1
|
Jiao Z, Geng Z, Ding W. A predicted model-aided one-step classification-multireconstruction algorithm for X-ray free-electron laser single-particle imaging. IUCRJ 2024; 11:891-900. [PMID: 39194258 PMCID: PMC11364030 DOI: 10.1107/s2052252524007851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
Ultrafast, high-intensity X-ray free-electron lasers can perform diffraction imaging of single protein molecules. Various algorithms have been developed to determine the orientation of each single-particle diffraction pattern and reconstruct the 3D diffraction intensity. Most of these algorithms rely on the premise that all diffraction patterns originate from identical protein molecules. However, in actual experiments, diffraction patterns from multiple different molecules may be collected simultaneously. Here, we propose a predicted model-aided one-step classification-multireconstruction algorithm that can handle mixed diffraction patterns from various molecules. The algorithm uses predicted structures of different protein molecules as templates to classify diffraction patterns based on correlation coefficients and determines orientations using a correlation maximization method. Tests on simulated data demonstrated high accuracy and efficiency in classification and reconstruction.
Collapse
Affiliation(s)
- Zhichao Jiao
- Laboratory of Soft Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijing100190People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Zhi Geng
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Wei Ding
- Laboratory of Soft Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijing100190People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| |
Collapse
|
2
|
Scheinker A. Conditional guided generative diffusion for particle accelerator beam diagnostics. Sci Rep 2024; 14:19210. [PMID: 39160261 PMCID: PMC11333739 DOI: 10.1038/s41598-024-70302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024] Open
Abstract
Advanced accelerator-based light sources such as free electron lasers (FEL) accelerate highly relativistic electron beams to generate incredibly short (10s of femtoseconds) coherent flashes of light for dynamic imaging, whose brightness exceeds that of traditional synchrotron-based light sources by orders of magnitude. FEL operation requires precise control of the shape and energy of the extremely short electron bunches whose characteristics directly translate into the properties of the produced light. Control of short intense beams is difficult due to beam characteristics drifting with time and complex collective effects such as space charge and coherent synchrotron radiation. Detailed diagnostics of beam properties are therefore essential for precise beam control. Such measurements typically rely on a destructive approach based on a combination of a transverse deflecting resonant cavity followed by a dipole magnet in order to measure a beam's 2D time vs energy longitudinal phase-space distribution. In this paper, we develop a non-invasive virtual diagnostic of an electron beam's longitudinal phase space at megapixel resolution (1024 × 1024) based on a generative conditional diffusion model. We demonstrate the model's generative ability on experimental data from the European X-ray FEL.
Collapse
Affiliation(s)
- Alexander Scheinker
- Applied Electrodynamics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
3
|
Jiao Z, He Y, Fu X, Zhang X, Geng Z, Ding W. A predicted model-aided reconstruction algorithm for X-ray free-electron laser single-particle imaging. IUCRJ 2024; 11:602-619. [PMID: 38904548 PMCID: PMC11220885 DOI: 10.1107/s2052252524004858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Ultra-intense, ultra-fast X-ray free-electron lasers (XFELs) enable the imaging of single protein molecules under ambient temperature and pressure. A crucial aspect of structure reconstruction involves determining the relative orientations of each diffraction pattern and recovering the missing phase information. In this paper, we introduce a predicted model-aided algorithm for orientation determination and phase retrieval, which has been tested on various simulated datasets and has shown significant improvements in the success rate, accuracy and efficiency of XFEL data reconstruction.
Collapse
Affiliation(s)
- Zhichao Jiao
- Laboratory of Soft Matter PhysicsInstitute of Physics, Chinese Academy of SciencesBeijing100190People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Yao He
- Research Instrument ScientistNew York University Abu DhabiAbu DhabiUnited Arab Emirates
| | - Xingke Fu
- Laboratory of Soft Matter PhysicsInstitute of Physics, Chinese Academy of SciencesBeijing100190People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Xin Zhang
- The University of Hong KongHong Kong SARPeople’s Republic of China
| | - Zhi Geng
- Beijing Synchrotron Radiation FacilityInstitute of High Energy Physics, Chinese Academy of SciencesBeijing100049People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Wei Ding
- Laboratory of Soft Matter PhysicsInstitute of Physics, Chinese Academy of SciencesBeijing100190People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| |
Collapse
|
4
|
Wollter A, De Santis E, Ekeberg T, Marklund EG, Caleman C. Enhanced EMC-Advantages of partially known orientations in x-ray single particle imaging. J Chem Phys 2024; 160:114108. [PMID: 38506290 DOI: 10.1063/5.0188772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
Single particle imaging of proteins in the gas phase with x-ray free-electron lasers holds great potential to study fast protein dynamics, but is currently limited by weak and noisy data. A further challenge is to discover the proteins' orientation as each protein is randomly oriented when exposed to x-rays. Algorithms such as the expand, maximize, and compress (EMC) exist that can solve the orientation problem and reconstruct the three-dimensional diffraction intensity space, given sufficient measurements. If information about orientation were known, for example, by using an electric field to orient the particles, the reconstruction would benefit and potentially reach better results. We used simulated diffraction experiments to test how the reconstructions from EMC improve with particles' orientation to a preferred axis. Our reconstructions converged to correct maps of the three-dimensional diffraction space with fewer measurements if biased orientation information was considered. Even for a moderate bias, there was still significant improvement. Biased orientations also substantially improved the results in the case of missing central information, in particular in the case of small datasets. The effects were even more significant when adding a background with 50% the strength of the averaged diffraction signal photons to the diffraction patterns, sometimes reducing the data requirement for convergence by a factor of 10. This demonstrates the usefulness of having biased orientation information in single particle imaging experiments, even for a weaker bias than what was previously known. This could be a key component in overcoming the problems with background noise that currently plague these experiments.
