1
|
He Q, Huo R, Sun Y, Zheng Z, Xu H, Zhao S, Ni Y, Yu Q, Jiao Y, Zhang W, Zhao J, Cao Y. Cerebral vascular malformations: pathogenesis and therapy. MedComm (Beijing) 2024; 5:e70027. [PMID: 39654683 PMCID: PMC11625509 DOI: 10.1002/mco2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Cerebral vascular malformations (CVMs), particularly cerebral cavernous malformations and cerebral arteriovenous malformations, pose significant neurological challenges due to their complex etiologies and clinical implications. Traditionally viewed as congenital conditions with structural abnormalities, CVMs have been treated primarily through resection, embolization, and stereotactic radiosurgery. While these approaches offer some efficacy, they often pose risks to neurological integrity due to their invasive nature. Advances in next-generation sequencing, particularly high-depth whole-exome sequencing and bioinformatics, have facilitated the identification of gene variants from neurosurgically resected CVMs samples. These advancements have deepened our understanding of CVM pathogenesis. Somatic mutations in key mechanistic pathways have been identified as causative factors, leading to a paradigm shift in CVM treatment. Additionally, recent progress in noninvasive and minimally invasive techniques, including gene imaging genomics, liquid biopsy, or endovascular biopsies (endovascular sampling of blood vessel lumens), has enabled the identification of gene variants associated with CVMs. These methods, in conjunction with clinical data, offer potential for early detection, dynamic monitoring, and targeted therapies that could be used as monotherapy or adjuncts to surgery. This review highlights advancements in CVM pathogenesis and precision therapies, outlining the future potential of precision medicine in CVM management.
Collapse
Affiliation(s)
- Qiheng He
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Ran Huo
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yingfan Sun
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zhiyao Zheng
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Research Unit of Accurate DiagnosisTreatment, and Translational Medicine of Brain Tumors Chinese Academy of Medical Sciences and Peking Union Medical College Beijing ChinaBeijingChina
- Department of Neurosurgery Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical College Beijing ChinaBeijingChina
| | - Hongyuan Xu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shaozhi Zhao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yang Ni
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Qifeng Yu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yuming Jiao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Wenqian Zhang
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jizong Zhao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yong Cao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
- Collaborative Innovation CenterBeijing Institute of Brain DisordersBeijingChina
| |
Collapse
|
2
|
Galvão GDF, Trefilio LM, Salvio AL, da Silva EV, Alves-Leon SV, Fontes-Dantas FL, de Souza JM. Comprehensive analysis of Novel mutations in CCM1/KRIT1 and CCM2/MGC4607 and their clinical implications in Cerebral Cavernous malformations. J Stroke Cerebrovasc Dis 2024; 33:107947. [PMID: 39181174 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Cerebral Cavernous Malformations (CCM) is a genetic disease characterized by vascular abnormalities in the brain and spinal cord, affecting 0.4-0.5 % of the population. We identified two novel pathogenic mutations, CCM1/KRIT1 c.811delT (p.Trp271GlyfsTer5) and CCM2/MGC4607 c.613_614insGG p.Glu205GlyfsTer31), which disrupt crucial protein domains and potentially alter disease progression. OBJECTIVE The study aims to comprehensively analyze a Brazilian cohort of CCM patients, integrating genetic, clinical, and structural aspects. Specifically, we sought to identify novel mutations within the CCM complex, and explore their potential impact on disease progression. METHODS We conducted a detailed examination of neuroradiological and clinical features in both symptomatic and asymptomatic CCM patients, performing genetic analyses through sequencing of the CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10 genes In silico structural predictions were carried out using PolyPhen-2, SIFT, and Human Genomics Community tools. Protein-protein interactions and docking analyses were explored using the STRING database. RESULTS Genetic analysis identifies 6 pathogenic mutations, 4 likely pathogenic, 1 variants of uncertain significance, and 7 unclassified mutations, including the novel mutations in CCM1 c.811delT and CCM2 c.613_614insGG. In silico structural analysis revealed significant alterations in protein structure, supporting their pathogenicity. Protein-protein interaction analysis indicated nuanced impacts on cellular processes. Clinically, we observed a broad spectrum of symptoms, including seizures and focal neurological deficits. However, no statistically significant differences were found in lesion burden, age of first symptom onset, or sex between the identified CCM1/KRIT1 and CCM2/MGC4607 mutations among all patients studied. CONCLUSION This study enhances the understanding of CCM by linking clinical variability, genetic mutations, and structural effects. The identification of these novel mutations opens new avenues for research and potential therapeutic strategies.
Collapse
Affiliation(s)
- Gustavo da Fontoura Galvão
- Universidade Federal do Estado do Rio de Janeiro, Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Rio de Janeiro RJ, Brasil; Universidade Federal do Rio de Janeiro, Hospital Universitário Clementino Fraga Filho, Departamento de Neurocirurgia, Rio de Janeiro RJ, Brasil
| | - Luisa Menezes Trefilio
- Universidade Estadual do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Departamento de Farmacologia e Psicobiologia, Rio de Janeiro RJ, Brasil; Universidade Federal do Estado do Rio de Janeiro, Instituto Biomédico, Rio de Janeiro RJ, Brasil
| | - Andreza Lemos Salvio
- Universidade Federal do Estado do Rio de Janeiro, Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Rio de Janeiro RJ, Brasil
| | - Elielson Veloso da Silva
- Universidade Federal do Estado do Rio de Janeiro, Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Rio de Janeiro RJ, Brasil
| | - Soniza Vieira Alves-Leon
- Universidade Federal do Estado do Rio de Janeiro, Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Rio de Janeiro RJ, Brasil; Universidade Federal do Rio de Janeiro, Hospital Universitário Clementino Fraga Filho, Departamento de Neurologia, Rio de Janeiro RJ, Brasil
| | - Fabrícia Lima Fontes-Dantas
- Universidade Estadual do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Departamento de Farmacologia e Psicobiologia, Rio de Janeiro RJ, Brasil.
| | - Jorge Marcondes de Souza
- Universidade Federal do Rio de Janeiro, Hospital Universitário Clementino Fraga Filho, Departamento de Neurocirurgia, Rio de Janeiro RJ, Brasil
| |
Collapse
|
3
|
Morin GM, Zerbib L, Kaltenbach S, Fraissenon A, Balducci E, Asnafi V, Canaud G. PIK3CA-Related Disorders: From Disease Mechanism to Evidence-Based Treatments. Annu Rev Genomics Hum Genet 2024; 25:211-237. [PMID: 38316164 DOI: 10.1146/annurev-genom-121222-114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Recent advances in genetic sequencing are transforming our approach to rare-disease care. Initially identified in cancer, gain-of-function mutations of the PIK3CA gene are also detected in malformation mosaic diseases categorized as PIK3CA-related disorders (PRDs). Over the past decade, new approaches have enabled researchers to elucidate the pathophysiology of PRDs and uncover novel therapeutic options. In just a few years, owing to vigorous global research efforts, PRDs have been transformed from incurable diseases to chronic disorders accessible to targeted therapy. However, new challenges for both medical practitioners and researchers have emerged. Areas of uncertainty remain in our comprehension of PRDs, especially regarding the relationship between genotype and phenotype, the mechanisms underlying mosaicism, and the processes involved in intercellular communication. As the clinical and biological landscape of PRDs is constantly evolving, this review aims to summarize current knowledge regarding PIK3CA and its role in nonmalignant human disease, from molecular mechanisms to evidence-based treatments.
