1
|
Libby P, Smith R, Rubin EJ, Glassberg MK, Farkouh ME, Rosenson RS. Inflammation unites diverse acute and chronic diseases. Eur J Clin Invest 2024; 54:e14280. [PMID: 39046830 DOI: 10.1111/eci.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Inflammation and immunity contribute pivotally to diverse acute and chronic diseases. Inflammatory pathways have become increasingly targets for therapy. Yet, despite substantial similarity in mechanisms and pathways, the scientific, medical, pharma and biotechnology sectors have generally focused programs finely on a single disease entity or organ system. This insularity may impede progress in innovation and the harnessing of powerful new insights into inflammation biology ripe for clinical translation. METHODS A multidisciplinary thinktank reviewed highlights how inflammation contributes to diverse diseases, disturbed homeostasis, ageing and impaired healthspan. We explored how common inflammatory and immune mechanisms that operate in key conditions in their respective domains. This consensus review highlights the high degree of commonality of inflammatory mechanisms in a diverse array of conditions that together contribute a major part of the global burden of morbidity and mortality and present an enormous challenge to public health and drain on resources. RESULTS We demonstrate how that shared inflammatory mechanisms unite many seemingly disparate diseases, both acute and chronic. The examples of infection, cardiovascular conditions, pulmonary diseases, rheumatological disorders, dementia, cancer and ageing illustrate the overlapping pathogenesis. We outline opportunities to synergize, reduce duplication and consolidate efforts of the clinical, research and pharmaceutical communities. Enhanced recognition of these commonalties should promote cross-fertilization and hasten progress in this rapidly moving domain. CONCLUSIONS Greater appreciation of the shared mechanisms should simplify understanding seemingly disparate diseases for clinicians and help them to recognize inflammation as a therapeutic target which the development of novel therapies is rendering actionable.
Collapse
Affiliation(s)
- Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Michael E Farkouh
- Division of Cardiology, University Health Network, Toronto, Ontario, Canada
- Peter Munk Centre of Excellence in Multinational Clinical Trials, University Health Network, Toronto, Ontario, Canada
| | - Robert S Rosenson
- Cardiometabolics Unit, Mount Sinai Icahn School of Medicine, Mount Sinai Hospital, New York, New York, USA
| |
Collapse
|
2
|
Cazzola M, Page CP, Hanania NA, Calzetta L, Matera MG, Rogliani P. Asthma and Cardiovascular Diseases: Navigating Mutual Pharmacological Interferences. Drugs 2024; 84:1251-1273. [PMID: 39327397 PMCID: PMC11512905 DOI: 10.1007/s40265-024-02086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/28/2024]
Abstract
Asthma and cardiovascular disease (CVD) often co-exist. When a patient has both conditions, management requires an approach that addresses the unique challenges of each condition separately, while also considering their potential interactions. However, specific guidance on the management of asthma in patients with CVD and on the management of CVD in patients with asthma is still lacking. Nevertheless, health care providers need to adopt a comprehensive approach that includes both respiratory and CVD health. The management of CVD in patients with asthma requires a delicate balance between controlling respiratory symptoms and minimising potential cardiovascular (CV) risks. In the absence of specific guidelines for the management of patients with both conditions, the most prudent approach would be to follow established guidelines for each condition independently. Careful selection of asthma medications is essential to avoid exacerbation of CV symptoms. In addition, optimal management of CV risk factors is essential. However, close monitoring of these patients is important as there is evidence that some asthma medications may have adverse effects on CVD and, conversely, that some CVD medications may worsen asthma symptoms. On the other hand, there is also increasing evidence of the potential beneficial effects of asthma medications on CVD and, conversely, that some CVD medications may reduce the severity of asthma symptoms. We aim to elucidate the potential risks and benefits associated with the use of asthma medications in patients with CVD, and the potential pulmonary risks and benefits for patients with asthma who are prescribed CVD medications.
Collapse
Affiliation(s)
- Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy.
| | - Clive P Page
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
3
|
Gohal G, Moni SS, Bakkari MA, Elmobark ME. A Review on Asthma and Allergy: Current Understanding on Molecular Perspectives. J Clin Med 2024; 13:5775. [PMID: 39407835 PMCID: PMC11476424 DOI: 10.3390/jcm13195775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Asthma, a complex disease characterized by persistent airway inflammation, remains an urgent global health concern. We explored the critical role of allergic biomarkers and dysregulated immune system in asthma through an extensive literature review in databases such as Web of Science, PubMed, EMBASE, Scopus, and Google Scholar. This review summarizes the growing data on the pivotal role of allergic biomarkers and dysregulated immune system in the development and evolution of asthma. Recent studies have uncovered several biomarkers that elucidate intrinsic allergic mechanisms in individuals with asthma. This article highlights these biomarkers' potential in predicting asthma onset, assessing its intensity, guiding therapeutic interventions, and tracking disease progression. We also explore the innovative therapeutic prospects arising from the convergence of allergy and dysregulated immune system in asthma and emphasize the potential for precision medicine approaches. Understanding allergic biomarkers intertwined with a dysregulated immune system heralds a new era in asthma treatment and points to improved and individualized treatment modalities.