Collapse
Affiliation(s)
- August Wollter
- Department of Cell and Molecular Biology, Laboratory of Molecular Biophysics, Husargatan 3, 75124 Uppsala, Sweden
| | - Emiliano De Santis
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Tomas Ekeberg
- Department of Cell and Molecular Biology, Laboratory of Molecular Biophysics, Husargatan 3, 75124 Uppsala, Sweden
| | - Erik G Marklund
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, DE-22607 Hamburg, Germany
| |
Collapse
|
5
|
Rafie-Zinedine S, Varma Yenupuri T, Worbs L, Maia FRNC, Heymann M, Schulz J, Bielecki J. Enhancing electrospray ionization efficiency for particle transmission through an aerodynamic lens stack. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:222-232. [PMID: 38306300 PMCID: PMC10914161 DOI: 10.1107/s1600577524000158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024]
Abstract
This work investigates the performance of the electrospray aerosol generator at the European X-ray Free Electron Laser (EuXFEL). This generator is, together with an aerodynamic lens stack that transports the particles into the X-ray interaction vacuum chamber, the method of choice to deliver particles for single-particle coherent diffractive imaging (SPI) experiments at the EuXFEL. For these experiments to be successful, it is necessary to achieve high transmission of particles from solution into the vacuum interaction region. Particle transmission is highly dependent on efficient neutralization of the charged aerosol generated by the electrospray mechanism as well as the geometry in the vicinity of the Taylor cone. We report absolute particle transmission values for different neutralizers and geometries while keeping the conditions suitable for SPI experiments. Our findings reveal that a vacuum ultraviolet ionizer demonstrates a transmission efficiency approximately seven times greater than the soft X-ray ionizer used previously. Combined with an optimized orifice size on the counter electrode, we achieve >40% particle transmission from solution into the X-ray interaction region. These findings offer valuable insights for optimizing electrospray aerosol generator configurations and data rates for SPI experiments.
Collapse
Affiliation(s)
- Safi Rafie-Zinedine
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Tej Varma Yenupuri
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), 75124 Uppsala, Sweden
| | - Lena Worbs
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), 75124 Uppsala, Sweden
| | - Filipe R. N. C. Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), 75124 Uppsala, Sweden
| | - Michael Heymann
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | | | | |
Collapse
|
6
|
Yenupuri TV, Rafie-Zinedine S, Worbs L, Heymann M, Schulz J, Bielecki J, Maia FRNC. Helium-electrospray improves sample delivery in X-ray single-particle imaging experiments. Sci Rep 2024; 14:4401. [PMID: 38388562 PMCID: PMC10883998 DOI: 10.1038/s41598-024-54605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Imaging the structure and observing the dynamics of isolated proteins using single-particle X-ray diffractive imaging (SPI) is one of the potential applications of X-ray free-electron lasers (XFELs). Currently, SPI experiments on isolated proteins are limited by three factors: low signal strength, limited data and high background from gas scattering. The last two factors are largely due to the shortcomings of the aerosol sample delivery methods in use. Here we present our modified electrospray ionization (ESI) source, which we dubbed helium-ESI (He-ESI). With it, we increased particle delivery into the interaction region by a factor of 10, for 26 nm-sized biological particles, and decreased the gas load in the interaction chamber corresponding to an 80% reduction in gas scattering when compared to the original ESI. These improvements have the potential to significantly increase the quality and quantity of SPI diffraction patterns in future experiments using He-ESI, resulting in higher-resolution structures.
Collapse
Affiliation(s)
- Tej Varma Yenupuri
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, 75124, Uppsala, Sweden
| | - Safi Rafie-Zinedine
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, 70569, Germany
| | - Lena Worbs
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, 75124, Uppsala, Sweden
| | - Michael Heymann
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, 70569, Germany
| | | | - Johan Bielecki
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
| | - Filipe R N C Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, 75124, Uppsala, Sweden.
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
7
|
Round A, Jungcheng E, Fortmann-Grote C, Giewekemeyer K, Graceffa R, Kim C, Kirkwood H, Mills G, Round E, Sato T, Pascarelli S, Mancuso A. Characterization of Biological Samples Using Ultra-Short and Ultra-Bright XFEL Pulses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:141-162. [PMID: 38507205 DOI: 10.1007/978-3-031-52193-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The advent of X-ray Free Electron Lasers (XFELs) has ushered in a transformative era in the field of structural biology, materials science, and ultrafast physics. These state-of-the-art facilities generate ultra-bright, femtosecond-long X-ray pulses, allowing researchers to delve into the structure and dynamics of molecular systems with unprecedented temporal and spatial resolutions. The unique properties of XFEL pulses have opened new avenues for scientific exploration that were previously considered unattainable. One of the most notable applications of XFELs is in structural biology. Traditional X-ray crystallography, while instrumental in determining the structures of countless biomolecules, often requires large, high-quality crystals and may not capture highly transient states of proteins. XFELs, with their ability to produce diffraction patterns from nanocrystals or even single particles, have provided solutions to these challenges. XFEL has expanded the toolbox of structural biologists by enabling structural determination approaches such as Single Particle Imaging (SPI) and Serial X-ray Crystallography (SFX). Despite their remarkable capabilities, the journey of XFELs is still in its nascent stages, with ongoing advancements aimed at improving their coherence, pulse duration, and wavelength tunability.