Collapse
Affiliation(s)
- Gabriel M Morin
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lola Zerbib
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sophie Kaltenbach
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Fraissenon
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- CREATIS, CNRS UMR 5220, Villeurbanne, France
- Service de Radiologie Mère-Enfant, Hôpital Nord, Saint Etienne, France
- Service d'Imagerie Pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Estelle Balducci
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vahid Asnafi
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Guillaume Canaud
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
4
|
Alcazar-Felix RJ, Shenkar R, Benavides CR, Bindal A, Srinath A, Li Y, Kinkade S, Terranova T, DeBose-Scarlett E, Lightle R, DeBiasse D, Almazroue H, Cruz DV, Romanos S, Jhaveri A, Koskimäki J, Hage S, Bennett C, Girard R, Marchuk DA, Awad IA. Except for Robust Outliers, Rapamycin Increases Lesion Burden in a Murine Model of Cerebral Cavernous Malformations. Transl Stroke Res 2024:10.1007/s12975-024-01270-9. [PMID: 38980519 PMCID: PMC11711328 DOI: 10.1007/s12975-024-01270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
Cerebral cavernous malformation (CCM) is a hemorrhagic cerebrovascular disease where lesions develop in the setting of endothelial mutations of CCM genes, with many cases also harboring somatic PIK3CA gain of function (GOF) mutations. Rapamycin, an mTORC1 inhibitor, inhibited progression of murine CCM lesions driven by Ccm gene loss and Pik3ca GOF, but it remains unknown if rapamycin is beneficial in the absence of induction of Pik3ca GOF. We investigated the effect of rapamycin at three clinically relevant doses on lesion development in the Ccm3-/-PDGFb-icreERPositive murine model of familial CCM disease, without induction of Pik3ca GOF. Lesion burden, attrition, and acute and chronic hemorrhaging were compared between placebo and rapamycin-treated mice. Plasma miRNome was compared to identify potential biomarkers of rapamycin response. Outlier, exceptionally large CCM lesions (> 2 SD above the mean lesion burden) were exclusively observed in the placebo group. Rapamycin, across all dosages, may have prevented the emergence of large outlier lesions. Yet rapamycin also appeared to exacerbate mean lesion burden of surviving mice when outliers were excluded, increased attrition, and did not alter hemorrhage. miR-30c-2-3p, decreased in rapamycin-treated mouse plasma, has gene targets in PI3K/AKT and mTOR signaling. Progression of outlier lesions in a familial CCM model may have been halted by rapamycin treatment, at the potential expense of increased mean lesion burden and increased attrition. If confirmed, this can have implications for potential rapamycin treatment of familial CCM disease, where lesion development may not be driven by PIK3CA GOF. Further studies are necessary to determine specific pathways that mediate potential beneficial and detrimental effects of rapamycin treatment, and whether somatic PIK3CA mutations drive particularly aggressive lesions.
Collapse
Affiliation(s)
- Roberto J Alcazar-Felix
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Robert Shenkar
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Christian R Benavides
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Akash Bindal
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Abhinav Srinath
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Ying Li
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Serena Kinkade
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Tatiana Terranova
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Evon DeBose-Scarlett
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Rhonda Lightle
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Dorothy DeBiasse
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Hanadi Almazroue
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Diana Vera Cruz
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Sharbel Romanos
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Aditya Jhaveri
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Janne Koskimäki
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Stephanie Hage
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Carolyn Bennett
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Romuald Girard
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Issam A Awad
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Ma L, Hoz SS, Grossberg JA, Lang MJ, Gross BA. Developmental Venous Anomalies. Neurosurg Clin N Am 2024; 35:355-361. [PMID: 38782528 DOI: 10.1016/j.nec.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Developmental venous anomalies (DVAs) are the most common vascular malformation detected on intracranial cross-sectional imaging. They are generally benign lesions thought to drain normal parenchyma. Spontaneous hemorrhages attributed to DVAs are rare and should be ascribed to associated cerebral cavernous malformations, flow-related shunts, or venous outflow obstruction. Contrast-enhanced MRI, susceptibility-weighted imaging, and high-field MRI are ideal tools for visualizing vessel connectivity and associated lesions. DVAs are not generally considered targets for treatment. Preservation of DVAs is an established practice in the microsurgical or radiosurgical treatment of associated lesions.
Collapse
Affiliation(s)
- Li Ma
- Department of Neurological Surgery, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Samer S Hoz
- Department of Neurological Surgery, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | - Michael J Lang
- Department of Neurological Surgery, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Bradley A Gross
- Department of Neurological Surgery, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
6
|
Offenberger J, Chen B, Rossitto LA, Jin I, Conaboy L, Gallego-Gutierrez H, Nelsen B, Frias-Anaya E, Gonzalez DJ, Anagnostaras S, Lopez-Ramirez MA. Behavioral impairments are linked to neuroinflammation in mice with Cerebral Cavernous Malformation disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596485. [PMID: 38853989 PMCID: PMC11160801 DOI: 10.1101/2024.05.29.596485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Cerebral Cavernous Malformations (CCMs) are neurovascular abnormalities in the central nervous system (CNS) caused by loss of function mutations in KRIT1 (CCM1), CCM2, or PDCD10 (CCM3) genes. One of the most common symptoms in CCM patients is associated with motor disability, weakness, seizures, stress, and anxiety, and the extent of the symptom or symptoms may be due to the location of the lesion within the CNS or whether multiple lesions are present. Previous studies have primarily focused on understanding the pathology of CCM using animal models. However, more research has yet to explore the potential impact of CCM lesions on behavioral deficits in animal models, including effects on short-term and long-term memory, motor coordination, and function. Methods We used the accelerating RotaRod test to assess motor and coordination deficits. We also used the open field test to assess locomotor activity and pathology-related behavior and Pavlovian fear conditioning to assess short-and long-term memory deficits. Our behavioral studies were complemented by proteomics, histology, immunofluorescence, and imaging techniques. We found that neuroinflammation is crucial in behavioral deficits in male and female mice with neurovascular CCM lesions (Slco1c1-iCreERT2; Pdcd10 fl/fl ; Pdcd10 BECKO ). Results Functional behavior tests in male and female Pdcd10 BECKO mice revealed that CCM lesions cause sudden motor coordination deficits associated with the manifestation of profound neuroinflammatory lesions. Our findings indicate that maturation of CCM lesions in Pdcd10 BECKO mice also experienced a significant change in short- and long-term memory compared to their littermate controls, Pdcd10 fl/fl mice. Proteomic experiments reveal that as CCM lesions mature, there is an increase in pathways associated with inflammation, coagulation, and angiogenesis, and a decrease in pathways associated with learning and plasticity. Therefore, our study shows that Pdcd10 BECKO mice display a wide range of behavioral deficits due to significant lesion formation in their central nervous system and that signaling pathways associated with neuroinflammation and learning impact behavioral outcomes. Conclusions Our study found that CCM animal models exhibited behavioral impairments such as decreased motor coordination and amnesia. These impairments were associated with the maturation of CCM lesions that displayed a neuroinflammatory pattern.