Collapse
Affiliation(s)
- Gassem Gohal
- Department of Pediatrics, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
| | - Sivakumar S. Moni
- Health Research Centre, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Mohammed Ali Bakkari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | | |
Collapse
|
4
|
Lu C, Liu Q, Qiao Z, Yang X, Baghani AN, Wang F. High humidity and NO 2 co-exposure exacerbates allergic asthma by increasing oxidative stress, inflammatory and TRP protein expressions in lung tissue. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 353:124127. [PMID: 38759746 DOI: 10.1016/j.envpol.2024.124127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Allergic asthma is a chronic inflammatory airway disease with a high mortality rate and a rapidly increasing prevalence in recent decades that is closely linked to environmental change. Previous research found that high humidity (HH) and the traffic-related air pollutant NO2 both aggregated allergic asthma. Their combined effect and mechanisms on asthma exacerbation, however, are unknown. Our study aims to toxicologically clarify the role of HH (90%) and NO2 (5 ppm) on allergic asthma. Ninety male Balb/c mice were randomly assigned to one of six groups (n = 15 in each): saline control, ovalbumin (OVA)-sensitized, OVA + HH, OVA + NO2, OVA + HH + NO2, and OVA + HH + NO2+Capsazepine (CZP). After 38 days of treatment, the airway function, pathological changes in lung tissue, blood inflammatory cells, and oxidative stress and inflammatory biomarkers were comprehensively assessed. Co-exposure to HH and NO2 exacerbated histopathological changes and airway hyperresponsiveness, increased IgE, oxidative stress markers malonaldehyde (MDA) and allergic asthma-related inflammation markers (IL-1β, TNF-α and IL-17), and upregulated the expressions of the transient receptor potential (TRP) ion channels (TRPA1, TRPV1 and TRPV4). Our findings show that co-exposure to HH and NO2 disrupted the Th1/Th2 immune balance, promoting allergic airway inflammation and asthma susceptibility, and increasing TRPV1 expression, whereas CZP reduced TRPV1 expression and alleviated allergic asthma symptoms. Thus, therapeutic treatments that target the TRPV1 ion channel have the potential to effectively manage allergic asthma.
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha, China; Hunan Provincial Key Laboratory of Low Carbon Healthy Building, Central South University, Changsha, China
| | - Qin Liu
- XiangYa School of Public Health, Central South University, Changsha, China
| | - Zipeng Qiao
- XiangYa School of Public Health, Central South University, Changsha, China
| | - Xu Yang
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Abbas Norouzian Baghani
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Faming Wang
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Xie CL, Xiao HX, Song PF, Liu QM, Wei H, Wu L, Zhu GH, Liu GM, Zhang Y, Wang P, Yang XW. Lead Optimization of Butyrolactone I as an Orally Bioavailable Antiallergic Agent Targeting FcγRIIB. J Med Chem 2024. [PMID: 38640354 DOI: 10.1021/acs.jmedchem.4c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Food allergy (FA) poses a growing global food safety concern, yet no effective cure exists in clinics. Previously, we discovered a potent antifood allergy compound, butyrolactone I (BTL-I, 1), from the deep sea. Unfortunately, it has a very low exposure and poor pharmacokinetic (PK) profile in rats. Therefore, a series of structural optimizations toward the metabolic pathways of BTL-I were conducted to provide 18 derives (2-19). Among them, BTL-MK (19) showed superior antiallergic activity and favorable pharmacokinetics compared to BTL-I, being twice as potent with a clearance (CL) rate of only 0.5% that of BTL-I. By oral administration, Cmax and area under the concentration-time curve (AUC0-∞) were 565 and 204 times higher than those of BTL-I, respectively. These findings suggest that butyrolactone methyl ketone (BTL-BK) could serve as a drug candidate for the treatment of FAs and offer valuable insights into optimizing the druggability of lead compounds.