Collapse
Affiliation(s)
| | | | | | | | | | - Chan Kim
- European XFEL, Schenefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
E J, Stransky M, Shen Z, Jurek Z, Fortmann-Grote C, Bean R, Santra R, Ziaja B, Mancuso AP. Water layer and radiation damage effects on the orientation recovery of proteins in single-particle imaging at an X-ray free-electron laser. Sci Rep 2023; 13:16359. [PMID: 37773512 PMCID: PMC10541445 DOI: 10.1038/s41598-023-43298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023] Open
Abstract
The noise caused by sample heterogeneity (including sample solvent) has been identified as one of the determinant factors for a successful X-ray single-particle imaging experiment. It influences both the radiation damage process that occurs during illumination as well as the scattering patterns captured by the detector. Here, we investigate the impact of water layer thickness and radiation damage on orientation recovery from diffraction patterns of the nitrogenase iron protein. Orientation recovery is a critical step for single-particle imaging. It enables to sort a set of diffraction patterns scattered by identical particles placed at unknown orientations and assemble them into a 3D reciprocal space volume. The recovery quality is characterized by a "disconcurrence" metric. Our results show that while a water layer mitigates protein damage, the noise generated by the scattering from it can introduce challenges for orientation recovery and is anticipated to cause problems in the phase retrieval process to extract the desired protein structure. Compared to these disadvantageous effects due to the thick water layer, the effects of radiation damage on the orientation recovery are relatively small. Therefore, minimizing the amount of residual sample solvent should be considered a crucial step in improving the fidelity and resolution of X-ray single-particle imaging experiments.
Collapse
Affiliation(s)
- Juncheng E
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
| | - Michal Stransky
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland
| | - Zhou Shen
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Zoltan Jurek
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | | | - Richard Bean
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Physics, Universität Hamburg, Notkestr. 9-11, 22607, Hamburg, Germany
| | - Beata Ziaja
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Adrian P Mancuso
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
9
|
Yumoto H, Koyama T, Suzuki A, Joti Y, Niida Y, Tono K, Bessho Y, Yabashi M, Nishino Y, Ohashi H. High-fluence and high-gain multilayer focusing optics to enhance spatial resolution in femtosecond X-ray laser imaging. Nat Commun 2022; 13:5300. [PMID: 36100607 PMCID: PMC9470745 DOI: 10.1038/s41467-022-33014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
With the emergence of X-ray free-electron lasers (XFELs), coherent diffractive imaging (CDI) has acquired a capability for single-particle imaging (SPI) of non-crystalline objects under non-cryogenic conditions. However, the single-shot spatial resolution is limited to ~5 nanometres primarily because of insufficient fluence. Here, we present a CDI technique whereby high resolution is achieved with very-high-fluence X-ray focusing using multilayer mirrors with nanometre precision. The optics can focus 4-keV XFEL down to 60 nm × 110 nm and realize a fluence of >3 × 105 J cm−2 pulse−1 or >4 × 1012 photons μm−2 pulse−1 with a tenfold increase in the total gain compared to conventional optics due to the high demagnification. Further, the imaging of fixed-target metallic nanoparticles in solution attained an unprecedented 2-nm resolution in single-XFEL-pulse exposure. These findings can further expand the capabilities of SPI to explore the relationships between dynamic structures and functions of native biomolecular complexes. Here, the authors realize an ultra-high fluence X-ray laser by high-gain multilayer focusing optics. This enables in-solution imaging with 2-nm resolution in a single-pulse exposure, making strides toward biomolecular imaging under physiological conditions.
Collapse
Affiliation(s)
- Hirokatsu Yumoto
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan. .,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.
| | - Takahisa Koyama
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Akihiro Suzuki
- Research Institute for Electronic Science, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, 001-0021, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Yoshiya Niida
- Research Institute for Electronic Science, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, 001-0021, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Yoshitaka Bessho
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Yoshinori Nishino
- Research Institute for Electronic Science, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, 001-0021, Japan.
| | - Haruhiko Ohashi
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| |
Collapse
|
10
|
Tokuhisa A, Akinaga Y, Terayama K, Okamoto Y, Okuno Y. Single-Image Super-Resolution Improvement of X-ray Single-Particle Diffraction Images Using a Convolutional Neural Network. J Chem Inf Model 2022; 62:3352-3364. [PMID: 35820663 PMCID: PMC9326892 DOI: 10.1021/acs.jcim.2c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Femtosecond X-ray pulse lasers are promising probes for
the elucidation
of the multiconformational states of biomolecules because they enable
snapshots of single biomolecules to be observed as coherent diffraction
images. Multi-image processing using an X-ray free-electron laser
has proven to be a successful structural analysis method for viruses.
However, the performance of single-particle analysis (SPA) for flexible
biomolecules with sizes ≤100 nm remains difficult. Owing to
the multiconformational states of biomolecules and noisy character
of diffraction images, diffraction image improvement by multi-image
processing is often ineffective for such molecules. Herein, a single-image
super-resolution (SR) model was constructed using an SR convolutional
neural network (SRCNN). Data preparation was performed in silico to
consider the actual observation situation with unknown molecular orientations
and the fluctuation of molecular structure and incident X-ray intensity.
It was demonstrated that the trained SRCNN model improved the single-particle
diffraction image quality, corresponding to an observed image with
an incident X-ray intensity (approximately three to seven times higher
than the original X-ray intensity), while retaining the individuality
of the diffraction images. The feasibility of SPA for flexible biomolecules
with sizes ≤100 nm was dramatically increased by introducing
the SRCNN improvement at the beginning of the various structural analysis
schemes.