Collapse
Affiliation(s)
- Joseph Offenberger
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Bianca Chen
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Leigh-Ana Rossitto
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Irisa Jin
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Liam Conaboy
- Department of Psychology, University of California, San Diego, La Jolla, California, USA
| | | | - Bliss Nelsen
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Eduardo Frias-Anaya
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - David J. Gonzalez
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Stephan Anagnostaras
- Department of Psychology, University of California, San Diego, La Jolla, California, USA
- Program in Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Miguel Alejandro Lopez-Ramirez
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Abdelilah-Seyfried S, Ola R. Shear stress and pathophysiological PI3K involvement in vascular malformations. J Clin Invest 2024; 134:e172843. [PMID: 38747293 PMCID: PMC11093608 DOI: 10.1172/jci172843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
Molecular characterization of vascular anomalies has revealed that affected endothelial cells (ECs) harbor gain-of-function (GOF) mutations in the gene encoding the catalytic α subunit of PI3Kα (PIK3CA). These PIK3CA mutations are known to cause solid cancers when occurring in other tissues. PIK3CA-related vascular anomalies, or "PIKopathies," range from simple, i.e., restricted to a particular form of malformation, to complex, i.e., presenting with a range of hyperplasia phenotypes, including the PIK3CA-related overgrowth spectrum. Interestingly, development of PIKopathies is affected by fluid shear stress (FSS), a physiological stimulus caused by blood or lymph flow. These findings implicate PI3K in mediating physiological EC responses to FSS conditions characteristic of lymphatic and capillary vessel beds. Consistent with this hypothesis, increased PI3K signaling also contributes to cerebral cavernous malformations, a vascular disorder that affects low-perfused brain venous capillaries. Because the GOF activity of PI3K and its signaling partners are excellent drug targets, understanding PIK3CA's role in the development of vascular anomalies may inform therapeutic strategies to normalize EC responses in the diseased state. This Review focuses on PIK3CA's role in mediating EC responses to FSS and discusses current understanding of PIK3CA dysregulation in a range of vascular anomalies that particularly affect low-perfused regions of the vasculature. We also discuss recent surprising findings linking increased PI3K signaling to fast-flow arteriovenous malformations in hereditary hemorrhagic telangiectasias.
Collapse
Affiliation(s)
| | - Roxana Ola
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
8
|
Al Tabosh T, Liu H, Koça D, Al Tarrass M, Tu L, Giraud S, Delagrange L, Beaudoin M, Rivière S, Grobost V, Rondeau-Lutz M, Dupuis O, Ricard N, Tillet E, Machillot P, Salomon A, Picart C, Battail C, Dupuis-Girod S, Guignabert C, Desroches-Castan A, Bailly S. Impact of heterozygous ALK1 mutations on the transcriptomic response to BMP9 and BMP10 in endothelial cells from hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension donors. Angiogenesis 2024; 27:211-227. [PMID: 38294582 PMCID: PMC11021321 DOI: 10.1007/s10456-023-09902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/03/2023] [Indexed: 02/01/2024]
Abstract
Heterozygous activin receptor-like kinase 1 (ALK1) mutations are associated with two vascular diseases: hereditary hemorrhagic telangiectasia (HHT) and more rarely pulmonary arterial hypertension (PAH). Here, we aimed to understand the impact of ALK1 mutations on BMP9 and BMP10 transcriptomic responses in endothelial cells. Endothelial colony-forming cells (ECFCs) and microvascular endothelial cells (HMVECs) carrying loss of function ALK1 mutations were isolated from newborn HHT and adult PAH donors, respectively. RNA-sequencing was performed on each type of cells compared to controls following an 18 h stimulation with BMP9 or BMP10. In control ECFCs, BMP9 and BMP10 stimulations induced similar transcriptomic responses with around 800 differentially expressed genes (DEGs). ALK1-mutated ECFCs unexpectedly revealed highly similar transcriptomic profiles to controls, both at the baseline and upon stimulation, and normal activation of Smad1/5 that could not be explained by a compensation in cell-surface ALK1 level. Conversely, PAH HMVECs revealed strong transcriptional dysregulations compared to controls with > 1200 DEGs at the baseline. Consequently, because our study involved two variables, ALK1 genotype and BMP stimulation, we performed two-factor differential expression analysis and identified 44 BMP9-dysregulated genes in mutated HMVECs, but none in ECFCs. Yet, the impaired regulation of at least one hit, namely lunatic fringe (LFNG), was validated by RT-qPCR in three different ALK1-mutated endothelial models. In conclusion, ALK1 heterozygosity only modified the BMP9/BMP10 regulation of few genes, including LFNG involved in NOTCH signaling. Future studies will uncover whether dysregulations in such hits are enough to promote HHT/PAH pathogenesis, making them potential therapeutic targets, or if second hits are necessary.
Collapse
Affiliation(s)
- T Al Tabosh
- Biosanté unit U1292, Grenoble Alpes University, INSERM, CEA, 38000, Grenoble, France
| | - H Liu
- Biosanté unit U1292, Grenoble Alpes University, INSERM, CEA, 38000, Grenoble, France
| | - D Koça
- Biosanté unit U1292, Grenoble Alpes University, INSERM, CEA, 38000, Grenoble, France
| | - M Al Tarrass
- Biosanté unit U1292, Grenoble Alpes University, INSERM, CEA, 38000, Grenoble, France
| | - L Tu
- Faculté de Médecine, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Université Paris-Saclay, 94276, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350, Le Plessis-Robinson, France
| | - S Giraud
- Genetics Department, Femme-Mère-Enfants Hospital, Hospices Civils de Lyon, 69677, Bron, France
| | - L Delagrange
- Genetics Department, Femme-Mère-Enfants Hospital, Hospices Civils de Lyon, 69677, Bron, France
- National Reference Center for HHT, 69677, Bron, France
| | - M Beaudoin
- Genetics Department, Femme-Mère-Enfants Hospital, Hospices Civils de Lyon, 69677, Bron, France
- National Reference Center for HHT, 69677, Bron, France
| | - S Rivière
- Internal Medicine Department, CHU of Montpellier, St Eloi Hospital and Center of Clinical Investigation, INSERM, CIC 1411, 34295, Montpellier Cedex 7, France
| | - V Grobost
- Internal Medicine Department, CHU Estaing, 63100, Clermont-Ferrand, France
| | - M Rondeau-Lutz
- Internal Medicine Department, University Hospital of Strasbourg, 67091, Strasbourg Cedex, France
| | - O Dupuis
- Hôpital Lyon SUD, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France
- Faculty of Medicine, Lyon University, 69921, Lyon, France
| | - N Ricard
- Biosanté unit U1292, Grenoble Alpes University, INSERM, CEA, 38000, Grenoble, France
| | - E Tillet
- Biosanté unit U1292, Grenoble Alpes University, INSERM, CEA, 38000, Grenoble, France
| | - P Machillot
- Biosanté unit U1292, Grenoble Alpes University, INSERM, CEA, 38000, Grenoble, France
| | - A Salomon
- Biosanté unit U1292, Grenoble Alpes University, INSERM, CEA, 38000, Grenoble, France
| | - C Picart
- Biosanté unit U1292, Grenoble Alpes University, INSERM, CEA, 38000, Grenoble, France
| | - C Battail
- Biosanté unit U1292, Grenoble Alpes University, INSERM, CEA, 38000, Grenoble, France
| | - S Dupuis-Girod
- Biosanté unit U1292, Grenoble Alpes University, INSERM, CEA, 38000, Grenoble, France
- Genetics Department, Femme-Mère-Enfants Hospital, Hospices Civils de Lyon, 69677, Bron, France
- National Reference Center for HHT, 69677, Bron, France
| | - C Guignabert
- Faculté de Médecine, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Université Paris-Saclay, 94276, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350, Le Plessis-Robinson, France
| | - A Desroches-Castan
- Biosanté unit U1292, Grenoble Alpes University, INSERM, CEA, 38000, Grenoble, France
| | - S Bailly
- Biosanté unit U1292, Grenoble Alpes University, INSERM, CEA, 38000, Grenoble, France.