Collapse
Affiliation(s)
- Chun-Lan Xie
- School of Pharmacy, Hainan Medical University, Hainan Academy of Medical Sciences, No. 3 Xueyuan Road, Haikou 571199, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
| | - Hong-Xiu Xiao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Pei-Fang Song
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing-Mei Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Haoxiang Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Liang Wu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang-Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang-Ming Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Yandong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xian-Wen Yang
- School of Pharmacy, Hainan Medical University, Hainan Academy of Medical Sciences, No. 3 Xueyuan Road, Haikou 571199, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
| |
Collapse
|
6
|
Vaz-Rodrigues R, Mazuecos L, Villar M, Contreras M, Artigas-Jerónimo S, González-García A, Gortázar C, de la Fuente J. Multi-omics analysis of zebrafish response to tick saliva reveals biological processes associated with alpha-Gal syndrome. Biomed Pharmacother 2023; 168:115829. [PMID: 37922649 DOI: 10.1016/j.biopha.2023.115829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023] Open
Abstract
The alpha-Gal syndrome (AGS) is a tick-borne allergy. A multi-omics approach was used to determine the effect of tick saliva and mammalian meat consumption on zebrafish gut transcriptome and proteome. Bioinformatics analysis using R software was focused on significant biological and metabolic pathway changes associated with AGS. Ortholog mapping identified highly concordant human ortholog genes for the detection of disease-enriched pathways. Tick saliva treatment increased zebrafish mortality, incidence of hemorrhagic type allergic reactions and changes in behavior and feeding patterns. Transcriptomics analysis showed downregulation of biological and metabolic pathways correlated with anti-alpha-Gal IgE and allergic reactions to tick saliva affecting blood circulation, cardiac and vascular smooth muscle contraction, behavior and sensory perception. Disease enrichment analysis revealed downregulated orthologous genes associated with human disorders affecting nervous, musculoskeletal, and cardiovascular systems. Proteomics analysis revealed suppression of pathways associated with immune system production of reactive oxygen species and cardiac muscle contraction. Underrepresented proteins were mainly linked to nervous and metabolic human disorders. Multi-omics data revealed inhibition of pathways associated with adrenergic signaling in cardiomyocytes, and heart and muscle contraction. Results identify tick saliva-related biological pathways supporting multisystemic organ involvement and linking α-Gal sensitization with other illnesses for the identification of potential disease biomarkers.
Collapse
Affiliation(s)
- Rita Vaz-Rodrigues
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Lorena Mazuecos
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain; Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Sara Artigas-Jerónimo
- Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Almudena González-García
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Centre for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
7
|
Wang X, Ran S, Xia H, Shi H, Wu G, Zhang Z, Wang C, Cai M, Zhang J, Lin H. Ambient air pollution associated with incident asthma, subsequent cardiovascular disease and death: A trajectory analysis of a national cohort. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132372. [PMID: 37633014 DOI: 10.1016/j.jhazmat.2023.132372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
No previous study has examined the impact of air pollution on the cardiovascular disease (CVD) trajectory, especially among asthmatic subjects. Based on the UK Biobank cohort, we retrieved 292,227 adults free of asthma and CVD aged 37-73 years at recruitment (2006-2010). Annual mean concentrations of particulate matter (PM10 and PM2.5) and nitrogen oxides (NO2 and NOx) were assessed at each individual's addresses. We used multi-state models to estimate the associations of air pollution with the trajectory from healthy to incident asthma, subsequent CVD, and death. During a median follow-up of 11.7 years, a total of 6338 (2.2%) participants developed asthma, among which, 638 (10.1%) subsequently proceeded to CVD. We observed significant impacts of various air pollutants on the CVD dynamic transitions, with a more substantial effect of particulate matter pollutants than gaseous air pollutants. For example, the hazard ratios (95% confidence intervals) for per interquartile range increase in PM2.5 and PM10 were 1.28 (1.13, 1.44) and 1.27 (1.13, 1.43) for transitions from incident asthma to subsequent CVD. In conclusion, long-term air pollution exposure could affect the CVD trajectory. Distinguishing the effect of air pollutants on CVD transition stages has great significance for CVD health management and clinical prevention, especially among asthma patients.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Ran
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hui Xia
- Center for Health Care, Longhua District, Shenzhen, China
| | - Hui Shi
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Gan Wu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Junguo Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
Cazzola M, Rogliani P, Ora J, Calzetta L, Matera MG. Cardiovascular diseases or type 2 diabetes mellitus and chronic airway diseases: mutual pharmacological interferences. Ther Adv Chronic Dis 2023; 14:20406223231171556. [PMID: 37284143 PMCID: PMC10240559 DOI: 10.1177/20406223231171556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/06/2023] [Indexed: 06/08/2023] Open
Abstract
Chronic airway diseases (CAD), mainly asthma and chronic obstructive pulmonary disease (COPD), are frequently associated with different comorbidities. Among them, cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) pose problems for the simultaneous treatment of CAD and comorbidity. Indeed, there is evidence that some drugs used to treat CAD negatively affect comorbidity, and, conversely, some drugs used to treat comorbidity may aggravate CAD. However, there is also growing evidence of some beneficial effects of CAD drugs on comorbidities and, conversely, of the ability of some of those used to treat comorbidity to reduce the severity of lung disease. In this narrative review, we first describe the potential cardiovascular risks and benefits for patients using drugs to treat CAD and the potential lung risks and benefits for patients using drugs to treat CVD. Then, we illustrate the possible negative and positive effects on T2DM of drugs used to treat CAD and the potential negative and positive impact on CAD of drugs used to treat T2DM. The frequency with which CAD and CVD or T2DM are associated requires not only considering the effect that drugs used for one disease condition may have on the other but also providing an opportunity to develop therapies that simultaneously favorably impact both diseases.
