Approach to Engineering Living Cells with Enzymes for Adaptive and Recyclable Cascade Synthesis. Angew Chem Int Ed Engl 2025; 64:e202416556. [PMID: 39621003 DOI: 10.1002/anie.202416556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/10/2024]
Abstract
Biocatalytic transformation in nature is inherently dynamic, spontaneous, and adaptive, enabling complex chemical synthesis and metabolism. These processes often involve supramolecular recognition among cells, enzymes, and biomacromolecules, far surpassing the capabilities of isolated cells and enzymes used in industrial synthesis. Inspired by nature, here we design a supramolecular approach to equip living cells with these capacities, enabling recyclable, efficient cascade reactions. Our two-step "plug-and-play" methodology begins by coating Escherichia coli cells with guest-containing polymers (SupraBAC) via supramolecular charge interactions, followed by the introduction of β-cyclodextrin-functionalized host enzymes through host-guest chemistry, creating a robust cell-enzyme complex. This supramolecular coating not only protects cells from various stresses, such as UV radiation, heat, and organic solvents, but also facilitates the overexpression of intracellular enzymes and the attachment of extracellular enzymes within and on SupraBAC. This combination results in efficient multienzyme cascade synthesis, enabling two- and three-step reactions in one pot. Importantly, the multienzyme system can be recycled up to five times without significant loss of activity. Our findings introduce a versatile, adaptive supramolecular coating for whole-cell catalysts, offering a sustainable and efficient solution for complex synthesis in both chemistry and industrial biotechnology.
Collapse
Affiliation(s)
- Shan Wang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - René Hübner
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Henrik Karring
- Department of Green Technology, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Vasco F Batista
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| |
Collapse
|
3
|
Banner A, Webb J, Scrutton N. A parallel bioreactor strategy to rapidly determine growth-coupling relationships for bioproduction: a mevalonate case study. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:6. [PMID: 39825460 PMCID: PMC11742524 DOI: 10.1186/s13068-024-02599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/19/2024] [Indexed: 01/20/2025]
Abstract
BACKGROUND The climate crisis and depleting fossil fuel reserves have led to a drive for 'green' alternatives to the way we manufacture chemicals, and the formation of a bioeconomy that reduces our reliance on petrochemical-based feedstocks. Advances in Synthetic biology have provided the opportunity to engineer micro-organisms to produce compounds from renewable feedstocks, which could play a role in replacing traditional, petrochemical based, manufacturing routes. However, there are few examples of bio-manufactured products achieving commercialisation. This may be partially due to a disparity between academic and industrial focus, and a greater emphasis needs to be placed on economic feasibility at an earlier stage. Terpenoids are a class of compounds with diverse use across fuel, materials and pharmaceutical industries and can be manufactured biologically from the key intermediate mevalonate. RESULTS Here, we report on a method of utilising parallel bioreactors to rapidly map the growth-coupling relationship between the specific product formation rate, specific substrate utilisation rate and specific growth rate. Using mevalonate as an example product, a maximum product yield coefficient of 0.18 gp/gs was achieved at a growth rate ( μ ) of 0.34 h-1. However, this process also led to the formation of the toxic byproduct acetate, which can slow growth and cause problems during downstream processing. By using gene editing to knock out the ackA-pta operon and poxB from E. coli BW25113, we were able to achieve the same optimum production rate, without the formation of acetate. CONCLUSIONS We demonstrated the power of using parallel bioreactors to assess productivity and the growth-coupling relationship between growth rate and product yield coefficient of mevalonate production. Using genetic engineering, our resultant strain demonstrated rapid mevalonate formation without the unwanted byproduct acetate. Mevalonate production is quantified and reported in industrially relevant units, including key parameters like conversion efficiency that are often omitted in early-stage publications reporting only titre in g/L.
Collapse
Affiliation(s)
- Alec Banner
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Joseph Webb
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- Imperagen Ltd, Manchester Science Park, Manchester, M15 6SE, UK
| | - Nigel Scrutton
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
4
|
Kumar R, Tambrini SJ, Jiang G. NAD(P)-Dependent Glucose Dehydrogenases: Underestimated Multifunctional Biocatalysts. Chembiochem 2025; 26:e202400716. [PMID: 39531513 DOI: 10.1002/cbic.202400716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
The last decade has witnessed tremendous progress in the field of biocatalysis. One of the most frequently utilized enzymes in diverse biocatalytic applications is NAD(P)-dependent glucose dehydrogenases (GDHs). Traditionally, these enzymes are employed for their role in regenerating NAD(P)H in various enzymatic reactions utilizing glucose. However, recent studies have expanded the scope of GDHs beyond cofactor regeneration, highlighting their potential as biocatalysts in diverse chemical transformations. GDHs have demonstrated versatility in catalyzing key reactions in the synthesis of various drug molecules and intermediates, including ketone reduction to produce alcohols, imine reduction of C=N bonds to yield amines, reduction of aldehydes to alcohols, and dehydrogenation of cyclohexanol derivatives. This review highlights recent advancements in elucidating the multifunctional roles of NAD(P)-dependent glucose dehydrogenases (GDHs) in biocatalysis, with an emphasis on their growing applications and significant potential in small molecule synthesis.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Samantha J Tambrini
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Guangde Jiang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| |
Collapse
|
5
|
Jain A, Teshima M, Buryska T, Romeis D, Haslbeck M, Döring M, Sieber V, Stavrakis S, de Mello A. High-Throughput Absorbance-Activated Droplet Sorting for Engineering Aldehyde Dehydrogenases. Angew Chem Int Ed Engl 2024; 63:e202409610. [PMID: 39087463 PMCID: PMC11586695 DOI: 10.1002/anie.202409610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Recent decades have seen a dramatic increase in the commercial use of biocatalysts, transitioning from energy-intensive traditional chemistries to more sustainable methods. Current enzyme engineering techniques, such as directed evolution, require the generation and testing of large mutant libraries to identify optimized variants. Unfortunately, conventional screening methods are unable to screen such large libraries in a robust and timely manner. Droplet-based microfluidic systems have emerged as a powerful high-throughput tool for library screening at kilohertz rates. Unfortunately, almost all reported systems are based on fluorescence detection, restricting their use to a limited number of enzyme types that naturally convert fluorogenic substrates or require the use of surrogate substrates. To expand the range of enzymes amenable to evolution using droplet-based microfluidic systems, we present an absorbance-activated droplet sorter that allows droplet sorting at kilohertz rates without the need for optical monitoring of the microfluidic system. To demonstrate the utility of the sorter, we rapidly screen a 105-member aldehyde dehydrogenase library towards D-glyceraldehyde using a NADH mediated coupled assay that generates WST-1 formazan as the colorimetric product. We successfully identify a variant with a 51 % improvement in catalytic efficiency and a significant increase in overall activity across a broad substrate spectrum.
Collapse
Affiliation(s)
- Ankit Jain
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied BiosciencesETH ZürichVladimir Prelog Weg 18093ZürichSwitzerland
| | - Mariko Teshima
- Chemistry of Biogenic ResourcesTechnical University of Munich, Campus Straubing for Biotechnology and SustainabilitySchulgasse 1694315StraubingGermany
| | - Tomas Buryska
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied BiosciencesETH ZürichVladimir Prelog Weg 18093ZürichSwitzerland
| | - Dennis Romeis
- Chemistry of Biogenic ResourcesTechnical University of Munich, Campus Straubing for Biotechnology and SustainabilitySchulgasse 1694315StraubingGermany
| | - Magdalena Haslbeck
- Chemistry of Biogenic ResourcesTechnical University of Munich, Campus Straubing for Biotechnology and SustainabilitySchulgasse 1694315StraubingGermany
| | - Manuel Döring
- Chemistry of Biogenic ResourcesTechnical University of Munich, Campus Straubing for Biotechnology and SustainabilitySchulgasse 1694315StraubingGermany
| | - Volker Sieber
- Chemistry of Biogenic ResourcesTechnical University of Munich, Campus Straubing for Biotechnology and SustainabilitySchulgasse 1694315StraubingGermany
- Catalytic Research CenterTechnical University of MunichErnst-Otto-Fischer-Straße 185748GarchingGermany
- School of Chemistry and Molecular BiosciencesThe University of Queensland68 Copper RoadSt. Lucia4072, QueenslandAustralia
- SynBioFoundry@TUMTechnical University of MunichSchulgasse 2294315StraubingGermany
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied BiosciencesETH ZürichVladimir Prelog Weg 18093ZürichSwitzerland
| | - Andrew de Mello
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied BiosciencesETH ZürichVladimir Prelog Weg 18093ZürichSwitzerland
| |
Collapse
|
6
|
Bozkurt EU, Ørsted EC, Volke DC, Nikel PI. Accelerating enzyme discovery and engineering with high-throughput screening. Nat Prod Rep 2024. [PMID: 39403004 DOI: 10.1039/d4np00031e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Covering: up to August 2024Enzymes play an essential role in synthesizing value-added chemicals with high specificity and selectivity. Since enzymes utilize substrates derived from renewable resources, biocatalysis offers a pathway to an efficient bioeconomy with reduced environmental footprint. However, enzymes have evolved over millions of years to meet the needs of their host organisms, which often do not align with industrial requirements. As a result, enzymes frequently need to be tailored for specific industrial applications. Combining enzyme engineering with high-throughput screening has emerged as a key approach for developing novel biocatalysts, but several challenges are yet to be addressed. In this review, we explore emergent strategies and methods for isolating, creating, and characterizing enzymes optimized for bioproduction. We discuss fundamental approaches to discovering and generating enzyme variants and identifying those best suited for specific applications. Additionally, we cover techniques for creating libraries using automated systems and highlight innovative high-throughput screening methods that have been successfully employed to develop novel biocatalysts for natural product synthesis.