| |
Collapse
|
9
|
Meneghelli P, Pasqualin A, Musumeci A, Pinna G, Berti PP, Polizzi GMV, Sinosi FA, Nicolato A, Sala F. Microsurgical removal of supratentorial and cerebellar cavernous malformations: what has changed? A single institution experience. J Clin Neurosci 2024; 123:162-170. [PMID: 38581776 DOI: 10.1016/j.jocn.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Features associated with a safe surgical resection of cerebral cavernous malformations (CMs) are still not clear and what is needed to achieve this target has not been defined yet. METHODS Clinical presentation, radiological features and anatomical locations were assessed for patients operated on from January 2008 to January 2018 for supratentorial and cerebellar cavernomas. Supratentorial CMs were divided into 3 subgroups (non-critical vs. superficial critical vs. deep critical). The clinical outcome was assessed through modified Rankin Scale (mRS) and was divided into favorable (mRS 0-1) and unfavorable (mRS ≥ 2). Post-operative epilepsy was classified according to the Maraire Scale. RESULTS A total of 144 were considered eligible for the current study. At 6 months follow-up the clinical outcome was excellent for patients with cerebellar or lobar CMs in non-critical areas (mRS ≤ 1: 91.1 %) and for patients with superficial CMs in critical areas (mRS ≤ 1: 92.3 %). Patients with deep-seated suprantentorial CMs showed a favorable outcome in 76.9 %. As for epilepsy 58.5 % of patients presenting with a history of epilepsy were free from seizures and without therapy (Maraire grade I) at last follow-up (mean 3.9 years) and an additional 41.5 % had complete control of seizures with therapy (Maraire grade II). CONCLUSIONS Surgery is safe in the management of CMs in non-critical but also in critical supratentorial locations, with a caveat for deep structures such as the insula, the basal ganglia and the thalamus/hypothalamus.
Collapse
Affiliation(s)
- Pietro Meneghelli
- Institute of Neurosurgery, University and City Hospital, Verona, Italy.
| | - Alberto Pasqualin
- Section of Vascular Neurosurgery, Institute of Neurological Surgery, University and City Hospital, Verona, Italy
| | - Angelo Musumeci
- Institute of Neurosurgery, University and City Hospital, Verona, Italy
| | - Giampietro Pinna
- Institute of Neurosurgery, University and City Hospital, Verona, Italy
| | - Pier Paolo Berti
- Institute of Neurosurgery, University and City Hospital, Verona, Italy
| | | | | | - Antonio Nicolato
- Section of Radiosurgery and Stereotactic Neurosurgery, Institute of Neurosurgery, University and City Hospital, Verona, Italy
| | - Francesco Sala
- Section of Neurosurgery, Department of Neuroscience, Biomedicine and Movement, University of Verona
| |
Collapse
|
10
|
Smith ER. Cavernous Malformations of the Central Nervous System. N Engl J Med 2024; 390:1022-1028. [PMID: 38477989 DOI: 10.1056/nejmra2305116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Affiliation(s)
- Edward R Smith
- From the Department of Neurosurgery, Children's Hospital Boston, and Harvard Medical School - both in Boston
| |
Collapse
|
11
|
Al Tabosh T, Al Tarrass M, Tourvieilhe L, Guilhem A, Dupuis-Girod S, Bailly S. Hereditary hemorrhagic telangiectasia: from signaling insights to therapeutic advances. J Clin Invest 2024; 134:e176379. [PMID: 38357927 PMCID: PMC10866657 DOI: 10.1172/jci176379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Hereditary hemorrhagic telangiectsia (HHT) is an inherited vascular disorder with highly variable expressivity, affecting up to 1 in 5,000 individuals. This disease is characterized by small arteriovenous malformations (AVMs) in mucocutaneous areas (telangiectases) and larger visceral AVMs in the lungs, liver, and brain. HHT is caused by loss-of-function mutations in the BMP9-10/ENG/ALK1/SMAD4 signaling pathway. This Review presents up-to-date insights on this mutated signaling pathway and its crosstalk with proangiogenic pathways, in particular the VEGF pathway, that has allowed the repurposing of new drugs for HHT treatment. However, despite the substantial benefits of these new treatments in terms of alleviating symptom severity, this not-so-uncommon bleeding disorder still currently lacks any FDA- or European Medicines Agency-approved (EMA-approved) therapies.
Collapse
Affiliation(s)
- Tala Al Tabosh
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
| | - Mohammad Al Tarrass
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
| | - Laura Tourvieilhe
- Hospices Civils de Lyon, National HHT Reference Center and Genetics Department, Femme-Mère-Enfants Hospital, Bron, France
| | - Alexandre Guilhem
- Hospices Civils de Lyon, National HHT Reference Center and Genetics Department, Femme-Mère-Enfants Hospital, Bron, France
- TAI-IT Autoimmunité Unit RIGHT-UMR1098, Burgundy University, INSERM, EFS-BFC, Besancon, France
| | - Sophie Dupuis-Girod
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
- Hospices Civils de Lyon, National HHT Reference Center and Genetics Department, Femme-Mère-Enfants Hospital, Bron, France
| | - Sabine Bailly
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
| |
Collapse
|
12
|
Li Y, Girard R, Srinath A, Cruz DV, Ciszewski C, Chen C, Lightle R, Romanos S, Sone JY, Moore T, DeBiasse D, Stadnik A, Lee JJ, Shenkar R, Koskimäki J, Lopez-Ramirez MA, Marchuk DA, Ginsberg MH, Kahn ML, Shi C, Awad IA. Transcriptomic signatures of individual cell types in cerebral cavernous malformation. Cell Commun Signal 2024; 22:23. [PMID: 38195510 PMCID: PMC10775676 DOI: 10.1186/s12964-023-01301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/30/2023] [Indexed: 01/11/2024] Open
Abstract
Cerebral cavernous malformation (CCM) is a hemorrhagic neurovascular disease with no currently available therapeutics. Prior evidence suggests that different cell types may play a role in CCM pathogenesis. The contribution of each cell type to the dysfunctional cellular crosstalk remains unclear. Herein, RNA-seq was performed on fluorescence-activated cell sorted endothelial cells (ECs), pericytes, and neuroglia from CCM lesions and non-lesional brain tissue controls. Differentially Expressed Gene (DEG), pathway and Ligand-Receptor (LR) analyses were performed to characterize the dysfunctional genes of respective cell types within CCMs. Common DEGs among all three cell types were related to inflammation and endothelial-to-mesenchymal transition (EndMT). DEG and pathway analyses supported a role of lesional ECs in dysregulated angiogenesis and increased permeability. VEGFA was particularly upregulated in pericytes. Further pathway and LR analyses identified vascular endothelial growth factor A/ vascular endothelial growth factor receptor 2 signaling in lesional ECs and pericytes that would result in increased angiogenesis. Moreover, lesional pericytes and neuroglia predominantly showed DEGs and pathways mediating the immune response. Further analyses of cell specific gene alterations in CCM endorsed potential contribution to EndMT, coagulation, and a hypoxic microenvironment. Taken together, these findings motivate mechanistic hypotheses regarding non-endothelial contributions to lesion pathobiology and may lead to novel therapeutic targets. Video Abstract.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Romuald Girard
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Abhinav Srinath
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Diana Vera Cruz
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Cezary Ciszewski
- Human Disease and Immune Discovery Core, The University of Chicago, Chicago, IL, USA
| | - Chang Chen
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Rhonda Lightle
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Sharbel Romanos
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Je Yeong Sone
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Thomas Moore
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Dorothy DeBiasse
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Agnieszka Stadnik
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Justine J Lee
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Robert Shenkar
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Janne Koskimäki
- Department of Neurosurgery, Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
- Department of Neurosurgery, Oulu University Hospital, Neurocenter, Oulu, Finland
| | - Miguel A Lopez-Ramirez
- Department of Medicine, University of California, La Jolla, San Diego, CA, USA
- Department of Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Mark H Ginsberg
- Department of Medicine, University of California, La Jolla, San Diego, CA, USA
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Changbin Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Issam A Awad
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA.