Collapse
Affiliation(s)
- Atsushi Tokuhisa
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshinobu Akinaga
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,VINAS Co., Ltd., Keihan Dojima Bldg., Dojima 2 1 31, Kita-ku, Osaka 530-0003, Japan
| | - Kei Terayama
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihombashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Yuji Okamoto
- Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasushi Okuno
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,Center for Cluster Development and Coordination, Foundation for Biomedical Research and Innovation at Kobe, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
11
|
Stransky M, Jurek Z, Santra R, Mancuso AP, Ziaja B. Tree-Code Based Improvement of Computational Performance of the X-ray-Matter-Interaction Simulation Tool XMDYN. Molecules 2022; 27:molecules27134206. [PMID: 35807452 PMCID: PMC9267930 DOI: 10.3390/molecules27134206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, we report on incorporating for the first time tree-algorithm based solvers into the molecular dynamics code, XMDYN. XMDYN was developed to describe the interaction of ultrafast X-ray pulses with atomic assemblies. It is also a part of the simulation platform, SIMEX, developed for computational single-particle imaging studies at the SPB/SFX instrument of the European XFEL facility. In order to improve the XMDYN performance, we incorporated the existing tree-algorithm based Coulomb solver, PEPC, into the code, and developed a dedicated tree-algorithm based secondary ionization solver, now also included in the XMDYN code. These extensions enable computationally efficient simulations of X-ray irradiated large atomic assemblies, e.g., large protein systems or viruses that are of strong interest for ultrafast X-ray science. The XMDYN-based preparatory simulations can now guide future single-particle-imaging experiments at the free-electron-laser facility, EuXFEL.
Collapse
Affiliation(s)
- Michal Stransky
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany;
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland;
- Correspondence: (M.S.); (Z.J.)
| | - Zoltan Jurek
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany;
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Correspondence: (M.S.); (Z.J.)
| | - Robin Santra
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany;
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Notkestr. 9-11, 22607 Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany;
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Beata Ziaja
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland;
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany;
| |
Collapse
|
12
|
In a flash of light: X-ray free electron lasers meet native mass spectrometry. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 39:89-99. [PMID: 34906329 DOI: 10.1016/j.ddtec.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/14/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023]
Abstract
During the last years, X-ray free electron lasers (XFELs) have emerged as X-ray sources of unparalleled brightness, delivering extreme amounts of photons in femtosecond pulses. As such, they have opened up completely new possibilities in drug discovery and structural biology, including studying high resolution biomolecular structures and their functioning in a time resolved manner, and diffractive imaging of single particles without the need for their crystallization. In this perspective, we briefly review the operation of XFELs, their immediate uses for drug discovery and focus on the potentially revolutionary single particle diffractive imaging technique and the challenges which remain to be overcome to fully realize its potential to provide high resolution structures without the need for crystallization, freezing or the need to keep proteins stable at extreme concentrations for long periods of time. As the issues have been to a large extent sample delivery related, we outline a way for native mass spectrometry to overcome these and enable so far impossible research with a potentially huge impact on structural biology and drug discovery, such as studying structures of transient intermediate species in viral life cycles or during functioning of molecular machines.
Collapse
|
13
|
Effects of radiation damage and inelastic scattering on single-particle imaging of hydrated proteins with an X-ray Free-Electron Laser. Sci Rep 2021; 11:17976. [PMID: 34504156 PMCID: PMC8429720 DOI: 10.1038/s41598-021-97142-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/19/2021] [Indexed: 11/08/2022] Open
Abstract
We present a computational case study of X-ray single-particle imaging of hydrated proteins on an example of 2-Nitrogenase-Iron protein covered with water layers of various thickness, using a start-to-end simulation platform and experimental parameters of the SPB/SFX instrument at the European X-ray Free-Electron Laser facility. The simulations identify an optimal thickness of the water layer at which the effective resolution for imaging the hydrated sample becomes significantly higher than for the non-hydrated sample. This effect is lost when the water layer becomes too thick. Even though the detailed results presented pertain to the specific sample studied, the trends which we identify should also hold in a general case. We expect these findings will guide future single-particle imaging experiments using hydrated proteins.
Collapse
|
14
|
Limitations of Structural Insight into Ultrafast Melting of Solid Materials with X-ray Diffraction Imaging. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this work, we analyze the application of X-ray diffraction imaging techniques to follow ultrafast structural transitions in solid materials using the example of an X-ray pump–X-ray probe experiment with a single-crystal silicon performed at a Linac Coherent Light Source. Due to the spatially non-uniform profile of the X-ray beam, the diffractive signal recorded in this experiment included contributions from crystal parts experiencing different fluences from the peak fluence down to zero. With our theoretical model, we could identify specific processes contributing to the silicon melting in those crystal regions, i.e., the non-thermal and thermal melting whose occurrences depended on the locally absorbed X-ray doses. We then constructed the total volume-integrated signal by summing up the coherent signal contributions (amplitudes) from the various crystal regions and found that this significantly differed from the signals obtained for a few selected uniform fluence values, including the peak fluence. This shows that the diffraction imaging signal obtained for a structurally damaged material after an impact of a non-uniform X-ray pump pulse cannot be always interpreted as the material’s response to a pulse of a specific (e.g., peak) fluence as it is sometimes believed. This observation has to be taken into account in planning and interpreting future experiments investigating structural changes in materials with X-ray diffraction imaging.