Collapse
Affiliation(s)
- Eray U Bozkurt
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Emil C Ørsted
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
7
|
Li ZL, Pei S, Chen Z, Huang TY, Wang XD, Shen L, Chen X, Wang QQ, Wang DX, Ao YF. Machine learning-assisted amidase-catalytic enantioselectivity prediction and rational design of variants for improving enantioselectivity. Nat Commun 2024; 15:8778. [PMID: 39389964 PMCID: PMC11467325 DOI: 10.1038/s41467-024-53048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Biocatalysis is an attractive approach for the synthesis of chiral pharmaceuticals and fine chemicals, but assessing and/or improving the enantioselectivity of biocatalyst towards target substrates is often time and resource intensive. Although machine learning has been used to reveal the underlying relationship between protein sequences and biocatalytic enantioselectivity, the establishment of substrate fitness space is usually disregarded by chemists and is still a challenge. Using 240 datasets collected in our previous works, we adopt chemistry and geometry descriptors and build random forest classification models for predicting the enantioselectivity of amidase towards new substrates. We further propose a heuristic strategy based on these models, by which the rational protein engineering can be efficiently performed to synthesize chiral compounds with higher ee values, and the optimized variant results in a 53-fold higher E-value comparing to the wild-type amidase. This data-driven methodology is expected to broaden the application of machine learning in biocatalysis research.
Collapse
Affiliation(s)
- Zi-Lin Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuxin Pei
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Ziying Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Teng-Yu Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Lin Shen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
- Yantai-Jingshi Institute of Material Genome Engineering, Yantai, China.
| | - Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
- Yantai-Jingshi Institute of Material Genome Engineering, Yantai, China.
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, China.
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Mou SB, Chen KY, Kunthic T, Xiang Z. Design and Evolution of an Artificial Friedel-Crafts Alkylation Enzyme Featuring an Organoboronic Acid Residue. J Am Chem Soc 2024; 146:26676-26686. [PMID: 39190546 DOI: 10.1021/jacs.4c03795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Creating artificial enzymes by the genetic incorporation of noncanonical amino acids with catalytic side chains would expand the enzyme chemistries that have not been discovered in nature. Here, we report the design of an artificial enzyme that uses p-boronophenylalanine as the catalytic residue. The artificial enzyme catalyzes Michael-type Friedel-Crafts alkylation through covalent activation. The designer enzyme was further engineered to afford high yields with excellent enantioselectivities. We next developed a practical method for preparative-scale reactions by whole-cell catalysis. This enzymatic C-C bond formation reaction was combined with palladium-catalyzed dearomative arylation to achieve the efficient synthesis of spiroindolenine compounds.
Collapse
Affiliation(s)
- Shu-Bin Mou
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Kai-Yue Chen
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Thittaya Kunthic
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518132, P. R. China
| |
Collapse
|
9
|
Li F, Xu Y, Liu Y, Kan W, Piao Y, Han W, Li Z, Wang Z, Wang L. Switching engineered Vitreoscilla hemoglobin into carbene transferase for enantioselective SH insertion. Int J Biol Macromol 2024; 278:134756. [PMID: 39147340 DOI: 10.1016/j.ijbiomac.2024.134756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
An attractive strategy for efficiently forming CS bonds is through the use of diazo compounds SH insertion. However, achieving good enantioselective control in this reaction within a biocatalytic system has proven to be challenging. This study aimed to enhance the activity and enantioselectivity of to enable asymmetric SH insertion. The researchers conducted site-saturation mutagenesis (SSM) on 5 amino acid residues located around the iron carbenoid intermediate within a distance of 5 Å, followed by iterative saturation mutagenesis (ISM) of beneficial mutants. Through this process, the beneficial variant VHbSH(P54R/V98W) was identified through screening with 4-(methylmercapto) phenol as the substrate. This variant exhibited up to 4-fold higher catalytic efficiency and 6-fold higher enantioselectivity compared to the wild-type VHb. Computational studies were also conducted to elucidate the detailed mechanism of this asymmetric SH insertion, explaining how active-site residues accelerate this transformation and provide stereocontrol.
Collapse
Affiliation(s)
- Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, PR China
| | - Yaning Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, PR China
| | - Yuyang Liu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, PR China
| | - Wenbo Kan
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, PR China
| | - Yuming Piao
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, PR China
| | - Weiwei Han
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, PR China
| | - Zhengqiang Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, PR China
| | - Zhi Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, PR China.
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, PR China.
| |
Collapse
|
10
|
Niu W, Guo J. Cellular Site-Specific Incorporation of Noncanonical Amino Acids in Synthetic Biology. Chem Rev 2024; 124:10577-10617. [PMID: 39207844 PMCID: PMC11470805 DOI: 10.1021/acs.chemrev.3c00938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Over the past two decades, genetic code expansion (GCE)-enabled methods for incorporating noncanonical amino acids (ncAAs) into proteins have significantly advanced the field of synthetic biology while also reaping substantial benefits from it. On one hand, they provide synthetic biologists with a powerful toolkit to enhance and diversify biological designs beyond natural constraints. Conversely, synthetic biology has not only propelled the development of ncAA incorporation through sophisticated tools and innovative strategies but also broadened its potential applications across various fields. This Review delves into the methodological advancements and primary applications of site-specific cellular incorporation of ncAAs in synthetic biology. The topics encompass expanding the genetic code through noncanonical codon addition, creating semiautonomous and autonomous organisms, designing regulatory elements, and manipulating and extending peptide natural product biosynthetic pathways. The Review concludes by examining the ongoing challenges and future prospects of GCE-enabled ncAA incorporation in synthetic biology and highlighting opportunities for further advancements in this rapidly evolving field.
Collapse
Affiliation(s)
- Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| |
Collapse
|
11
|
Sheldon RA. Waste Valorization in a Sustainable Bio-Based Economy: The Road to Carbon Neutrality. Chemistry 2024; 30:e202402207. [PMID: 39240026 DOI: 10.1002/chem.202402207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 09/07/2024]
Abstract
The development of sustainable chemistry underlying the quest to minimize and/or valorize waste in the carbon-neutral manufacture of chemicals is followed over the last four to five decades. Both chemo- and biocatalysis have played an indispensable role in this odyssey. in particular developments in protein engineering, metagenomics and bioinformatics over the preceding three decades have played a crucial supporting role in facilitating the widespread application of both whole cell and cell-free biocatalysis. The pressing need, driven by climate change mitigation, for a drastic reduction in greenhouse gas (GHG) emissions, has precipitated an energy transition based on decarbonization of energy and defossilization of organic chemicals production. The latter involves waste biomass and/or waste CO2 as the feedstock and green electricity generated using solar, wind, hydroelectric or nuclear energy. The use of waste polysaccharides as feedstocks will underpin a renaissance in carbohydrate chemistry with pentoses and hexoses as base chemicals and bio-based solvents and polymers as environmentally friendly downstream products. The widespread availability of inexpensive electricity and solar energy has led to increasing attention for electro(bio)catalysis and photo(bio)catalysis which in turn is leading to myriad innovations in these fields.
Collapse
Affiliation(s)
- Roger A Sheldon
- Department of Biotechnology, Delft University of Technology, Netherlands
- Department of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
12
|
Qin Z, Yuan B, Qu G, Sun Z. Rational enzyme design by reducing the number of hotspots and library size. Chem Commun (Camb) 2024; 60:10451-10463. [PMID: 39210728 DOI: 10.1039/d4cc01394h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Biocatalysts that are eco-friendly, sustainable, and highly specific have great potential for applications in the production of fine chemicals, food, detergents, biofuels, pharmaceuticals, and more. However, due to factors such as low activity, narrow substrate scope, poor thermostability, or incorrect selectivity, most natural enzymes cannot be directly used for large-scale production of the desired products. To overcome these obstacles, protein engineering methods have been developed over decades and have become powerful and versatile tools for adapting enzymes with improved catalytic properties or new functions. The vastness of the protein sequence space makes screening a bottleneck in obtaining advantageous mutated enzymes in traditional directed evolution. In the realm of mathematics, there are two major constraints in the protein sequence space: (1) the number of residue substitutions (M); and (2) the number of codons encoding amino acids as building blocks (N). This feature review highlights protein engineering strategies to reduce screening efforts from two dimensions by reducing the numbers M and N, and also discusses representative seminal studies of rationally engineered natural enzymes to deliver new catalytic functions.
Collapse
Affiliation(s)
- Zongmin Qin
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Bo Yuan
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| | - Ge Qu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| | - Zhoutong Sun
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| |
Collapse
|
13
|
Hollmann F, Sanchis J, Reetz MT. Learning from Protein Engineering by Deconvolution of Multi-Mutational Variants. Angew Chem Int Ed Engl 2024; 63:e202404880. [PMID: 38884594 DOI: 10.1002/anie.202404880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
This review analyzes a development in biochemistry, enzymology and biotechnology that originally came as a surprise. Following the establishment of directed evolution of stereoselective enzymes in organic chemistry, the concept of partial or complete deconvolution of selective multi-mutational variants was introduced. Early deconvolution experiments of stereoselective variants led to the finding that mutations can interact cooperatively or antagonistically with one another, not just additively. During the past decade, this phenomenon was shown to be general. In some studies, molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) computations were performed in order to shed light on the origin of non-additivity at all stages of an evolutionary upward climb. Data of complete deconvolution can be used to construct unique multi-dimensional rugged fitness pathway landscapes, which provide mechanistic insights different from traditional fitness landscapes. Along a related line, biochemists have long tested the result of introducing two point mutations in an enzyme for mechanistic reasons, followed by a comparison of the respective double mutant in so-called double mutant cycles, which originally showed only additive effects, but more recently also uncovered cooperative and antagonistic non-additive effects. We conclude with suggestions for future work, and call for a unified overall picture of non-additivity and epistasis.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, Netherlands
| | - Joaquin Sanchis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Manfred T Reetz
- Max-Plank-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45481, Mülheim, Germany
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
14
|
Trevino RE, Fuller JT, Reid DJ, Laureanti JA, Ginovska B, Linehan JC, Shaw WJ. Understanding the role of negative charge in the scaffold of an artificial enzyme for CO 2 hydrogenation on catalysis. J Biol Inorg Chem 2024; 29:625-638. [PMID: 39207604 DOI: 10.1007/s00775-024-02070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
We have approached the construction of an artificial enzyme by employing a robust protein scaffold, lactococcal multidrug resistance regulator, LmrR, providing a structured secondary and outer coordination spheres around a molecular rhodium complex, [RhI(PEt2NglyPEt2)2]-. Previously, we demonstrated a 2-3 fold increase in activity for one Rh-LmrR construct by introducing positive charge in the secondary coordination sphere. In this study, a series of variants was made through site-directed mutagenesis where the negative charge is located in the secondary sphere or outer coordination sphere, with additional variants made with increasingly negative charge in the outer coordination sphere while keeping a positive charge in the secondary sphere. Placing a negative charge in the secondary or outer coordination sphere demonstrates decreased activity by a factor of two compared to the wild-type Rh-LmrR. Interestingly, addition of positive charge in the secondary sphere, with the negatively charged outer coordination sphere restores activity. Vibrational and NMR spectroscopy suggest minimal changes to the electronic density at the rhodium center, regardless of inclusion of a negative or positive charge in the secondary sphere, suggesting another mechanism is impacting catalytic activity, explored in the discussion.