- Department of Neurological Surgery, University of Chicago Medicine, 5841 S Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA.
| |
Collapse
|
13
|
Cogswell PM, Pillai JJ, Lanzino G, Flemming KD. Prevalence of Developmental Venous Anomalies in Association with Sporadic Cavernous Malformations on 7T MRI. AJNR Am J Neuroradiol 2023; 45:72-75. [PMID: 38123913 PMCID: PMC10756565 DOI: 10.3174/ajnr.a8072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/25/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND AND PURPOSE The etiology of sporadic cavernous malformations is not well-understood. However, recent evidence suggests that they may arise from a developmental venous anomaly. The goal of this study was to evaluate the prevalence of developmental venous anomalies associated with sporadic cavernous malformations using 7T MR imaging. MATERIALS AND METHODS We retrospectively identified patients with a sporadic cavernous malformation imaged with 7T MR imaging between August 2019 and July 2022. Two raters determined whether a developmental venous anomaly was associated with each malformation. RESULTS The study included 59 patients with a total of 61 cavernous malformations. Of the sixty-one, 44 (72%) had an associated developmental venous anomaly. An associated anomaly was most common for cavernous malformations in the brainstem (88%) compared with the cerebral hemispheres or cerebellum (60%-67%). CONCLUSIONS By means of high-quality 7T imaging, most patients with a sporadic cavernous malformation were found to have an associated developmental venous anomaly. These findings support the hypothesis that cavernous malformations may arise secondary to hemodynamic abnormalities.
Collapse
Affiliation(s)
- Petrice M Cogswell
- From the Department of Radiology (P.M.C., J.J.P., G.L.), Mayo Clinic, Rochester, Minnesota
| | - Jay J Pillai
- From the Department of Radiology (P.M.C., J.J.P., G.L.), Mayo Clinic, Rochester, Minnesota
| | - Giuseppe Lanzino
- From the Department of Radiology (P.M.C., J.J.P., G.L.), Mayo Clinic, Rochester, Minnesota
- Department of Neurosurgery (G.L.), Mayo Clinic, Rochester, Minnesota
| | - Kelly D Flemming
- Department of Neurology (K.D.F.), Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
14
|
Sesen J, Ghalali A, Driscoll J, Martinez T, Lupieri A, Zurakowski D, Alexandrescu S, Smith ER, Fehnel KP. Discovery and Characterization of Ephrin B2 and EphB4 Dysregulation and Novel Mutations in Cerebral Cavernous Malformations: In Vitro and Patient-Derived Evidence of Ephrin-Mediated Endothelial Cell Pathophysiology. Cell Mol Neurobiol 2023; 44:12. [PMID: 38150042 DOI: 10.1007/s10571-023-01447-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
Intracranial vascular malformations manifest on a continuum ranging from predominantly arterial to predominantly venous in pathology. Cerebral cavernous malformations (CCMs) are capillary malformations that exist at the midpoint of this continuum. The axon guidance factor Ephrin B2 and its receptor EphB4 are critical regulators of vasculogenesis in the developing central nervous system. Ephrin B2/EphB4 dysregulation has been implicated in the pathogenesis of arterial-derived arteriovenous malformations and vein-based vein of Galen malformations. Increasing evidence supports the hypothesis that aberrant Ephrin B2/EphB4 signaling may contribute to developing vascular malformations, but their role in CCMs remains largely uncharacterized. Evidence of Ephrin dysregulation in CCMs would be important to establish a common link in the pathogenic spectrum of EphrinB2/Ephb4 dysregulation. By studying patient-derived primary CCM endothelial cells (CCMECs), we established that CCMECs are functionally distinct from healthy endothelial cell controls; CCMECs demonstrated altered patterns of migration, motility, and impaired tube formation. In addition to the altered phenotype, the CCMECs also displayed an increased ratio of EphrinB2/EphB4 compared to the healthy endothelial control cells. Furthermore, whole exome sequencing identified mutations in both EphrinB2 and EphB4 in the CCMECs. These findings identify functional alterations in the EphrinB2/EphB4 ratio as a feature linking pathophysiology across the spectrum of arterial, capillary, and venous structural malformations in the central nervous system while revealing a putative therapeutic target.
Collapse
Affiliation(s)
- Julie Sesen
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Aram Ghalali
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Jessica Driscoll
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Tyra Martinez
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Adrien Lupieri
- Cardiovascular Division, Brigham and Women's Hospital, Boston, USA
| | | | | | - Edward R Smith
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Katie P Fehnel
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Neurosurgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Ressler AK, Snellings DA, Girard R, Gallione CJ, Lightle R, Allen AS, Awad IA, Marchuk DA. Single-nucleus DNA sequencing reveals hidden somatic loss-of-heterozygosity in Cerebral Cavernous Malformations. Nat Commun 2023; 14:7009. [PMID: 37919320 PMCID: PMC10622526 DOI: 10.1038/s41467-023-42908-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023] Open
Abstract
Cerebral Cavernous Malformations (CCMs) are vascular malformations of the central nervous system which can lead to moderate to severe neurological phenotypes in patients. A majority of CCM lesions are driven by a cancer-like three-hit mutational mechanism, including a somatic, activating mutation in the oncogene PIK3CA, as well as biallelic loss-of-function mutations in a CCM gene. However, standard sequencing approaches often fail to yield a full complement of pathogenic mutations in many CCMs. We suggest this reality reflects the limited sensitivity to identify low-frequency variants and the presence of mutations undetectable with bulk short-read sequencing. Here we report a single-nucleus DNA-sequencing approach that leverages the underlying biology of CCMs to identify lesions with somatic loss-of-heterozygosity, a class of such hidden mutations. We identify an alternative genetic mechanism for CCM pathogenesis and establish a method that can be repurposed to investigate the genetic underpinning of other disorders with multiple somatic mutations.