Collapse
|
15
|
Cruz-Chú ER, Hosseinizadeh A, Mashayekhi G, Fung R, Ourmazd A, Schwander P. Selecting XFEL single-particle snapshots by geometric machine learning. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:014701. [PMID: 33644252 PMCID: PMC7902084 DOI: 10.1063/4.0000060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/21/2021] [Indexed: 05/05/2023]
Abstract
A promising new route for structural biology is single-particle imaging with an X-ray Free-Electron Laser (XFEL). This method has the advantage that the samples do not require crystallization and can be examined at room temperature. However, high-resolution structures can only be obtained from a sufficiently large number of diffraction patterns of individual molecules, so-called single particles. Here, we present a method that allows for efficient identification of single particles in very large XFEL datasets, operates at low signal levels, and is tolerant to background. This method uses supervised Geometric Machine Learning (GML) to extract low-dimensional feature vectors from a training dataset, fuse test datasets into the feature space of training datasets, and separate the data into binary distributions of "single particles" and "non-single particles." As a proof of principle, we tested simulated and experimental datasets of the Coliphage PR772 virus. We created a training dataset and classified three types of test datasets: First, a noise-free simulated test dataset, which gave near perfect separation. Second, simulated test datasets that were modified to reflect different levels of photon counts and background noise. These modified datasets were used to quantify the predictive limits of our approach. Third, an experimental dataset collected at the Stanford Linear Accelerator Center. The single-particle identification for this experimental dataset was compared with previously published results and it was found that GML covers a wide photon-count range, outperforming other single-particle identification methods. Moreover, a major advantage of GML is its ability to retrieve single particles in the presence of structural variability.
Collapse
Affiliation(s)
- Eduardo R. Cruz-Chú
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, USA
| | - Ahmad Hosseinizadeh
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, USA
| | - Ghoncheh Mashayekhi
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, USA
| | - Russell Fung
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, USA
| | - Abbas Ourmazd
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, USA
| | - Peter Schwander
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
16
|
Assalauova D, Kim YY, Bobkov S, Khubbutdinov R, Rose M, Alvarez R, Andreasson J, Balaur E, Contreras A, DeMirci H, Gelisio L, Hajdu J, Hunter MS, Kurta RP, Li H, McFadden M, Nazari R, Schwander P, Teslyuk A, Walter P, Xavier PL, Yoon CH, Zaare S, Ilyin VA, Kirian RA, Hogue BG, Aquila A, Vartanyants IA. An advanced workflow for single-particle imaging with the limited data at an X-ray free-electron laser. IUCRJ 2020; 7:1102-1113. [PMID: 33209321 PMCID: PMC7642788 DOI: 10.1107/s2052252520012798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/21/2020] [Indexed: 05/06/2023]
Abstract
An improved analysis for single-particle imaging (SPI) experiments, using the limited data, is presented here. Results are based on a study of bacteriophage PR772 performed at the Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source as part of the SPI initiative. Existing methods were modified to cope with the shortcomings of the experimental data: inaccessibility of information from half of the detector and a small fraction of single hits. The general SPI analysis workflow was upgraded with the expectation-maximization based classification of diffraction patterns and mode decomposition on the final virus-structure determination step. The presented processing pipeline allowed us to determine the 3D structure of bacteriophage PR772 without symmetry constraints with a spatial resolution of 6.9 nm. The obtained resolution was limited by the scattering intensity during the experiment and the relatively small number of single hits.
Collapse
Affiliation(s)
- Dameli Assalauova
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, D-22607, Germany
| | - Young Yong Kim
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, D-22607, Germany
| | - Sergey Bobkov
- National Research Center ‘Kurchatov Institute’, Akademika Kurchatova pl. 1, Moscow, 123182 Russian Federation
| | - Ruslan Khubbutdinov
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, D-22607, Germany
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, Moscow, 115409, Russian Federation
| | - Max Rose
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, D-22607, Germany
| | - Roberto Alvarez
- Department of Physics, Arizona State University, Tempe, Arizona AZ 85287, USA
- School of Mathematics and Statistical Sciences, Arizona State University, Tempe, Arizona AZ 85287, USA
| | - Jakob Andreasson
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Prague, CZ-18221, Czech Republic
| | - Eugeniu Balaur
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
| | - Alice Contreras
- School of Life Sciences, Arizona State University, Tempe, Arizona AZ 85287, USA
- Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona AZ 85287, USA
| | - Hasan DeMirci
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Department of Molecular Biology and Genetics, Koc University, Istanbul, 34450, Turkey
| | - Luca Gelisio
- Center for Free Electron Laser Science (CFEL), DESY, Notkestraße 85, Hamburg, D-22607, Germany
| | - Janos Hajdu
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Prague, CZ-18221, Czech Republic
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Uppsala, SE-75124, Sweden
| | - Mark S. Hunter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | | | - Haoyuan Li
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Physics Department, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305-2004, USA
| | - Matthew McFadden
- Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona AZ 85287, USA
| | - Reza Nazari
- Department of Physics, Arizona State University, Tempe, Arizona AZ 85287, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
| | | | - Anton Teslyuk
- National Research Center ‘Kurchatov Institute’, Akademika Kurchatova pl. 1, Moscow, 123182 Russian Federation
- Moscow Institute of Physics and Technology, Moscow, 141700, Russian Federation
| | - Peter Walter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - P. Lourdu Xavier
- Center for Free Electron Laser Science (CFEL), DESY, Notkestraße 85, Hamburg, D-22607, Germany
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Max-Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg, D-22761, Germany
| | - Chun Hong Yoon
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Sahba Zaare
- Department of Physics, Arizona State University, Tempe, Arizona AZ 85287, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Viacheslav A. Ilyin
- National Research Center ‘Kurchatov Institute’, Akademika Kurchatova pl. 1, Moscow, 123182 Russian Federation
- Moscow Institute of Physics and Technology, Moscow, 141700, Russian Federation
| | - Richard A. Kirian
- Department of Physics, Arizona State University, Tempe, Arizona AZ 85287, USA
| | - Brenda G. Hogue
- School of Life Sciences, Arizona State University, Tempe, Arizona AZ 85287, USA
- Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona AZ 85287, USA
- Biodesign Institute, Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| | - Andrew Aquila
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ivan A. Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, D-22607, Germany
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, Moscow, 115409, Russian Federation
| |
Collapse
|
17
|
Liu J, Engblom S, Nettelblad C. Flash X-ray diffraction imaging in 3D: a proposed analysis pipeline. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2020; 37:1673-1686. [PMID: 33104615 DOI: 10.1364/josaa.390384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Modern Flash X-ray diffraction Imaging (FXI) acquires diffraction signals from single biomolecules at a high repetition rate from X-ray Free Electron Lasers (XFELs), easily obtaining millions of 2D diffraction patterns from a single experiment. Due to the stochastic nature of FXI experiments and the massive volumes of data, retrieving 3D electron densities from raw 2D diffraction patterns is a challenging and time-consuming task. We propose a semi-automatic data analysis pipeline for FXI experiments, which includes four steps: hit-finding and preliminary filtering, pattern classification, 3D Fourier reconstruction, and post-analysis. We also include a recently developed bootstrap methodology in the post-analysis step for uncertainty analysis and quality control. To achieve the best possible resolution, we further suggest using background subtraction, signal windowing, and convex optimization techniques when retrieving the Fourier phases in the post-analysis step. As an application example, we quantified the 3D electron structure of the PR772 virus using the proposed data analysis pipeline. The retrieved structure was above the detector edge resolution and clearly showed the pseudo-icosahedral capsid of the PR772.