Collapse
Affiliation(s)
- Regina E Trevino
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN J7-10, PO Box 999, Richland, WA, 99352, USA
| | - Jack T Fuller
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN J7-10, PO Box 999, Richland, WA, 99352, USA
| | - Deseree J Reid
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN J7-10, PO Box 999, Richland, WA, 99352, USA
| | - Joseph A Laureanti
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN J7-10, PO Box 999, Richland, WA, 99352, USA
- Admiral Instruments, Tempe, AZ, 85281, USA
| | - Bojana Ginovska
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN J7-10, PO Box 999, Richland, WA, 99352, USA
| | - John C Linehan
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN J7-10, PO Box 999, Richland, WA, 99352, USA
| | - Wendy J Shaw
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN J7-10, PO Box 999, Richland, WA, 99352, USA.
| |
Collapse
|
15
|
Zhu Z, Hu Q, Fu Y, Tong Y, Zhou Z. Design and Evolution of an Enzyme for the Asymmetric Michael Addition of Cyclic Ketones to Nitroolefins by Enamine Catalysis. Angew Chem Int Ed Engl 2024; 63:e202404312. [PMID: 38783596 DOI: 10.1002/anie.202404312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/01/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Consistent introduction of novel enzymes is required for developing efficient biocatalysts for challenging biotransformations. Absorbing catalytic modes from organocatalysis may be fruitful for designing new-to-nature enzymes with novel functions. Herein we report a newly designed artificial enzyme harboring a catalytic pyrrolidine residue that catalyzes the asymmetric Michael addition of cyclic ketones to nitroolefins through enamine activation with high efficiency. Diverse chiral γ-nitro cyclic ketones with two stereocenters were efficiently prepared with excellent stereoselectivity (up to 97 % e.e., >20 : 1 d.r.) and good yield (up to 86 %). This work provides an efficient biocatalytic strategy for cyclic ketone functionalization, and highlights the usefulness of artificial enzymes for extending biocatalysis to further non-natural reactions.
Collapse
Affiliation(s)
- Zhixi Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Qinru Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yi Fu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yingjia Tong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhi Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
16
|
Zeng T, Jin Z, Zheng S, Yu T, Wu R. Developing BioNavi for Hybrid Retrosynthesis Planning. JACS AU 2024; 4:2492-2502. [PMID: 39055138 PMCID: PMC11267531 DOI: 10.1021/jacsau.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
Illuminating synthetic pathways is essential for producing valuable chemicals, such as bioactive molecules. Chemical and biological syntheses are crucial, and their integration often leads to more efficient and sustainable pathways. Despite the rapid development of retrosynthesis models, few of them consider both chemical and biological syntheses, hindering the pathway design for high-value chemicals. Here, we propose BioNavi by innovating multitask learning and reaction templates into the deep learning-driven model to design hybrid synthesis pathways in a more interpretable manner. BioNavi outperforms existing approaches on different data sets, achieving a 75% hit rate in replicating reported biosynthetic pathways and displaying superior ability in designing hybrid synthesis pathways. Additional case studies further illustrate the potential application of BioNavi in a de novo pathway design. The enhanced web server (http://biopathnavi.qmclab.com/bionavi/) simplifies input operations and implements step-by-step exploration according to user experience. We show that BioNavi is a handy navigator for designing synthetic pathways for various chemicals.
Collapse
Affiliation(s)
- Tao Zeng
- School
of Pharmaceutical Sciences, Sun Yat-sen
University, Guangzhou 510006, P. R. China
| | - Zhehao Jin
- Center
for Synthetic Biochemistry, CAS Key Laboratory of Quantitative Engineering
Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
(CAS), Shenzhen 518055, P. R. China
| | - Shuangjia Zheng
- Global
Institute of Future Technology, Shanghai
Jiao Tong University, Shanghai 200240, P. R. China
| | - Tao Yu
- Center
for Synthetic Biochemistry, CAS Key Laboratory of Quantitative Engineering
Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
(CAS), Shenzhen 518055, P. R. China
| | - Ruibo Wu
- School
of Pharmaceutical Sciences, Sun Yat-sen
University, Guangzhou 510006, P. R. China
| |
Collapse
|
17
|
Yu J, Zhang Q, Zhao B, Wang T, Zheng Y, Wang B, Zhang Y, Huang X. Repurposing Visible-Light-Excited Ene-Reductases for Diastereo- and Enantioselective Lactones Synthesis. Angew Chem Int Ed Engl 2024; 63:e202402673. [PMID: 38656534 DOI: 10.1002/anie.202402673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Repurposing enzymes to catalyze non-natural asymmetric transformations that are difficult to achieve using traditional chemical methods is of significant importance. Although radical C-O bond formation has emerged as a powerful approach for constructing oxygen-containing compounds, controlling the stereochemistry poses a great challenge. Here we present the development of a dual bio-/photo-catalytic system comprising an ene-reductase and an organic dye for achieving stereoselective lactonizations. By integrating directed evolution and photoinduced single electron oxidation, we repurposed engineered ene-reductases to steer non-natural radical C-O formations (one C-O bond for hydrolactonizations and lactonization-alkylations while two C-O bonds for lactonization-oxygenations). This dual catalysis gave a new approach to a diverse array of enantioenhanced 5- and 6-membered lactones with vicinal stereocenters, part of which bears a quaternary stereocenter (up to 99 % enantiomeric excess, up to 12.9 : 1 diastereomeric ratio). Detailed mechanistic studies, including computational simulations, uncovered the synergistic effect of the enzyme and the externally added organophotoredox catalyst Rh6G.
Collapse
Affiliation(s)
- Jinhai Yu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Qiaoyu Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Beibei Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Tianhang Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037, Nanjing, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Yan Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Xiaoqiang Huang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| |
Collapse
|
18
|
Jain S, Ospina F, Hammer SC. A New Age of Biocatalysis Enabled by Generic Activation Modes. JACS AU 2024; 4:2068-2080. [PMID: 38938808 PMCID: PMC11200230 DOI: 10.1021/jacsau.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 06/29/2024]
Abstract
Biocatalysis is currently undergoing a profound transformation. The field moves from relying on nature's chemical logic to a discipline that exploits generic activation modes, allowing for novel biocatalytic reactions and, in many instances, entirely new chemistry. Generic activation modes enable a wide range of reaction types and played a pivotal role in advancing the fields of organo- and photocatalysis. This perspective aims to summarize the principal activation modes harnessed in enzymes to develop new biocatalysts. Although extensively researched in the past, the highlighted activation modes, when applied within enzyme active sites, facilitate chemical transformations that have largely eluded efficient and selective catalysis. This advance is attributed to multiple tunable interactions in the substrate binding pocket that precisely control competing reaction pathways and transition states. We will highlight cases of new synthetic methodologies achieved by engineered enzymes and will provide insights into potential future developments in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | - Stephan C. Hammer
- Research Group for Organic Chemistry
and Biocatalysis, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
19
|
Nieto-Domínguez M, Sako A, Enemark-Rasmussen K, Gotfredsen CH, Rago D, Nikel PI. Enzymatic synthesis of mono- and trifluorinated alanine enantiomers expands the scope of fluorine biocatalysis. Commun Chem 2024; 7:104. [PMID: 38724655 PMCID: PMC11082193 DOI: 10.1038/s42004-024-01188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Fluorinated amino acids serve as an entry point for establishing new-to-Nature chemistries in biological systems, and novel methods are needed for the selective synthesis of these building blocks. In this study, we focused on the enzymatic synthesis of fluorinated alanine enantiomers to expand fluorine biocatalysis. The alanine dehydrogenase from Vibrio proteolyticus and the diaminopimelate dehydrogenase from Symbiobacterium thermophilum were selected for in vitro production of (R)-3-fluoroalanine and (S)-3-fluoroalanine, respectively, using 3-fluoropyruvate as the substrate. Additionally, we discovered that an alanine racemase from Streptomyces lavendulae, originally selected for setting an alternative enzymatic cascade leading to the production of these non-canonical amino acids, had an unprecedented catalytic efficiency in β-elimination of fluorine from the monosubstituted fluoroalanine. The in vitro enzymatic cascade based on the dehydrogenases of V. proteolyticus and S. thermophilum included a cofactor recycling system, whereby a formate dehydrogenase from Pseudomonas sp. 101 (either native or engineered) coupled formate oxidation to NAD(P)H formation. Under these conditions, the reaction yields for (R)-3-fluoroalanine and (S)-3-fluoroalanine reached >85% on the fluorinated substrate and proceeded with complete enantiomeric excess. The selected dehydrogenases also catalyzed the conversion of trifluoropyruvate into trifluorinated alanine as a first-case example of fluorine biocatalysis with amino acids carrying a trifluoromethyl group.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Aboubakar Sako
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | - Daniela Rago
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
20
|
Farkas E, Sátorhelyi P, Szakács Z, Dékány M, Vaskó D, Hornyánszky G, Poppe L, Éles J. Transaminase-catalysis to produce trans-4-substituted cyclohexane-1-amines including a key intermediate towards cariprazine. Commun Chem 2024; 7:86. [PMID: 38637664 PMCID: PMC11026398 DOI: 10.1038/s42004-024-01148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
Cariprazine-the only single antipsychotic drug in the market which can handle all symptoms of bipolar I disorder-involves trans-4-substituted cyclohexane-1-amine as a key structural element. In this work, production of trans-4-substituted cyclohexane-1-amines was investigated applying transaminases either in diastereotope selective amination starting from the corresponding ketone or in diastereomer selective deamination of their diasteromeric mixtures. Transaminases were identified enabling the conversion of the cis-diastereomer of four selected cis/trans-amines with different 4-substituents to the corresponding ketones. In the continuous-flow experiments aiming the cis diastereomer conversion to ketone, highly diastereopure trans-amine could be produced (de > 99%). The yield of pure trans-isomers exceeding their original amount in the starting mixture could be explained by dynamic isomerization through ketone intermediates. The single transaminase-catalyzed process-exploiting the cis-diastereomer selectivity of the deamination and thermodynamic control favoring the trans-amines due to reversibility of the steps-allows enhancement of the productivity of industrial cariprazine synthesis.