Collapse
Affiliation(s)
- Andrew K Ressler
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Daniel A Snellings
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Carol J Gallione
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Andrew S Allen
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, 27710, USA
| | - Issam A Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
16
|
Li L, Ren AA, Gao S, Su YS, Yang J, Bockman J, Mericko-Ishizuka P, Griffin J, Shenkar R, Alcazar R, Moore T, Lightle R, DeBiasse D, Awad IA, Marchuk DA, Kahn ML, Burkhardt JK. mTORC1 Inhibitor Rapamycin Inhibits Growth of Cerebral Cavernous Malformation in Adult Mice. Stroke 2023; 54:2906-2917. [PMID: 37746705 PMCID: PMC10599232 DOI: 10.1161/strokeaha.123.044108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Cerebral cavernous malformations (CCMs) are vascular malformations that frequently cause stroke. CCMs arise due to loss of function in one of the genes that encode the CCM complex, a negative regulator of MEKK3-KLF2/4 signaling in vascular endothelial cells. Gain-of-function mutations in PIK3CA (encoding the enzymatic subunit of the PI3K (phosphoinositide 3-kinase) pathway associated with cell growth) synergize with CCM gene loss-of-function to generate rapidly growing lesions. METHODS We recently developed a model of CCM formation that closely reproduces key events in human CCM formation through inducible CCM loss-of-function and PIK3CA gain-of-function in mature mice. In the present study, we use this model to test the ability of rapamycin, a clinically approved inhibitor of the PI3K effector mTORC1, to treat rapidly growing CCMs. RESULTS We show that both intraperitoneal and oral administration of rapamycin arrests CCM growth, reduces perilesional iron deposition, and improves vascular perfusion within CCMs. CONCLUSIONS Our findings further establish this adult CCM model as a valuable preclinical model and support clinical testing of rapamycin to treat rapidly growing human CCMs.
Collapse
Affiliation(s)
- Lun Li
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
- Department of Neurosurgery, Perelman School of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Aileen A. Ren
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Siqi Gao
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Yourong S. Su
- Department of Neurosurgery, Perelman School of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Jisheng Yang
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Jenna Bockman
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Patricia Mericko-Ishizuka
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Joanna Griffin
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Roberto Alcazar
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Thomas Moore
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Rhonda Lightle
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Dorothy DeBiasse
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Issam A. Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Douglas A. Marchuk
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA 27708
| | - Mark L. Kahn
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Jan-Karl Burkhardt
- Department of Neurosurgery, Perelman School of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| |
Collapse
|
17
|
Ren J, Huang Y, Ren Y, Tu T, Qiu B, Ai D, Bi Z, Bai X, Li F, Li JL, Chen XJ, Feng Z, Guo Z, Lei J, Tian A, Cui Z, Lindner V, Adams RH, Wang Y, Zhao F, Körbelin J, Sun W, Wang Y, Zhang H, Hong T, Ge WP. Somatic variants of MAP3K3 are sufficient to cause cerebral and spinal cord cavernous malformations. Brain 2023; 146:3634-3647. [PMID: 36995941 PMCID: PMC10473567 DOI: 10.1093/brain/awad104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/31/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) and spinal cord cavernous malformations (SCCMs) are common vascular abnormalities of the CNS that can lead to seizure, haemorrhage and other neurological deficits. Approximately 85% of patients present with sporadic (versus congenital) CCMs. Somatic mutations in MAP3K3 and PIK3CA were recently reported in patients with sporadic CCM, yet it remains unknown whether MAP3K3 mutation is sufficient to induce CCMs. Here we analysed whole-exome sequencing data for patients with CCM and found that ∼40% of them have a single, specific MAP3K3 mutation [c.1323C>G (p.Ile441Met)] but not any other known mutations in CCM-related genes. We developed a mouse model of CCM with MAP3K3I441M uniquely expressed in the endothelium of the CNS. We detected pathological phenotypes similar to those found in patients with MAP3K3I441M. The combination of in vivo imaging and genetic labelling revealed that CCMs were initiated with endothelial expansion followed by disruption of the blood-brain barrier. Experiments with our MAP3K3I441M mouse model demonstrated that CCM can be alleviated by treatment with rapamycin, the mTOR inhibitor. CCM pathogenesis has usually been attributed to acquisition of two or three distinct genetic mutations involving the genes CCM1/2/3 and/or PIK3CA. However, our results demonstrate that a single genetic hit is sufficient to cause CCMs.
Collapse
Affiliation(s)
- Jian Ren
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
| | - Yazi Huang
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Yeqing Ren
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
| | - Tianqi Tu
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
| | - Baoshan Qiu
- Chinese Institute for Brain Research, Beijing 102206, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Daosheng Ai
- Chinese Institute for Brain Research, Beijing 102206, China
- Academy for Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing 100871, China
| | - Zhanying Bi
- Chinese Institute for Brain Research, Beijing 102206, China
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xue Bai
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Fengzhi Li
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jun-Liszt Li
- Chinese Institute for Brain Research, Beijing 102206, China
- Academy for Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing 100871, China
| | - Xing-jun Chen
- Chinese Institute for Brain Research, Beijing 102206, China
- Academy for Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing 100871, China
| | - Ziyan Feng
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Zongpei Guo
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jianfeng Lei
- Medical Imaging laboratory of Core Facility Center, Capital Medical University, Beijing 100054, China
| | - An Tian
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
| | - Ziwei Cui
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
| | - Volkhard Lindner
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, D-48149 Münster, Germany
| | - Yibo Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Fei Zhao
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Wenzhi Sun
- Chinese Institute for Brain Research, Beijing 102206, China
- School of Basic Medical Sciences, Capital Medical University, Beijing 100054, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
| | - Tao Hong
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
| | - Woo-ping Ge
- Chinese Institute for Brain Research, Beijing 102206, China
- Department of Neurosurgery, Xuanwu Hospital, Beijing Institute of Brain Disorders (BIBD), China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
| |
Collapse
|
18
|
Au EH, Fauci C, Luo Y, Mangan RJ, Snellings DA, Shoben CR, Weaver S, Simpson SK, Lowe CB. Gonomics: uniting high performance and readability for genomics with Go. Bioinformatics 2023; 39:btad516. [PMID: 37624924 PMCID: PMC10466080 DOI: 10.1093/bioinformatics/btad516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/19/2023] [Accepted: 08/24/2023] [Indexed: 08/27/2023] Open
Abstract
SUMMARY Many existing software libraries for genomics require researchers to pick between competing considerations: the performance of compiled languages and the accessibility of interpreted languages. Go, a modern compiled language, provides an opportunity to address this conflict. We introduce Gonomics, an open-source collection of command line programs and bioinformatic libraries implemented in Go that unites readability and performance for genomic analyses. Gonomics contains packages to read, write, and manipulate a wide array of file formats (e.g. FASTA, FASTQ, BED, BEDPE, SAM, BAM, and VCF), and can convert and interface between these formats. Furthermore, our modular library structure provides a flexible platform for researchers developing their own software tools to address specific questions. These commands can be combined and incorporated into complex pipelines to meet the growing need for high-performance bioinformatic resources. AVAILABILITY AND IMPLEMENTATION Gonomics is implemented in the Go programming language. Source code, installation instructions, and documentation are freely available at https://github.com/vertgenlab/gonomics.