Collapse
Affiliation(s)
- Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Paola Rogliani
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Josuel Ora
- Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maria Gabriella Matera
- Chair of Pharmacology, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
9
|
Dodd KE, Blackley DJ, Mazurek JM. Cardiovascular Disease Among Adults With Work-Related Asthma, 2012-2017. Am J Prev Med 2023; 64:194-203. [PMID: 36371324 DOI: 10.1016/j.amepre.2022.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 09/12/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Asthma is associated with an increased risk for cardiovascular disease, and adults with persistent, severe asthma have a significantly higher risk of cardiovascular disease than adults with intermittent or no asthma. METHODS The objective of this cross-sectional study was to assess the association between work-related asthma status and cardiovascular disease among ever-employed adults (aged 18-64 years) with current asthma using data from the 2012-2017 Behavioral Risk Factor Surveillance System Asthma Call-Back Survey from 37 states and the District of Columbia. Weighted prevalence ratios and 95% CIs, adjusted for age, sex, race/ethnicity, education, household income, smoking status, chronic obstructive pulmonary disease, diabetes, and BMI, were calculated. In addition, the associations of cardiovascular disease with adverse asthma outcomes and asthma control among adults with work-related asthma were examined. Analyses were conducted in 2021. RESULTS Among an estimated annualized 14.8 million ever-employed adults aged 18-64 years with current asthma, adults with work-related asthma (prevalence ratio=1.5; 95% CI=1.2, 1.8) and possible work-related asthma (prevalence ratio=1.2; 95% CI=1.0, 1.5) were significantly more likely to have cardiovascular disease than adults with non-work-related asthma. Among adults with work-related asthma, those with very poorly controlled asthma (prevalence ratio=1.8; 95% CI=1.3, 2.5) and an asthma-related emergency room visit (prevalence ratio=1.5; 95% CI=1.1, 2.0) were significantly more likely to have cardiovascular disease. CONCLUSIONS Adults with work-related asthma were more likely to have cardiovascular disease than those with non-work-related asthma. Primary prevention, early diagnosis, and implementation of optimal work-related asthma management are essential for workers' health. Cardiovascular disease should be considered where appropriate when diagnosing and recommending treatment and interventions for adults with work-related asthma.
Collapse
Affiliation(s)
- Katelynn E Dodd
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention (CDC), Morgantown, West Virginia.
| | - David J Blackley
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention (CDC), Morgantown, West Virginia
| | - Jacek M Mazurek
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention (CDC), Morgantown, West Virginia
| |
Collapse
|
10
|
Ling X, Jie W, Qin X, Zhang S, Shi K, Li T, Guo J. Gut microbiome sheds light on the development and treatment of abdominal aortic aneurysm. Front Cardiovasc Med 2022; 9:1063683. [PMID: 36505348 PMCID: PMC9732037 DOI: 10.3389/fcvm.2022.1063683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is an inflammatory vascular disease with high disability and mortality. Its susceptible risk factors include old age, being male, smoking, hypertension, and aortic atherosclerosis. With the improvement of screening techniques, AAA incidence and number of deaths caused by aneurysm rupture increase annually, attracting much clinical attention. Due to the lack of non-invasive treatment, early detection and development of novel treatment of AAA is an urgent clinical concern. The pathophysiology and progression of AAA are characterized by inflammatory destruction. The gut microbiota is an "invisible organ" that directly or indirectly affects the vascular wall inflammatory cell infiltration manifested with enhanced arterial wall gut microbiota and metabolites, which plays an important role in the formation and progression of AAA. As such, the gut microbiome may become an important risk factor for AAA. This review summarizes the direct and indirect effects of the gut microbiome on the pathogenesis of AAA and highlights the gut microbiome-mediated inflammatory responses and discoveries of relevant therapeutic targets that may help manage the development and rupture of AAA.
Collapse
Affiliation(s)
- Xuebin Ling
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Wei Jie
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Xue Qin
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Shuya Zhang
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Kaijia Shi
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Tianfa Li
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Junli Guo
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| |
Collapse
|
11
|
IgE promotes pulmonary hypertension through mast cell-derived IL-6 and IL-13. NATURE CARDIOVASCULAR RESEARCH 2022; 1:609-610. [PMID: 39196247 DOI: 10.1038/s44161-022-00104-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
|