Collapse
|
18
|
Tokuhisa A, Kanada R, Chiba S, Terayama K, Isaka Y, Ma B, Kamiya N, Okuno Y. Coarse-Grained Diffraction Template Matching Model to Retrieve Multiconformational Models for Biomolecule Structures from Noisy Diffraction Patterns. J Chem Inf Model 2020; 60:2803-2818. [PMID: 32469517 DOI: 10.1021/acs.jcim.0c00131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomolecular imaging using X-ray free-electron lasers (XFELs) has been successfully applied to serial femtosecond crystallography. However, the application of single-particle analysis for structure determination using XFELs with 100 nm or smaller biomolecules has two practical problems: the incomplete diffraction data sets for reconstructing 3D assembled structures and the heterogeneous conformational states of samples. A new diffraction template matching method is thus presented here to retrieve a plausible 3D structural model based on single noisy target diffraction patterns, assuming candidate structures. Two concepts are introduced here: prompt candidate diffraction, generated by enhanced sampled coarse-grain (CG) candidate structures, and efficient molecular orientation searching for matching based on Bayesian optimization. A CG model-based diffraction-matching protocol is proposed that achieves a 100-fold speed increase compared to exhaustive diffraction matching using an all-atom model. The conditions that enable multiconformational analysis were also investigated by simulated diffraction data for various conformational states of chromatin and ribosomes. The proposed method can enable multiconformational analysis, with a structural resolution of at least 20 Å for 270-800 Å flexible biomolecules, in experimental single-particle structure analyses that employ XFELs.
Collapse
Affiliation(s)
- Atsushi Tokuhisa
- RIKEN Cluster for Science and Technology Hub, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Computational Science, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ryo Kanada
- RIKEN Cluster for Science and Technology Hub, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shuntaro Chiba
- RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kei Terayama
- RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihombashi, Chuo-ku, Tokyo 103-0027, Japan.,Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuta Isaka
- RIKEN Cluster for Science and Technology Hub, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Center for Cluster Development and Coordination, Foundation for Biomedical Research and Innovation at Kobe, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Biao Ma
- RIKEN Cluster for Science and Technology Hub, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Center for Cluster Development and Coordination, Foundation for Biomedical Research and Innovation at Kobe, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Narutoshi Kamiya
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasushi Okuno
- RIKEN Cluster for Science and Technology Hub, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan.,Center for Cluster Development and Coordination, Foundation for Biomedical Research and Innovation at Kobe, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
19
|
Poudyal I, Schmidt M, Schwander P. Single-particle imaging by x-ray free-electron lasers-How many snapshots are needed? STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:024102. [PMID: 32232074 PMCID: PMC7088463 DOI: 10.1063/1.5144516] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/02/2020] [Indexed: 05/19/2023]
Abstract
X-ray free-electron lasers (XFELs) open the possibility of obtaining diffraction information from a single biological macromolecule. This is because XFELs can generate extremely intense x-ray pulses that are so short that diffraction data can be collected before the sample is destroyed. By collecting a sufficient number of single-particle diffraction patterns, the three-dimensional electron density of a molecule can be reconstructed ab initio. The quality of the reconstruction depends largely on the number of patterns collected at the experiment. This paper provides an estimate of the number of diffraction patterns required to reconstruct the electron density at a targeted spatial resolution. This estimate is verified by simulations for realistic x-ray fluences, repetition rates, and experimental conditions available at modern XFELs. Employing the bacterial phytochrome as a model system, we demonstrate that sub-nanometer resolution is within reach.
Collapse
Affiliation(s)
| | | | - P. Schwander
- Author to whom correspondence should be addressed:
| |
Collapse
|
20
|
Ayyer K, Morgan AJ, Aquila A, DeMirci H, Hogue BG, Kirian RA, Xavier PL, Yoon CH, Chapman HN, Barty A. Low-signal limit of X-ray single particle diffractive imaging. OPTICS EXPRESS 2019; 27:37816-37833. [PMID: 31878556 DOI: 10.1364/oe.27.037816] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An outstanding question in X-ray single particle imaging experiments has been the feasibility of imaging sub 10-nm-sized biomolecules under realistic experimental conditions where very few photons are expected to be measured in a single snapshot and instrument background may be significant relative to particle scattering. While analyses of simulated data have shown that the determination of an average image should be feasible using Bayesian methods such as the EMC algorithm, this has yet to be demonstrated using experimental data containing realistic non-isotropic instrument background, sample variability and other experimental factors. In this work, we show that the orientation and phase retrieval steps work at photon counts diluted to the signal levels one expects from smaller molecules or with weaker pulses, using data from experimental measurements of 60-nm PR772 viruses. Even when the signal is reduced to a fraction as little as 1/256, the virus electron density determined using ab initio phasing is of almost the same quality as the high-signal data. However, we are still limited by the total number of patterns collected, which may soon be mitigated by the advent of high repetition-rate sources like the European XFEL and LCLS-II.