Collapse
Affiliation(s)
- Eric H Au
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Christiana Fauci
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
- University Program in Genetics and Genomics, Duke University School of Medicine, Durham, NC 27710, United States
| | - Yanting Luo
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
- University Program in Genetics and Genomics, Duke University School of Medicine, Durham, NC 27710, United States
| | - Riley J Mangan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Daniel A Snellings
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Chelsea R Shoben
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
- University Program in Genetics and Genomics, Duke University School of Medicine, Durham, NC 27710, United States
| | - Seth Weaver
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
- University Program in Genetics and Genomics, Duke University School of Medicine, Durham, NC 27710, United States
| | - Shae K Simpson
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
- University Program in Genetics and Genomics, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
19
|
Ren J, Hong T, Zhang H. Angioarchitecture and genetic variants of spinal cord cavernous malformations and associated developmental venous anomalies: a case report. Childs Nerv Syst 2023; 39:1945-1948. [PMID: 36917268 DOI: 10.1007/s00381-023-05887-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/14/2023] [Indexed: 03/16/2023]
Abstract
Cavernous malformations (CM) have long been considered congenital of central nervous system, while the mechanism of CMs detailed development process associated with genetic factors remains unclear. We reported an uncommon case which suffered spinal cord cavernous malformations. In this work, representative samples were obtained, and the sequenced results were described for the first time. A 9-year-old boy was found oblique shoulder with slightly weakness of left limbs; MRI indicated spinal cord cavernous malformations (CMs) located at the C4-C6 vertebral level. On genetic analysis, a shared mutation of PIK3CA (p.H1047R) in CMs and associated developmental venous anomalies (DVAs) was detected, with a different abundance (2% and 7%, respectively), and a somatic mutation of MAP3K3 (p.I441M) was detected in the CM tissue samples. This case provides better knowledge of the formation history and genetic triggers of the DVA-associated CMs. This evidence allows us to speculate the developmental history of the CM lesion: The DVA with PIK3CA mutation might be genetic precursor, and then the associated CM could be derived from terminal cell population of the DVA by acquiring a somatic mutation in MAP3K3.
Collapse
Affiliation(s)
- Jian Ren
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- China International Neuroscience Institute, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Tao Hong
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- China International Neuroscience Institute, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
- China International Neuroscience Institute, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
20
|
Hsu CCT, Krings T. Symptomatic Developmental Venous Anomaly: State-of-the-Art Review on Genetics, Pathophysiology, and Imaging Approach to Diagnosis. AJNR Am J Neuroradiol 2023; 44:498-504. [PMID: 36997285 PMCID: PMC10171382 DOI: 10.3174/ajnr.a7829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/23/2023] [Indexed: 04/01/2023]
Abstract
Developmental venous anomalies (DVAs) are the most common slow-flow venous malformation in the brain. Most DVAs are benign. Uncommonly, DVAs can become symptomatic, leading to a variety of different pathologies. DVAs can vary significantly in size, location, and angioarchitecture, and imaging evaluation of symptomatic developmental venous anomalies requires a systematic approach. In this review, we aimed to provide neuroradiologists with a succinct overview of the genetics and categorization of symptomatic DVAs based on the pathogenesis, which forms the foundation for a tailored neuroimaging approach to assist in diagnosis and management.
Collapse
Affiliation(s)
- C C-T Hsu
- From the Division of Neuroradiology (C.C.-T.H.), Department of Medical Imaging, Gold Coast University Hospital, Southport, Queensland, Australia
- Division of Neuroradiology (C.C.-T.H.), Lumus Imaging, Varsity Lakes, Queensland, Australia
| | - T Krings
- Division of Neuroradiology (T.K.), Department of Medical Imaging, Toronto Western Hospital; University Medical Imaging Toronto and University of Toronto, Ontario, Canada
| |
Collapse
|
21
|
Sran S, Bedrosian TA. RAS pathway: The new frontier of brain mosaicism in epilepsy. Neurobiol Dis 2023; 180:106074. [PMID: 36907520 DOI: 10.1016/j.nbd.2023.106074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
As cells divide during development, errors in DNA replication and repair lead to somatic mosaicism - a phenomenon in which different cell lineages harbor unique constellations of genetic variants. Over the past decade, somatic variants that disrupt mTOR signaling, protein glycosylation, and other functions during brain development have been linked to cortical malformations and focal epilepsy. More recently, emerging evidence points to a role for Ras pathway mosaicism in epilepsy. The Ras family of proteins is a critical driver of MAPK signaling. Disruption of the Ras pathway is most known for its association with tumorigenesis; however, developmental disorders known as RASopathies commonly have a neurological component that sometimes includes epilepsy, offering evidence for Ras involvement in brain development and epileptogenesis. Brain somatic variants affecting the Ras pathway (e.g., KRAS, PTPN11, BRAF) are now strongly associated with focal epilepsy through genotype-phenotype association studies as well as mechanistic evidence. This review summarizes the Ras pathway and its involvement in epilepsy and neurodevelopmental disorders, focusing on new evidence regarding Ras pathway mosaicism and the potential future clinical implications.
Collapse
Affiliation(s)
- Sahibjot Sran
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Tracy A Bedrosian
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States of America; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States of America.
| |
Collapse
|
22
|
Huo R, Yang Y, Sun Y, Zhou Q, Zhao S, Mo Z, Xu H, Wang J, Weng J, Jiao Y, Zhang J, He Q, Wang S, Zhao J, Wang J, Cao Y. Endothelial hyperactivation of mutant MAP3K3 induces cerebral cavernous malformation enhanced by PIK3CA GOF mutation. Angiogenesis 2023; 26:295-312. [PMID: 36719480 DOI: 10.1007/s10456-023-09866-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
Cerebral cavernous malformations (CCMs) refer to a common vascular abnormality that affects up to 0.5% of the population. A somatic gain-of-function mutation in MAP3K3 (p.I441M) was recently reported in sporadic CCMs, frequently accompanied by somatic activating PIK3CA mutations in diseased endothelium. However, the molecular mechanisms of these driver genes remain elusive. In this study, we performed whole-exome sequencing and droplet digital polymerase chain reaction to analyze CCM lesions and the matched blood from sporadic patients. 44 of 94 cases harbored mutations in KRIT1/CCM2 or MAP3K3, of which 75% were accompanied by PIK3CA mutations (P = 0.006). AAV-BR1-mediated brain endothelial-specific MAP3K3I441M overexpression induced CCM-like lesions throughout the brain and spinal cord in adolescent mice. Interestingly, over half of lesions disappeared at adulthood. Single-cell RNA sequencing found significant enrichment of the apoptosis pathway in a subset of brain endothelial cells in MAP3K3I441M mice compared to controls. We then demonstrated that MAP3K3I441M overexpression activated p38 signaling that is associated with the apoptosis of endothelial cells in vitro and in vivo. In contrast, the mice simultaneously overexpressing PIK3CA and MAP3K3 mutations had an increased number of CCM-like lesions and maintained these lesions for a longer time compared to those with only MAP3K3I441M. Further in vitro and in vivo experiments showed that activating PI3K signaling increased proliferation and alleviated apoptosis of endothelial cells. By using AAV-BR1, we found that MAP3K3I441M mutation can provoke CCM-like lesions in mice and the activation of PI3K signaling significantly enhances and maintains these lesions, providing a preclinical model for the further mechanistic and therapeutic study of CCMs.
Collapse
Affiliation(s)
- Ran Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yingxi Yang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yingfan Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiuxia Zhou
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Shaozhi Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zongchao Mo
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hongyuan Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jie Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiancong Weng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuming Jiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Junze Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiguang Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong SAR, China.