Collapse
Affiliation(s)
- Emese Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary.
- Gedeon Richter Plc., PO Box 27, 1475, Budapest, Hungary.
- Gedeon Richter Plc., PO Box 27, 1475, Budapest, Hungary.
| | - Péter Sátorhelyi
- Fermentia Microbiological Ltd., Berlini út 47-49, 1405, Budapest, Hungary
| | | | - Miklós Dékány
- Gedeon Richter Plc., PO Box 27, 1475, Budapest, Hungary
| | - Dorottya Vaskó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Gábor Hornyánszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary.
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University of Cluj-Napoca, Arany János str. 11., 400028, Cluj-Napoca, Romania.
| | - János Éles
- Gedeon Richter Plc., PO Box 27, 1475, Budapest, Hungary.
| |
Collapse
|
21
|
Zhao Y, Chen K, Yang H, Wang Y, Liao X. Semirational Design Based on Consensus Sequences to Balance the Enzyme Activity-Stability Trade-Off. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6454-6462. [PMID: 38477968 DOI: 10.1021/acs.jafc.3c08620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
In this study, the phenomenon of the stability-activity trade-off, which is increasingly recognized in enzyme engineering, was explored. Typically, enhanced stability in enzymes correlates with diminished activity. Utilizing Rosa roxburghii copper-zinc superoxide dismutase (RrCuZnSOD) as a model, single-site mutations were introduced based on a semirational design derived from consensus sequences. The initial set of mutants was selected based on activity, followed by combinatorial mutation. This approach yielded two double-site mutants, D25/A115T (18,688 ± 206 U/mg) and A115T/S135P (18,095 ± 1556 U/mg), exhibiting superior enzymatic properties due to additive and synergistic effects. These mutants demonstrated increased half-lives (T1/2) at 80 °C by 1.2- and 1.6-fold, respectively, and their melting temperatures (Tm) rose by 3.4 and 2.5 °C, respectively, without any loss in activity relative to the wild type. Via an integration of structural analysis and molecular dynamics simulations, we elucidated the underlying mechanism facilitating the concurrent enhancement of both thermostability and enzymatic activity.
Collapse
Affiliation(s)
- Yang Zhao
- National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Sichuan Advanced Agricultural and Industrial Institute, China Agricultural University, Chengdu 611400, China
| | - Kun Chen
- National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haixia Yang
- National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongtao Wang
- National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaojun Liao
- National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
22
|
Shi T, Sun X, Yuan Q, Wang J, Shen X. Exploring the role of flavin-dependent monooxygenases in the biosynthesis of aromatic compounds. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:46. [PMID: 38520003 PMCID: PMC10958861 DOI: 10.1186/s13068-024-02490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Hydroxylated aromatic compounds exhibit exceptional biological activities. In the biosynthesis of these compounds, three types of hydroxylases are commonly employed: cytochrome P450 (CYP450), pterin-dependent monooxygenase (PDM), and flavin-dependent monooxygenase (FDM). Among these, FDM is a preferred choice due to its small molecular weight, stable expression in both prokaryotic and eukaryotic fermentation systems, and a relatively high concentration of necessary cofactors. However, the catalytic efficiency of many FDMs falls short of meeting the demands of large-scale production. Additionally, challenges arise from the limited availability of cofactors and compatibility issues among enzyme components. Recently, significant progress has been achieved in improving its catalytic efficiency, but have not yet detailed and informative viewed so far. Therefore, this review emphasizes the advancements in FDMs for the biosynthesis of hydroxylated aromatic compounds and presents a summary of three strategies aimed at enhancing their catalytic efficiency: (a) Developing efficient enzyme mutants through protein engineering; (b) enhancing the supply and rapid circulation of critical cofactors; (c) facilitating cofactors delivery for enhancing FDMs catalytic efficiency. Furthermore, the current challenges and further perspectives on improving catalytic efficiency of FDMs are also discussed.
Collapse
Affiliation(s)
- Tong Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
23
|
Yin HN, Wang PC, Liu Z. Recent advances in biocatalytic C-N bond-forming reactions. Bioorg Chem 2024; 144:107108. [PMID: 38244379 DOI: 10.1016/j.bioorg.2024.107108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Molecules containing C-N bonds are of paramount importance in a diverse array of organic-based materials, natural products, pharmaceutical compounds, and agricultural chemicals. Biocatalytic C-N bond-forming reactions represent powerful strategies for producing these valuable targets, and their significance in the field of synthetic chemistry has steadily increased over the past decade. In this review, we provide a concise overview of recent advancements in the development of C-N bond-forming enzymes, with a particular emphasis on the inherent chemistry involved in these enzymatic processes. Overall, these enzymatic systems have proven their potential in addressing long-standing challenges in traditional small-molecule catalysis.
Collapse
Affiliation(s)
- Hong-Ning Yin
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Peng-Cheng Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhen Liu
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
24
|
Parida D, Katare K, Ganguly A, Chakraborty D, Konar O, Nogueira R, Bala K. Molecular docking and metagenomics assisted mitigation of microplastic pollution. CHEMOSPHERE 2024; 351:141271. [PMID: 38262490 DOI: 10.1016/j.chemosphere.2024.141271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Microplastics, tiny, flimsy, and direct progenitors of principal and subsidiary plastics, cause environmental degradation in aquatic and terrestrial entities. Contamination concerns include irrevocable impacts, potential cytotoxicity, and negative health effects on mortals. The detection, recovery, and degradation strategies of these pollutants in various biota and ecosystems, as well as their impact on plants, animals, and humans, have been a topic of significant interest. But the natural environment is infested with several types of plastics, all having different chemical makeup, structure, shape, and origin. Plastic trash acts as a substrate for microbial growth, creating biofilms on the plastisphere surface. This colonizing microbial diversity can be glimpsed with meta-genomics, a culture-independent approach. Owing to its comprehensive description of microbial communities, genealogical evidence on unconventional biocatalysts or enzymes, genomic correlations, evolutionary profile, and function, it is being touted as one of the promising tools in identifying novel enzymes for the degradation of polymers. Additionally, computational tools such as molecular docking can predict the binding of these novel enzymes to the polymer substrate, which can be validated through in vitro conditions for its environmentally feasible applications. This review mainly deals with the exploration of metagenomics along with computational tools to provide a clearer perspective into the microbial potential in the biodegradation of microplastics. The computational tools due to their polymathic nature will be quintessential in identifying the enzyme structure, binding affinities of the prospective enzymes to the substrates, and foretelling of degradation pathways involved which can be quite instrumental in the furtherance of the plastic degradation studies.
Collapse
Affiliation(s)
- Dinesh Parida
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| | - Konica Katare
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| | - Atmaadeep Ganguly
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, West Bengal State University, Kolkata, 700118, India.
| | - Disha Chakraborty
- Department of Botany, Shri Shikshayatan College, University of Calcutta, Lord Sinha Road, Kolkata, 700071, India.
| | - Oisi Konar
- Department of Botany, Shri Shikshayatan College, University of Calcutta, Lord Sinha Road, Kolkata, 700071, India.
| | - Regina Nogueira
- Institute of Sanitary Engineering and Waste Management, Leibniz Universität, Hannover, Germany.
| | - Kiran Bala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| |
Collapse
|
25
|
Yang J, Li FZ, Arnold FH. Opportunities and Challenges for Machine Learning-Assisted Enzyme Engineering. ACS CENTRAL SCIENCE 2024; 10:226-241. [PMID: 38435522 PMCID: PMC10906252 DOI: 10.1021/acscentsci.3c01275] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 03/05/2024]
Abstract
Enzymes can be engineered at the level of their amino acid sequences to optimize key properties such as expression, stability, substrate range, and catalytic efficiency-or even to unlock new catalytic activities not found in nature. Because the search space of possible proteins is vast, enzyme engineering usually involves discovering an enzyme starting point that has some level of the desired activity followed by directed evolution to improve its "fitness" for a desired application. Recently, machine learning (ML) has emerged as a powerful tool to complement this empirical process. ML models can contribute to (1) starting point discovery by functional annotation of known protein sequences or generating novel protein sequences with desired functions and (2) navigating protein fitness landscapes for fitness optimization by learning mappings between protein sequences and their associated fitness values. In this Outlook, we explain how ML complements enzyme engineering and discuss its future potential to unlock improved engineering outcomes.