Collapse
|
21
|
Tokuhisa A. Characterization of X-ray diffraction intensity function from a biological molecule for single particle imaging. Biophys Physicobiol 2019; 16:430-443. [PMID: 31984195 PMCID: PMC6975897 DOI: 10.2142/biophysico.16.0_430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/03/2019] [Indexed: 12/01/2022] Open
Abstract
An attainable structural resolution of single particle imaging is determined by the characteristics of X-ray diffraction intensity, which depend on the incident X-ray intensity density and molecule size. To estimate the attainable structural resolution even for molecules whose coordinates are unknown, this research aimed to clarify how these characteristics of X-ray diffraction intensity are determined from the structure of a molecule. The functional characteristics of X-ray diffraction intensity of a single biomolecule were theoretically and computationally evaluated. The wavenumber dependence of the average diffraction intensity on a sphere of constant wavenumber was observable by small-angle X-ray solution scattering. An excellent approximation was obtained, in which this quantity was expressed by an integral transform of the product of the external molecular shape and a universal function related to its atom packing. A standard model protein was defined by an analytical form of the first factor characterized by molecular volume and length. It estimated the numerically determined wavenumber dependence with a worst-case error of approximately a factor of five. The distribution of the diffraction intensity on a sphere of constant wavenumber was also examined. Finally, the correlation of diffraction intensities in the wavenumber space was assessed. This analysis enabled the estimation of an attainable structural resolution as a function of the incident X-ray intensity density and the volume and length of a target molecule, even in the absence of molecular coordinates.
Collapse
Affiliation(s)
- Atsushi Tokuhisa
- RIKEN Cluster for Science and Technology Hub, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan.,RIKEN Medical Sciences Innovation Hub Program, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
22
|
Zhao F, Zhang B, Yan E, Sun B, Wang Z, He J, Yin D. A guide to sample delivery systems for serial crystallography. FEBS J 2019; 286:4402-4417. [PMID: 31618529 DOI: 10.1111/febs.15099] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 09/26/2019] [Accepted: 10/15/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Feng‐Zhu Zhao
- School of Life Sciences Northwestern Polytechnical University Xi'an China
| | - Bin Zhang
- School of Life Sciences Northwestern Polytechnical University Xi'an China
| | - Er‐Kai Yan
- School of Life Sciences Northwestern Polytechnical University Xi'an China
| | - Bo Sun
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai China
| | - Zhi‐Jun Wang
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai China
| | - Jian‐Hua He
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai China
| | - Da‐Chuan Yin
- School of Life Sciences Northwestern Polytechnical University Xi'an China
- Shenzhen Research Institute Northwestern Polytechnical University Shenzhen China
| |
Collapse
|
23
|
Abstract
Until recently X-ray crystallography has been the standard technique for virus structure determinations. Available X-ray sources have continuously improved over the decades, leading to the realization of X-ray free-electron lasers (XFELs). They provide high-intensity femtosecond X-ray pulses, which allow for new kinds of experiments by making use of the diffraction-before-destruction principle. By overcoming classical dose constraints, they at least in principle allow researchers to perform X-ray virus structure determination for single particles at room temperature. Simultaneously, the availability of XFELs led to the development of the method of serial femtosecond crystallography, where a crystal structure is determined from the measurement of hundreds to thousands of microcrystals. In the case of virus crystallography this method does not require freezing of the crystals and allows researchers to perform experiments under non-equilibrium conditions (e.g., by laser-induced temperature jumps or rapid chemical mixing), which is currently not possible with electron microscopy.
Collapse
Affiliation(s)
- A. Meents
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - M.O. Wiedorn
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
- Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
24
|
|
25
|
Abstract
X-ray free-electron lasers provide femtosecond-duration pulses of hard X-rays with a peak brightness approximately one billion times greater than is available at synchrotron radiation facilities. One motivation for the development of such X-ray sources was the proposal to obtain structures of macromolecules, macromolecular complexes, and virus particles, without the need for crystallization, through diffraction measurements of single noncrystalline objects. Initial explorations of this idea and of outrunning radiation damage with femtosecond pulses led to the development of serial crystallography and the ability to obtain high-resolution structures of small crystals without the need for cryogenic cooling. This technique allows the understanding of conformational dynamics and enzymatics and the resolution of intermediate states in reactions over timescales of 100 fs to minutes. The promise of more photons per atom recorded in a diffraction pattern than electrons per atom contributing to an electron micrograph may enable diffraction measurements of single molecules, although challenges remain.
Collapse
Affiliation(s)
- Henry N. Chapman
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, 22761 Hamburg, Germany
- Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
26
|
Brändén G, Hammarin G, Harimoorthy R, Johansson A, Arnlund D, Malmerberg E, Barty A, Tångefjord S, Berntsen P, DePonte DP, Seuring C, White TA, Stellato F, Bean R, Beyerlein KR, Chavas LMG, Fleckenstein H, Gati C, Ghoshdastider U, Gumprecht L, Oberthür D, Popp D, Seibert M, Tilp T, Messerschmidt M, Williams GJ, Loh ND, Chapman HN, Zwart P, Liang M, Boutet S, Robinson RC, Neutze R. Coherent diffractive imaging of microtubules using an X-ray laser. Nat Commun 2019; 10:2589. [PMID: 31197138 PMCID: PMC6565740 DOI: 10.1038/s41467-019-10448-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 05/02/2019] [Indexed: 01/09/2023] Open
Abstract
X-ray free electron lasers (XFELs) create new possibilities for structural studies of biological objects that extend beyond what is possible with synchrotron radiation. Serial femtosecond crystallography has allowed high-resolution structures to be determined from micro-meter sized crystals, whereas single particle coherent X-ray imaging requires development to extend the resolution beyond a few tens of nanometers. Here we describe an intermediate approach: the XFEL imaging of biological assemblies with helical symmetry. We collected X-ray scattering images from samples of microtubules injected across an XFEL beam using a liquid microjet, sorted these images into class averages, merged these data into a diffraction pattern extending to 2 nm resolution, and reconstructed these data into a projection image of the microtubule. Details such as the 4 nm tubulin monomer became visible in this reconstruction. These results illustrate the potential of single-molecule X-ray imaging of biological assembles with helical symmetry at room temperature.