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
23
|
Aw WY, Cho C, Wang H, Cooper AH, Doherty EL, Rocco D, Huang SA, Kubik S, Whitworth CP, Armstrong R, Hickey AJ, Griffith B, Kutys ML, Blatt J, Polacheck WJ. Microphysiological model of PIK3CA-driven vascular malformations reveals a role of dysregulated Rac1 and mTORC1/2 in lesion formation. SCIENCE ADVANCES 2023; 9:eade8939. [PMID: 36791204 PMCID: PMC9931220 DOI: 10.1126/sciadv.ade8939] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/13/2023] [Indexed: 05/09/2023]
Abstract
Somatic activating mutations of PIK3CA are associated with development of vascular malformations (VMs). Here, we describe a microfluidic model of PIK3CA-driven VMs consisting of human umbilical vein endothelial cells expressing PIK3CA activating mutations embedded in three-dimensional hydrogels. We observed enlarged, irregular vessel phenotypes and the formation of cyst-like structures consistent with clinical signatures and not previously observed in cell culture models. Pathologic morphologies occurred concomitant with up-regulation of Rac1/p21-activated kinase (PAK), mitogen-activated protein kinase cascades (MEK/ERK), and mammalian target of rapamycin (mTORC1/2) signaling networks. We observed differential effects between alpelisib, a PIK3CA inhibitor, and rapamycin, an mTORC1 inhibitor, in mitigating matrix degradation and network topology. While both were effective in preventing vessel enlargement, rapamycin failed to reduce MEK/ERK and mTORC2 activity and resulted in hyperbranching, while inhibiting PAK, MEK1/2, and mTORC1/2 mitigates abnormal growth and vascular dilation. Collectively, these findings demonstrate an in vitro platform for VMs and establish a role of dysregulated Rac1/PAK and mTORC1/2 signaling in PIK3CA-driven VMs.
Collapse
Affiliation(s)
- Wen Yih Aw
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA and North Carolina State University, Raleigh, NC, USA
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Crescentia Cho
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA and North Carolina State University, Raleigh, NC, USA
| | - Hao Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA and North Carolina State University, Raleigh, NC, USA
| | - Anne Hope Cooper
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA and North Carolina State University, Raleigh, NC, USA
| | - Elizabeth L. Doherty
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA and North Carolina State University, Raleigh, NC, USA
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Rocco
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Stephanie A. Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA and North Carolina State University, Raleigh, NC, USA
| | - Sarah Kubik
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA and North Carolina State University, Raleigh, NC, USA
| | - Chloe P. Whitworth
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA and North Carolina State University, Raleigh, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Ryan Armstrong
- Department of Physics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony J. Hickey
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyce Griffith
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA and North Carolina State University, Raleigh, NC, USA
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew L. Kutys
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Julie Blatt
- Department of Pediatrics (Division of Pediatric Hematology Oncology), University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA and North Carolina State University, Raleigh, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
24
|
Li Z, Ma L, Quan K, Liu P, Shi Y, Liu Y, Zhu W. Rehemorrhage of brainstem cavernous malformations: a benchmark approach to individualized risk and severity assessment. J Neurosurg 2022:1-12. [PMID: 36585870 DOI: 10.3171/2022.11.jns222277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/29/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Brainstem cavernous malformations (BSCMs) represent a unique subgroup of cavernous malformations with more hemorrhagic presentation and technical challenges. This study aimed to provide individualized assessment of the rehemorrhage clustering risk of BSCMs after the first symptomatic hemorrhage and to identify patients at higher risk of neurological deterioration after new hemorrhage, which would help in clinical decision-making. METHODS A total of 123 consecutive BSCM patients with symptomatic hemorrhage were identified between 2015 and 2022, with untreated follow-up > 12 months or subsequent hemorrhage during the untreated follow-up. Nomograms were proposed to individualize the assessment of subsequent hemorrhage risk and neurological status (determined by the modified Rankin Scale [mRS] score) after future hemorrhage. The least absolute shrinkage and selector operation (LASSO) regression was used for feature screening. The calibration curve and concordance index (C-index) were used to assess the internal calibration and discrimination performance of the nomograms. Cross-validation was further performed to validate the accuracy of the nomograms. RESULTS Prior hemorrhage times (adjusted OR [aOR] 6.78 per ictus increase) and Zabramski type I or V (OR 11.04) were associated with rehemorrhage within 1 year. A lower mRS score after previous hemorrhage (aOR 0.38 for a shift to a higher mRS score), Zabramski type I or V (OR 3.41), medulla or midbrain location (aOR 2.77), and multiple cerebral cavernous malformations (aOR 11.76) were associated with worsened neurological status at subsequent hemorrhage. The nomograms showed good accuracy and discrimination, with a C-index of 0.80 for predicting subsequent hemorrhage within 1 year and 0.71 for predicting neurological status after subsequent hemorrhage, which were maintained in cross-validation. CONCLUSIONS An individualized approach to risk and severity assessment of BSCM rehemorrhage was feasible with clinical and imaging features.
Collapse
Affiliation(s)
- Zongze Li
- 1Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai.,2National Center for Neurological Disorders, Shanghai.,3Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai.,4Neurosurgical Institute of Fudan University, Shanghai.,5Shanghai Clinical Medical Center of Neurosurgery, Shanghai; and
| | - Li Ma
- 6Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kai Quan
- 1Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai.,2National Center for Neurological Disorders, Shanghai.,3Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai.,4Neurosurgical Institute of Fudan University, Shanghai.,5Shanghai Clinical Medical Center of Neurosurgery, Shanghai; and
| | - Peixi Liu
- 1Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai.,2National Center for Neurological Disorders, Shanghai.,3Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai.,4Neurosurgical Institute of Fudan University, Shanghai.,5Shanghai Clinical Medical Center of Neurosurgery, Shanghai; and
| | - Yuan Shi
- 1Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai.,2National Center for Neurological Disorders, Shanghai.,3Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai.,4Neurosurgical Institute of Fudan University, Shanghai.,5Shanghai Clinical Medical Center of Neurosurgery, Shanghai; and
| | - Yingjun Liu
- 1Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai.,2National Center for Neurological Disorders, Shanghai.,3Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai.,4Neurosurgical Institute of Fudan University, Shanghai.,5Shanghai Clinical Medical Center of Neurosurgery, Shanghai; and
| | - Wei Zhu
- 1Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai.,2National Center for Neurological Disorders, Shanghai.,3Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai.,4Neurosurgical Institute of Fudan University, Shanghai.,5Shanghai Clinical Medical Center of Neurosurgery, Shanghai; and
| |
Collapse
|
25
|
Angulo-Urarte A, Graupera M. When, where and which PIK3CA mutations are pathogenic in congenital disorders. NATURE CARDIOVASCULAR RESEARCH 2022; 1:700-714. [PMID: 39196083 DOI: 10.1038/s44161-022-00107-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/22/2022] [Indexed: 08/29/2024]
Abstract
PIK3CA encodes the class I PI3Kα isoform and is frequently mutated in cancer. Activating mutations in PIK3CA also cause a range of congenital disorders featuring asymmetric tissue overgrowth, known as the PIK3CA-related overgrowth spectrum (PROS), with frequent vascular involvement. In PROS, PIK3CA mutations arise postzygotically, during embryonic development, leading to a mosaic body pattern distribution resulting in a variety of phenotypic features. A clear skewed pattern of overgrowth favoring some mesoderm-derived and ectoderm-derived tissues is observed but not understood. Here, we summarize our current knowledge of the determinants of PIK3CA-related pathogenesis in PROS, including intrinsic factors such as cell lineage susceptibility and PIK3CA variant bias, and extrinsic factors, which refers to environmental modifiers. We also include a section on PIK3CA-related vascular malformations given that the vasculature is frequently affected in PROS. Increasing our biological understanding of PIK3CA mutations in PROS will contribute toward unraveling the onset and progression of these conditions and ultimately impact on their treatment. Given that PIK3CA mutations are similar in PROS and cancer, deeper insights into one will also inform about the other.
Collapse
Affiliation(s)
- Ana Angulo-Urarte
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.
| | - Mariona Graupera
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|