Collapse
Affiliation(s)
- Jason Yang
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Francesca-Zhoufan Li
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
26
|
Ao YF, Dörr M, Menke MJ, Born S, Heuson E, Bornscheuer UT. Data-Driven Protein Engineering for Improving Catalytic Activity and Selectivity. Chembiochem 2024; 25:e202300754. [PMID: 38029350 DOI: 10.1002/cbic.202300754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Protein engineering is essential for altering the substrate scope, catalytic activity and selectivity of enzymes for applications in biocatalysis. However, traditional approaches, such as directed evolution and rational design, encounter the challenge in dealing with the experimental screening process of a large protein mutation space. Machine learning methods allow the approximation of protein fitness landscapes and the identification of catalytic patterns using limited experimental data, thus providing a new avenue to guide protein engineering campaigns. In this concept article, we review machine learning models that have been developed to assess enzyme-substrate-catalysis performance relationships aiming to improve enzymes through data-driven protein engineering. Furthermore, we prospect the future development of this field to provide additional strategies and tools for achieving desired activities and selectivities.
Collapse
Affiliation(s)
- Yu-Fei Ao
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
- University of Chinese Academy of Sciences, Yuquan Road 19(A), Beijing, 100049, China
| | - Mark Dörr
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Marian J Menke
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Stefan Born
- Technische Universität Berlin, Chair of Bioprocess Engineering, Ackerstraße 76, 13355, Berlin, Germany
| | - Egon Heuson
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 UCCS, Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
27
|
Hooe SL, Smith AD, Dean SN, Breger JC, Ellis GA, Medintz IL. Multienzymatic Cascades and Nanomaterial Scaffolding-A Potential Way Forward for the Efficient Biosynthesis of Novel Chemical Products. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309963. [PMID: 37944537 DOI: 10.1002/adma.202309963] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Synthetic biology is touted as the next industrial revolution as it promises access to greener biocatalytic syntheses to replace many industrial organic chemistries. Here, it is shown to what synthetic biology can offer in the form of multienzyme cascades for the synthesis of the most basic of new materials-chemicals, including especially designer chemical products and their analogs. Since achieving this is predicated on dramatically expanding the chemical space that enzymes access, such chemistry will probably be undertaken in cell-free or minimalist formats to overcome the inherent toxicity of non-natural substrates to living cells. Laying out relevant aspects that need to be considered in the design of multi-enzymatic cascades for these purposes is begun. Representative multienzymatic cascades are critically reviewed, which have been specifically developed for the synthesis of compounds that have either been made only by traditional organic synthesis along with those cascades utilized for novel compound syntheses. Lastly, an overview of strategies that look toward exploiting bio/nanomaterials for accessing channeling and other nanoscale materials phenomena in vitro to direct novel enzymatic biosynthesis and improve catalytic efficiency is provided. Finally, a perspective on what is needed for this field to develop in the short and long term is presented.
Collapse
Affiliation(s)
- Shelby L Hooe
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
- National Research Council, Washington, DC, 20001, USA
| | - Aaron D Smith
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Scott N Dean
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Joyce C Breger
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Gregory A Ellis
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| |
Collapse
|
28
|
Xu Y, Zhao N, Li F, Wang C, Xie H, Wu J, Cheng L, Wang L, Wang Z. Application of Vitreoscilla Hemoglobin as a Green and Efficient Biocatalyst for the Synthesis of Benzoxazoles in Water. Chembiochem 2024; 25:e202300609. [PMID: 37877236 DOI: 10.1002/cbic.202300609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
We report an efficient and eco-friendly method for the Vitreoscilla hemoglobin (VHb)-catalyzed synthesis of benzoxazoles in water at room temperature. tert-Butyl hydroperoxide and 2,2,6,6-tetramethyl-1-piperidinyloxy were used as oxidant and radical scavenger, respectively. A total of 27 functionally diverse benzoxazoles were prepared in moderate to high yields (62 %-94 %) by the annulation reaction of phenols with amines in the presence of VHb in 1 h. Thus, this method is highly viable for practical applications. This work broadens the application of hemoglobin to organic synthesis.
Collapse
Affiliation(s)
- Yaning Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Nan Zhao
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130023, P. R. China
| | - Hanqing Xie
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Junhao Wu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Lei Cheng
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Zhi Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| |
Collapse
|
29
|
Batool I, Imran M, Anwar A, Khan FA, Mohammed AE, Shami A, Iqbal H. Enzyme-triggered approach to reduce water bodies' contamination using peroxidase-immobilized ZnO/SnO 2/alginate nanocomposite. Int J Biol Macromol 2024; 254:127900. [PMID: 37931863 DOI: 10.1016/j.ijbiomac.2023.127900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Enzyme immobilization on solid support offers advantages over free enzymes by overcoming characteristic limitations. To synthesize new stable and hyperactive nano-biocatalysts (co-precipitation method), ginger peroxidase (GP) was surface immobilized (adsorption) on ZnO/SnO2 and ZnO/SnO2/SA nanocomposite with immobilization efficacy of 94 % and 99 %, respectively. Thereafter, catalytic and biochemical characteristics of free and immobilized GP were investigated by deploying various techniques, i.e., FTIR, PXRD, SEM, and PL. Diffraction peaks emerged at 2θ values of 26°, 33°, 37°, 51°, 31°, 34°, 36°, 56°, indicating the formation of SnO2 and ZnO. The OH stretching of the H2O molecules was attributed to broad peaks between 3200 and 3500 cm-1, whereas ZnO/SnO2 spikes occurred in the 1626-1637 cm-1 range. SnO stretching mode and ZnO terminal vibrational patterns have been verified at corresponding wavelengths of 625 cm-1 and 560 cm-1. Enzyme entrapment onto substrate was verified via interactions between GP and ZnO/SnO2/SA as corroborated by signals beneath 1100 cm-1. GP-immobilized fractions were optimally active at pH 5, 50 °C, and retained maximum activity after storage of 4 weeks at -4 °C. Kinetic parameters were determined by using a Lineweaver-Burk plot and Vmax for free GP, ZnO/SnO2/GP and ZnO/SnO2/SA/GP with guaiacol as a substrate, were found to be 322.58, 49.01 and 11.45 (μM/min) respectively. A decrease in values of Vmax and KM indicates strong adsorption of peroxidase on support and maximum affinity between nano support and enzyme, respectively. For environmental remediation, free ginger peroxidase (GP), ZnO/SnO2/GP and ZnO/SnO2/SA/GP fractions effectively eradicated highly intricate dye. Multiple scavengers had a significant impact on the depletion of the dye. In conclusion, ZnO/SnO2 and ZnO/SnO2/SA nanostructures comprise an ecologically acceptable and intriguing carrier for enzyme immobilization.
Collapse
Affiliation(s)
- Iqra Batool
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Imran
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Ayesha Anwar
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Farhan Ahmed Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hafiz Iqbal
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| |
Collapse
|
30
|
Capone M, Dell’Orletta G, Nicholls BT, Scholes GD, Hyster TK, Aschi M, Daidone I. Evidence of a Distinctive Enantioselective Binding Mode for the Photoinduced Radical Cyclization of α-Chloroamides in Ene-Reductases. ACS Catal 2023; 13:15310-15321. [PMID: 38058601 PMCID: PMC10696551 DOI: 10.1021/acscatal.3c03934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 12/08/2023]
Abstract
We demonstrate here through molecular simulations and mutational studies the origin of the enantioselectivity in the photoinduced radical cyclization of α-chloroacetamides catalyzed by ene-reductases, in particular the Gluconobacter oxidans ene-reductase and the Old Yellow Enzyme 1, which show opposite enantioselectivity. Our results reveal that neither the π-facial selectivity model nor a protein-induced selective stabilization of the transition states is able to explain the enantioselectivity of the radical cyclization in the studied flavoenzymes. We propose a new enantioinduction scenario according to which enantioselectivity is indeed controlled by transition-state stability; however, the relative stability of the prochiral transition states is not determined by direct interaction with the protein but is rather dependent on an inherent degree of freedom within the substrate itself. This intrinsic degree of freedom, distinct from the traditional π-facial exposure mode, can be controlled by the substrate conformational selection upon binding to the enzyme.
Collapse
Affiliation(s)
- Matteo Capone
- Department
of Physical and Chemical Sciences, University
of L’Aquila, via
Vetoio (Coppito 1), L’Aquila 67010, Italy
| | - Gianluca Dell’Orletta
- Department
of Physical and Chemical Sciences, University
of L’Aquila, via
Vetoio (Coppito 1), L’Aquila 67010, Italy
| | - Bryce T. Nicholls
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Gregory D. Scholes
- Department
of Chemistry, Frick Laboratory, Princeton
University, Princeton, New Jersey 08544, United States
| | - Todd K. Hyster
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Massimiliano Aschi
- Department
of Physical and Chemical Sciences, University
of L’Aquila, via
Vetoio (Coppito 1), L’Aquila 67010, Italy
| | - Isabella Daidone
- Department
of Physical and Chemical Sciences, University
of L’Aquila, via
Vetoio (Coppito 1), L’Aquila 67010, Italy
| |
Collapse
|
31
|
Fanourakis A, Phipps RJ. Catalytic, asymmetric carbon-nitrogen bond formation using metal nitrenoids: from metal-ligand complexes via metalloporphyrins to enzymes. Chem Sci 2023; 14:12447-12476. [PMID: 38020383 PMCID: PMC10646976 DOI: 10.1039/d3sc04661c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/08/2023] [Indexed: 12/01/2023] Open
Abstract
The introduction of nitrogen atoms into small molecules is of fundamental importance and it is vital that ever more efficient and selective methods for achieving this are developed. With this aim, the potential of nitrene chemistry has long been appreciated but its application has been constrained by the extreme reactivity of these labile species. This liability however can be attenuated by complexation with a transition metal and the resulting metal nitrenoids have unique and highly versatile reactivity which includes the amination of certain types of aliphatic C-H bonds as well as reactions with alkenes to afford aziridines. At least one new chiral centre is typically formed in these processes and the development of catalysts to exert control over enantioselectivity in nitrenoid-mediated amination has become a growing area of research, particularly over the past two decades. Compared with some synthetic methods, metal nitrenoid chemistry is notable in that chemists can draw from a diverse array of metals and catalysts , ranging from metal-ligand complexes, bearing a variety of ligand types, via bio-inspired metalloporphyrins, all the way through to, very recently, engineered enzymes themselves. In the latter category in particular, rapid progress is being made, the rate of which suggests that this approach may be instrumental in addressing some of the outstanding challenges in the field. This review covers key developments and strategies that have shaped the field, in addition to the latest advances, up until September 2023.
Collapse
Affiliation(s)
- Alexander Fanourakis
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
32
|
Michailidou F. Engineering of Therapeutic and Detoxifying Enzymes. Angew Chem Int Ed Engl 2023; 62:e202308814. [PMID: 37433049 DOI: 10.1002/anie.202308814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Therapeutic enzymes present excellent opportunities for the treatment of human disease, modulation of metabolic pathways and system detoxification. However, current use of enzyme therapy in the clinic is limited as naturally occurring enzymes are seldom optimal for such applications and require substantial improvement by protein engineering. Engineering strategies such as design and directed evolution that have been successfully implemented for industrial biocatalysis can significantly advance the field of therapeutic enzymes, leading to biocatalysts with new-to-nature therapeutic activities, high selectivity, and suitability for medical applications. This minireview highlights case studies of how state-of-the-art and emerging methods in protein engineering are explored for the generation of therapeutic enzymes and discusses gaps and future opportunities in the field of enzyme therapy.
Collapse
Affiliation(s)
- Freideriki Michailidou
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zürich, Switzerland
| |
Collapse
|
33
|
Zhang Y, Guo J, Gao P, Yan W, Shen J, Luo X, Keasling JD. Development of an efficient yeast platform for cannabigerolic acid biosynthesis. Metab Eng 2023; 80:232-240. [PMID: 37890610 DOI: 10.1016/j.ymben.2023.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
Cannabinoids are important therapeutical molecules for human ailments, cancer treatment, and SARS-CoV-2. The central cannabinoid, cannabigerolic acid (CBGA), is generated from geranyl pyrophosphate and olivetolic acid by Cannabis sativa prenyltransferase (CsPT4). Despite efforts to engineer microorganisms such as Saccharomyces cerevisiae (S. cerevisiae) for CBGA production, their titers remain suboptimal because of the low conversion of hexanoate into olivetolic acid and the limited activity and stability of the CsPT4. To address the low hexanoate conversion, we eliminated hexanoate consumption by the beta-oxidation pathway and reduced its incorporation into fatty acids. To address CsPT4 limitations, we expanded the endoplasmic reticulum and fused an auxiliary protein to CsPT4. Consequently, the engineered S. cerevisiae chassis showed a marked improvement of 78.64-fold in CBGA production, reaching a titer of 510.32 ± 10.70 mg l-1 from glucose and hexanoate.
Collapse
Affiliation(s)
- Yunfeng Zhang
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiulong Guo
- Synceres Biosciences (Shenzhen) CO., LTD, China
| | - PeiZhen Gao
- Synceres Biosciences (Shenzhen) CO., LTD, China
| | - Wei Yan
- Synceres Biosciences (Shenzhen) CO., LTD, China
| | - Junfeng Shen
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaozhou Luo
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Jay D Keasling
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Joint BioEnergy Institute, Emeryville, CA, 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering & Department of Bioengineering, University of California, Berkeley, CA, 94720, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
34
|
Oliveira-Filho ER, Voiniciuc C, Hanson AD. Adapting enzymes to improve their functionality in plants: why and how. Biochem Soc Trans 2023; 51:1957-1966. [PMID: 37787016 PMCID: PMC10657173 DOI: 10.1042/bst20230532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Synthetic biology creates new metabolic processes and improves existing ones using engineered or natural enzymes. These enzymes are often sourced from cells that differ from those in the target plant organ with respect to, e.g. redox potential, effector levels, or proteostasis machinery. Non-native enzymes may thus need to be adapted to work well in their new plant context ('plantized') even if their specificity and kinetics in vitro are adequate. Hence there are two distinct ways in which an enzyme destined for use in plants can require improvement: In catalytic properties such as substrate and product specificity, kcat, and KM; and in general compatibility with the milieu of cells that express the enzyme. Continuous directed evolution systems can deliver both types of improvement and are so far the most broadly effective way to deliver the second type. Accordingly, in this review we provide a short account of continuous evolution methods, emphasizing the yeast OrthoRep system because of its suitability for plant applications. We then cover the down-to-earth and increasingly urgent issues of which enzymes and enzyme properties can - or cannot - be improved in theory, and which in practice are the best to target for crop improvement, i.e. those that are realistically improvable and important enough to warrant deploying continuous directed evolution. We take horticultural crops as examples because of the opportunities they present and to sharpen the focus.
Collapse
Affiliation(s)
| | - Cătălin Voiniciuc
- Horticultural Sciences Department, University of Florida, Gainesville, FL, U.S.A
| | - Andrew D. Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL, U.S.A
| |
Collapse
|
35
|
Chaturvedi SS, Bím D, Christov CZ, Alexandrova AN. From random to rational: improving enzyme design through electric fields, second coordination sphere interactions, and conformational dynamics. Chem Sci 2023; 14:10997-11011. [PMID: 37860658 PMCID: PMC10583697 DOI: 10.1039/d3sc02982d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
Enzymes are versatile and efficient biological catalysts that drive numerous cellular processes, motivating the development of enzyme design approaches to tailor catalysts for diverse applications. In this perspective, we investigate the unique properties of natural, evolved, and designed enzymes, recognizing their strengths and shortcomings. We highlight the challenges and limitations of current enzyme design protocols, with a particular focus on their limited consideration of long-range electrostatic and dynamic effects. We then delve deeper into the impact of the protein environment on enzyme catalysis and explore the roles of preorganized electric fields, second coordination sphere interactions, and protein dynamics for enzyme function. Furthermore, we present several case studies illustrating successful enzyme-design efforts incorporating enzyme strategies mentioned above to achieve improved catalytic properties. Finally, we envision the future of enzyme design research, spotlighting the challenges yet to be overcome and the synergy of intrinsic electric fields, second coordination sphere interactions, and conformational dynamics to push the state-of-the-art boundaries.
Collapse
Affiliation(s)
- Shobhit S Chaturvedi
- Department of Chemistry and Biochemistry, University of California, Los Angeles California 90095 USA
| | - Daniel Bím
- Department of Chemistry and Biochemistry, University of California, Los Angeles California 90095 USA
| | - Christo Z Christov
- Department of Chemistry, Michigan Technological University Houghton Michigan 49931 USA
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles California 90095 USA
| |
Collapse
|
36
|
Kamra A, Das S, Bhatt P, Solra M, Maity T, Rana S. A transient vesicular glue for amplification and temporal regulation of biocatalytic reaction networks. Chem Sci 2023; 14:9267-9282. [PMID: 37712020 PMCID: PMC10498679 DOI: 10.1039/d3sc00195d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
Regulation of enzyme activity and biocatalytic cascades on compartmentalized cellular components is key to the adaptation of cellular processes such as signal transduction and metabolism in response to varying external conditions. Synthetic molecular glues have enabled enzyme inhibition and regulation of protein-protein interactions. So far, all the molecular glue systems based on covalent interactions operated under steady-state conditions. To emulate dynamic biological processes under dissipative conditions, we introduce herein a transient supramolecular glue with a controllable lifetime. The transient system uses multivalent supramolecular interactions between guanidinium group-bearing surfactants and adenosine triphosphate (ATP), resulting in bilayer vesicle structures. Unlike the conventional chemical agents for dissipative assemblies, ATP here plays the dual role of providing a structural component for the assembly as well as presenting active functional groups to "glue" enzymes on the surface. While gluing of the enzymes on the vesicles achieves augmented catalysis, oscillation of ATP concentration allows temporal control of the catalytic activities similar to the dissipative cellular nanoreactors. We further demonstrate temporal upregulation and control of complex biocatalytic reaction networks on the vesicles. Altogether, the temporal activation of biocatalytic cascades on the dissipative vesicular glue presents an adaptable and dynamic system emulating heterogeneous cellular processes, opening up avenues for effective protocell construction and therapeutic interventions.
Collapse
Affiliation(s)
- Alisha Kamra
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Sourav Das
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Preeti Bhatt
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Manju Solra
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Tanmoy Maity
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Subinoy Rana
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| |
Collapse
|
37
|
Finnigan W, Lubberink M, Hepworth LJ, Citoler J, Mattey AP, Ford GJ, Sangster J, Cosgrove SC, da Costa BZ, Heath RS, Thorpe TW, Yu Y, Flitsch SL, Turner NJ. RetroBioCat Database: A Platform for Collaborative Curation and Automated Meta-Analysis of Biocatalysis Data. ACS Catal 2023; 13:11771-11780. [PMID: 37671181 PMCID: PMC10476152 DOI: 10.1021/acscatal.3c01418] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/26/2023] [Indexed: 09/07/2023]
Abstract
Despite the increasing use of biocatalysis for organic synthesis, there are currently no databases that adequately capture synthetic biotransformations. The lack of a biocatalysis database prevents accelerating biocatalyst characterization efforts from being leveraged to quickly identify candidate enzymes for reactions or cascades, slowing their development. The RetroBioCat Database (available at retrobiocat.com) addresses this gap by capturing information on synthetic biotransformations and providing an analysis platform that allows biocatalysis data to be searched and explored through a range of highly interactive data visualization tools. This database makes it simple to explore available enzymes, their substrate scopes, and how characterized enzymes are related to each other and the wider sequence space. Data entry is facilitated through an openly accessible curation platform, featuring automated tools to accelerate the process. The RetroBioCat Database democratizes biocatalysis knowledge and has the potential to accelerate biocatalytic reaction development, making it a valuable resource for the community.
Collapse
Affiliation(s)
- William Finnigan
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | | | - Lorna J. Hepworth
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Joan Citoler
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Ashley P. Mattey
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Grayson J. Ford
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Jack Sangster
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | | | - Bruna Zucoloto da Costa
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Rachel S. Heath
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | | | - Yuqi Yu
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Sabine L. Flitsch
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Nicholas J. Turner
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
38
|
Peña-Castro JM, Muñoz-Páez KM, Robledo-Narvaez PN, Vázquez-Núñez E. Engineering the Metabolic Landscape of Microorganisms for Lignocellulosic Conversion. Microorganisms 2023; 11:2197. [PMID: 37764041 PMCID: PMC10535843 DOI: 10.3390/microorganisms11092197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Bacteria and yeast are being intensively used to produce biofuels and high-added-value products by using plant biomass derivatives as substrates. The number of microorganisms available for industrial processes is increasing thanks to biotechnological improvements to enhance their productivity and yield through microbial metabolic engineering and laboratory evolution. This is allowing the traditional industrial processes for biofuel production, which included multiple steps, to be improved through the consolidation of single-step processes, reducing the time of the global process, and increasing the yield and operational conditions in terms of the desired products. Engineered microorganisms are now capable of using feedstocks that they were unable to process before their modification, opening broader possibilities for establishing new markets in places where biomass is available. This review discusses metabolic engineering approaches that have been used to improve the microbial processing of biomass to convert the plant feedstock into fuels. Metabolically engineered microorganisms (MEMs) such as bacteria, yeasts, and microalgae are described, highlighting their performance and the biotechnological tools that were used to modify them. Finally, some examples of patents related to the MEMs are mentioned in order to contextualize their current industrial use.
Collapse
Affiliation(s)
- Julián Mario Peña-Castro
- Centro de Investigaciones Científicas, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec 68301, Oaxaca, Mexico;
| | - Karla M. Muñoz-Páez
- CONAHCYT—Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Queretaro 76230, Queretaro, Mexico;
| | | | - Edgar Vázquez-Núñez
- Grupo de Investigación Sobre Aplicaciones Nano y Bio Tecnológicas para la Sostenibilidad (NanoBioTS), Departamento de Ingenierías Química, Electrónica y Biomédica, División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, Lomas del Campestre, León 37150, Guanajuato, Mexico
| |
Collapse
|
39
|
Stout CN, Wasfy NM, Chen F, Renata H. Charting the Evolution of Chemoenzymatic Strategies in the Syntheses of Complex Natural Products. J Am Chem Soc 2023; 145:18161-18181. [PMID: 37553092 PMCID: PMC11107883 DOI: 10.1021/jacs.3c03422] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Bolstered by recent advances in bioinformatics, genetics, and enzyme engineering, the field of chemoenzymatic synthesis has enjoyed a rapid increase in popularity and utility. This Perspective explores the integration of enzymes into multistep chemical syntheses, highlighting the unique potential of biocatalytic transformations to streamline the synthesis of complex natural products. In particular, we identify four primary conceptual approaches to chemoenzymatic synthesis and illustrate each with a number of landmark case studies. Future opportunities and challenges are also discussed.
Collapse
Affiliation(s)
- Carter N. Stout
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research, La Jolla, CA 92037, USA
| | - Nour M. Wasfy
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas, 77005, United States
| | - Fang Chen
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas, 77005, United States
| | - Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas, 77005, United States
| |
Collapse
|
40
|
Yang J, Ducharme J, Johnston KE, Li FZ, Yue Y, Arnold FH. DeCOIL: Optimization of Degenerate Codon Libraries for Machine Learning-Assisted Protein Engineering. ACS Synth Biol 2023; 12:2444-2454. [PMID: 37524064 DOI: 10.1021/acssynbio.3c00301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
With advances in machine learning (ML)-assisted protein engineering, models based on data, biophysics, and natural evolution are being used to propose informed libraries of protein variants to explore. Synthesizing these libraries for experimental screens is a major bottleneck, as the cost of obtaining large numbers of exact gene sequences is often prohibitive. Degenerate codon (DC) libraries are a cost-effective alternative for generating combinatorial mutagenesis libraries where mutations are targeted to a handful of amino acid sites. However, existing computational methods to optimize DC libraries to include desired protein variants are not well suited to design libraries for ML-assisted protein engineering. To address these drawbacks, we present DEgenerate Codon Optimization for Informed Libraries (DeCOIL), a generalized method that directly optimizes DC libraries to be useful for protein engineering: to sample protein variants that are likely to have both high fitness and high diversity in the sequence search space. Using computational simulations and wet-lab experiments, we demonstrate that DeCOIL is effective across two specific case studies, with the potential to be applied to many other use cases. DeCOIL offers several advantages over existing methods, as it is direct, easy to use, generalizable, and scalable. With accompanying software (https://github.com/jsunn-y/DeCOIL), DeCOIL can be readily implemented to generate desired informed libraries.
Collapse
Affiliation(s)
- Jason Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Julie Ducharme
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kadina E Johnston
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Francesca-Zhoufan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yisong Yue
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125, United States
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
41
|
de Lorenzo S, Pillet L, Lim D, Paradisi F. Glycosyl benzoates as novel substrates for glycosynthases. Org Biomol Chem 2023; 21:6356-6359. [PMID: 37486039 PMCID: PMC10410497 DOI: 10.1039/d3ob00979c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
The development of a procedure for the one-pot synthesis of glycosyl benzoates directly from unprotected sugars in aqueous media using 2-chloro-1,3-dimethylimidazolium chloride (DMC), thiobenzoic acid, and triethylamine is reported. These glycosyl donors are excellent substrates for wild-type and mutant glycosidases. β-Glucosyl benzoate was hydrolysed by the GH1 β-glucosidase derived from Halothermothrix orenii (HorGH1). Subsequent use of this substrate in thioligase-mediated glycosylation of p-nitrothiophenol demonstrated their superiority as donors compared to their p-nitrophenol counterparts with excellent conversions. Using a series of arene nucleophiles, we also demonstrate good to excellent conversions (up to 94%) of β-glucosyl benzoate to the corresponding p-nitrophenyl- and thioglycosides.
Collapse
Affiliation(s)
- Sabrina de Lorenzo
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland.
| | - Lauriane Pillet
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland.
| | - David Lim
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland.
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland.
| |
Collapse
|
42
|
Bui VH, Rodríguez-López CE, Dang TTT. Integration of discovery and engineering in plant alkaloid research: Recent developments in elucidation, reconstruction, and repurposing biosynthetic pathways. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102379. [PMID: 37182414 DOI: 10.1016/j.pbi.2023.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023]
Abstract
Plants synthesize tens of thousands of bioactive nitrogen-containing compounds called alkaloids, including some clinically important drugs in modern medicine. The discovery of new alkaloid structures and their metabolism in plants have provided ways to access these rich sources of bioactivities including new-to-nature compounds relevant to therapeutic and industrial applications. This review discusses recent advances in alkaloid biosynthesis discovery, including complete pathway elucidations. Additionally, the latest developments in the production of new and established plant alkaloids based on either biosynthesis or semisynthesis are discussed.
Collapse
Affiliation(s)
- Van-Hung Bui
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Carlos Eduardo Rodríguez-López
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico.
| | - Thu-Thuy T Dang
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, 3247 University Way, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
43
|
Zhang Z, Feng J, Yang C, Cui H, Harrison W, Zhong D, Wang B, Zhao H. Photoenzymatic Enantioselective Intermolecular Radical Hydroamination. Nat Catal 2023; 6:687-694. [PMID: 38501052 PMCID: PMC10948044 DOI: 10.1038/s41929-023-00994-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 06/30/2023] [Indexed: 03/20/2024]
Abstract
Since the discovery of Hofmann-Löffler-Freytag reaction more than 130 years ago, nitrogen-centered radicals have been widely studied in both structures and reactivities1-2. Nevertheless, catalytic enantioselective intermolecular radical hydroamination remains a challenge due to the existence of side reactions, short lifetime of nitrogen-centered radicals, and lack of understanding of the fundamental catalytic steps. In chemistry, nitrogen-centered radicals are produced with radical initiators, photocatalysts, or electrocatalysts. On the other hand, the generation and reaction of nitrogen-centered radicals are unknown in nature. Here we report a pure biocatalytic system by successfully repurposing an ene-reductase through directed evolution for the photoenzymatic production of nitrogen-centered radicals and enantioselective intermolecular radical hydroaminations. These reactions progress efficiently at room temperature under visible light without any external photocatalysts and exhibit excellent enantioselectivities. Detailed mechanistic study reveals that the enantioselectivity originates from the radical-addition step while the reactivity originates from the ultrafast photoinduced electron transfer (ET) from reduced flavin mononucleotide (FMNH-) to nitrogen-containing substrates.
Collapse
Affiliation(s)
- Zhengyi Zhang
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- These authors contributed equally
| | - Jianqiang Feng
- State Key Laboratory Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- These authors contributed equally
| | - Chao Yang
- Department of Physics, Programs of Biophysics, Chemical Physics and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Haiyang Cui
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- NSF Molecular Maker Lab Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wesley Harrison
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Dongping Zhong
- Department of Physics, Programs of Biophysics, Chemical Physics and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Binju Wang
- State Key Laboratory Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Huimin Zhao
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- NSF Molecular Maker Lab Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
44
|
Fu W, Neris NM, Fu Y, Zhao Y, Krohn-Hansen B, Liu P, Yang Y. Enzyme-controlled stereoselective radical cyclization to arenes enabled by metalloredox biocatalysis. Nat Catal 2023; 6:628-636. [PMID: 38404758 PMCID: PMC10882986 DOI: 10.1038/s41929-023-00986-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 06/13/2023] [Indexed: 02/27/2024]
Abstract
The effective induction of high levels of stereocontrol for free radical-mediated transformations represents a notorious challenge in asymmetric catalysis. Herein, we describe a novel metalloredox biocatalysis strategy to repurpose natural cytochromes P450 to catalyse asymmetric radical cyclisation to arenes through an unnatural electron transfer mechanism. Empowered by directed evolution, engineered P450s allowed diverse radical cyclisation selectivities to be accomplished in a catalyst-controlled fashion: P450arc1 and P450arc2 facilitated enantioconvergent transformations of racemic substrates, giving rise to either enantiomer of the product with excellent total turnover numbers (up to 12,000). In addition to these enantioconvergent variants, another engineered radical cyclase, P450arc3, permitted efficient kinetic resolution of racemic chloride substrates (S factor = 18). Furthermore, computational studies revealed a proton-coupled electron transfer (PCET) mechanism for the radical-polar crossover step, suggesting the potential role of the haem carboxylate as a base catalyst. Collectively, the excellent tunability of this metalloenzyme family provides an exciting platform for harnessing free radical intermediates for asymmetric catalysis.
Collapse
Affiliation(s)
- Wenzhen Fu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Natalia M. Neris
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Yue Fu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Yunlong Zhao
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Benjamin Krohn-Hansen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering (BMSE) Program, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
45
|
Zhang W, Guan W, Martinez Alvarado JI, Novaes LFT, Lin S. Deep Electroreductive Chemistry: Harnessing Carbon- and Silicon-based Reactive Intermediates in Organic Synthesis. ACS Catal 2023; 13:8038-8048. [PMID: 38707967 PMCID: PMC11067979 DOI: 10.1021/acscatal.3c01174] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
This Viewpoint outlines our recent contribution in electroreductive synthesis. Specifically, we leveraged deeply reducing potentials provided by electrochemistry to generate radical and anionic intermediates from readily available alkyl halides and chlorosilanes. Harnessing the distinct reactivities of radicals and anions, we have achieved several challenging transformations to construct C-C, C-Si, and Si-Si bonds. We highlight the mechanistic design principle that underpinned the development of each transformation and provide a view forward on future opportunities in growing area of reductive electrosynthesis.
Collapse
Affiliation(s)
| | | | | | - Luiz F. T. Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
46
|
Aoun AR, Mupparapu N, Nguyen DN, Kim TH, Nguyen CM, Pan Z, Elshahawi SI. Structure-guided Mutagenesis Reveals the Catalytic Residue that Controls the Regiospecificity of C6-Indole Prenyltransferases. ChemCatChem 2023; 15:e202300423. [PMID: 37366495 PMCID: PMC10292028 DOI: 10.1002/cctc.202300423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 06/28/2023]
Abstract
Indole is a significant structural moiety and functionalization of the C-H bond in indole-containing molecules expands their chemical space, and modifies their properties and/or activities. Indole prenyltransferases (IPTs) catalyze the direct regiospecific installation of prenyl, C5 carbon units, on indole-derived compounds. IPTs have shown relaxed substrate flexibility enabling them to be used as tools for indole functionalization. However, the mechanism by which certain IPTs target a specific carbon position is not fully understood. Herein, we use structure-guided site-directed mutagenesis, in vitro enzymatic reactions, kinetics and structural-elucidation of analogs to verify the key catalytic residues that control the regiospecificity of all characterized regiospecific C6 IPTs. Our results also demonstrate that substitution of PriB_His312 to Tyr leads to the synthesis of analogs prenylated at different positions than C6. This work contributes to understanding of how certain IPTs can access a challenging position in indole-derived compounds.
Collapse
Affiliation(s)
- Ahmed R Aoun
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Nagaraju Mupparapu
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Diem N Nguyen
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Tae Ho Kim
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Christopher M Nguyen
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Zhengfeiyue Pan
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| |
Collapse
|
47
|
Wang Y, Yu L, Shao J, Zhu Z, Zhang L. Structure-driven protein engineering for production of valuable natural products. TRENDS IN PLANT SCIENCE 2023; 28:460-470. [PMID: 36473772 DOI: 10.1016/j.tplants.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/25/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Proteins are the most frequently used biocatalysts, and their structures determine their functions. Modifying the functions of proteins on the basis of their structures lies at the heart of protein engineering, opening a new horizon for metabolic engineering by efficiently generating stable enzymes. Many attempts at classical metabolic engineering have focused on improving specific metabolic fluxes and producing more valuable natural products by increasing gene expression levels and enzyme concentrations. However, most naturally occurring enzymes show limitations, and such limitations have hindered practical applications. Here we review recent advances in protein engineering in synthetic biology, chemoenzymatic synthesis, and plant metabolic engineering and describe opportunities for designing and constructing novel enzymes or proteins with desirable properties to obtain more active natural products.
Collapse
Affiliation(s)
- Yun Wang
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong 226001, China; Biomedical Innovation R&D Centre, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Luyao Yu
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jie Shao
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhanpin Zhu
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong 226001, China; Biomedical Innovation R&D Centre, School of Medicine, Shanghai University, Shanghai 200444, China; Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
48
|
Yang T, Pan L, Wu W, Pan X, Xu M, Zhang X, Rao Z. N20D/N116E Combined Mutant Downward Shifted the pH Optimum of Bacillus subtilis NADH Oxidase. BIOLOGY 2023; 12:522. [PMID: 37106723 PMCID: PMC10135872 DOI: 10.3390/biology12040522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Cofactor regeneration is indispensable to avoid the addition of large quantities of cofactor NADH or NAD+ in oxidation-reduction reactions. Water-forming NADH oxidase (Nox) has attracted substantive attention as it can oxidize cytosolic NADH to NAD+ without concomitant accumulation of by-products. However, its applications have some limitations in some oxidation-reduction processes when its optimum pH is different from its coupled enzymes. In this study, to modify the optimum pH of BsNox, fifteen relevant candidates of site-directed mutations were selected based on surface charge rational design. As predicted, the substitution of this asparagine residue with an aspartic acid residue (N22D) or with a glutamic acid residue (N116E) shifts its pH optimum from 9.0 to 7.0. Subsequently, N20D/N116E combined mutant could not only downshift the pH optimum of BsNox but also significantly increase its specific activity, which was about 2.9-fold at pH 7.0, 2.2-fold at pH 8.0 and 1.2-fold at pH 9.0 that of the wild-type. The double mutant N20D/N116E displays a higher activity within a wide range of pH from 6 to 9, which is wider than the wide type. The usability of the BsNox and its variations for NAD+ regeneration in a neutral environment was demonstrated by coupling with a glutamate dehydrogenase for α-ketoglutaric acid (α-KG) production from L-glutamic acid (L-Glu) at pH 7.0. Employing the variation N20D/N116E as an NAD+ regeneration coenzyme could shorten the process duration; 90% of L-Glu were transformed into α-KG within 40 min vs. 70 min with the wild-type BsNox for NAD+ regeneration. The results obtained in this work suggest the promising properties of the BsNox variation N20D/N116E are competent in NAD+ regeneration applications under a neutral environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
49
|
Duan X, Cui D, Wang Z, Zheng D, Jiang L, Huang WY, Jia YX, Xu J. A Photoenzymatic Strategy for Radical-Mediated Stereoselective Hydroalkylation with Diazo Compounds. Angew Chem Int Ed Engl 2023; 62:e202214135. [PMID: 36478374 DOI: 10.1002/anie.202214135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Carbene insertion reactions initiated with diazo compounds have been widely used to develop unnatural enzymatic reactions. However, alternative functionalization of diazo compounds in enzymatic processes has been unexploited. Herein, we describe a photoenzymatic strategy for radical-mediated stereoselective hydroalkylation with diazo compounds. This method generates carbon-centered radicals through an ene reductase catalyzed photoinduced electron transfer process from diazo compounds, enabling the synthesis of γ-stereogenic carbonyl compounds in good yields and stereoselectivities. This study further expands the possible reaction patterns in photo-biocatalysis and offers a new approach to solving the selectivity challenges of radical-mediated reactions.
Collapse
Affiliation(s)
- Xinyu Duan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Dong Cui
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhiguo Wang
- Institute of Aging Research, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Dannan Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Linye Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wen-Yu Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yi-Xia Jia
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| | - Jian Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
50
|
Schnettler JD, Klein OJ, Kaminski TS, Colin PY, Hollfelder F. Ultrahigh-Throughput Directed Evolution of a Metal-Free α/β-Hydrolase with a Cys-His-Asp Triad into an Efficient Phosphotriesterase. J Am Chem Soc 2023; 145:1083-1096. [PMID: 36583539 PMCID: PMC9853848 DOI: 10.1021/jacs.2c10673] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Finding new mechanistic solutions for biocatalytic challenges is key in the evolutionary adaptation of enzymes, as well as in devising new catalysts. The recent release of man-made substances into the environment provides a dynamic testing ground for observing biocatalytic innovation at play. Phosphate triesters, used as pesticides, have only recently been introduced into the environment, where they have no natural counterpart. Enzymes have rapidly evolved to hydrolyze phosphate triesters in response to this challenge, converging onto the same mechanistic solution, which requires bivalent cations as a cofactor for catalysis. In contrast, the previously identified metagenomic promiscuous hydrolase P91, a homologue of acetylcholinesterase, achieves slow phosphotriester hydrolysis mediated by a metal-independent Cys-His-Asp triad. Here, we probe the evolvability of this new catalytic motif by subjecting P91 to directed evolution. By combining a focused library approach with the ultrahigh throughput of droplet microfluidics, we increase P91's activity by a factor of ≈360 (to a kcat/KM of ≈7 × 105 M-1 s-1) in only two rounds of evolution, rivaling the catalytic efficiencies of naturally evolved, metal-dependent phosphotriesterases. Unlike its homologue acetylcholinesterase, P91 does not suffer suicide inhibition; instead, fast dephosphorylation rates make the formation of the covalent adduct rather than its hydrolysis rate-limiting. This step is improved by directed evolution, with intermediate formation accelerated by 2 orders of magnitude. Combining focused, combinatorial libraries with the ultrahigh throughput of droplet microfluidics can be leveraged to identify and enhance mechanistic strategies that have not reached high efficiency in nature, resulting in alternative reagents with novel catalytic machineries.
Collapse
Affiliation(s)
- J David Schnettler
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Oskar James Klein
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Tomasz S Kaminski
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Pierre-Yves Colin
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|