Collapse
Affiliation(s)
- Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530, Gothenburg, Sweden.
| | - Greger Hammarin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530, Gothenburg, Sweden
| | - Rajiv Harimoorthy
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530, Gothenburg, Sweden
| | - Alexander Johansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530, Gothenburg, Sweden
| | - David Arnlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530, Gothenburg, Sweden
| | - Erik Malmerberg
- Molecular Biophysics and Integrated Bio-Imaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, 94720, Berkeley, CA, USA
| | - Anton Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Stefan Tångefjord
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530, Gothenburg, Sweden
| | - Peter Berntsen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530, Gothenburg, Sweden
| | - Daniel P DePonte
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Carolin Seuring
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany.,The Hamburg Center for Ultrafast Imaging, 22761, Hamburg, Germany
| | - Thomas A White
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Francesco Stellato
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Richard Bean
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Kenneth R Beyerlein
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Leonard M G Chavas
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Holger Fleckenstein
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Cornelius Gati
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Umesh Ghoshdastider
- Institute of Molecular and Cell Biology, Biopolis, A*STAR (Agency for Science, Technology and Research), 138673, Singapore, Singapore
| | - Lars Gumprecht
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Dominik Oberthür
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - David Popp
- Institute of Molecular and Cell Biology, Biopolis, A*STAR (Agency for Science, Technology and Research), 138673, Singapore, Singapore
| | - Marvin Seibert
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Thomas Tilp
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Marc Messerschmidt
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Garth J Williams
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - N Duane Loh
- Department of Physics, National University of Singapore, 117551, Singapore, Singapore
| | - Henry N Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany.,The Hamburg Center for Ultrafast Imaging, 22761, Hamburg, Germany.,Department of Physics, University of Hamburg, 22761, Hamburg, Germany
| | - Peter Zwart
- Molecular Biophysics and Integrated Bio-Imaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, 94720, Berkeley, CA, USA
| | - Mengning Liang
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany.,Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Robert C Robinson
- Institute of Molecular and Cell Biology, Biopolis, A*STAR (Agency for Science, Technology and Research), 138673, Singapore, Singapore.,Department of Biochemistry, National University of Singapore, 117597, Singapore, Singapore.,Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530, Gothenburg, Sweden.
| |
Collapse
|
27
|
Giewekemeyer K, Aquila A, Loh NTD, Chushkin Y, Shanks KS, Weiss J, Tate MW, Philipp HT, Stern S, Vagovic P, Mehrjoo M, Teo C, Barthelmess M, Zontone F, Chang C, Tiberio RC, Sakdinawat A, Williams GJ, Gruner SM, Mancuso AP. Experimental 3D coherent diffractive imaging from photon-sparse random projections. IUCRJ 2019; 6:357-365. [PMID: 31098017 PMCID: PMC6503918 DOI: 10.1107/s2052252519002781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/24/2019] [Indexed: 05/19/2023]
Abstract
The routine atomic resolution structure determination of single particles is expected to have profound implications for probing structure-function relationships in systems ranging from energy-storage materials to biological molecules. Extremely bright ultrashort-pulse X-ray sources - X-ray free-electron lasers (XFELs) - provide X-rays that can be used to probe ensembles of nearly identical nanoscale particles. When combined with coherent diffractive imaging, these objects can be imaged; however, as the resolution of the images approaches the atomic scale, the measured data are increasingly difficult to obtain and, during an X-ray pulse, the number of photons incident on the 2D detector is much smaller than the number of pixels. This latter concern, the signal 'sparsity', materially impedes the application of the method. An experimental analog using a conventional X-ray source is demonstrated and yields signal levels comparable with those expected from single biomolecules illuminated by focused XFEL pulses. The analog experiment provides an invaluable cross check on the fidelity of the reconstructed data that is not available during XFEL experiments. Using these experimental data, it is established that a sparsity of order 1.3 × 10-3 photons per pixel per frame can be overcome, lending vital insight to the solution of the atomic resolution XFEL single-particle imaging problem by experimentally demonstrating 3D coherent diffractive imaging from photon-sparse random projections.
Collapse
Affiliation(s)
| | - A. Aquila
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - N.-T. D. Loh
- Centre for Bio-imaging Sciences, National University of Singapore, 14 Science Drive 4, 117557 Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117551 Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117557 Singapore
| | - Y. Chushkin
- ESRF – The European Synchrotron, 71 avenue des Martyrs, 38000 Grenoble, France
| | - K. S. Shanks
- Laboratory for Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - J.T. Weiss
- Laboratory for Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - M. W. Tate
- Laboratory for Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - H. T. Philipp
- Laboratory for Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - S. Stern
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - P. Vagovic
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - M. Mehrjoo
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - C. Teo
- Centre for Bio-imaging Sciences, National University of Singapore, 14 Science Drive 4, 117557 Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117557 Singapore
| | - M. Barthelmess
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - F. Zontone
- ESRF – The European Synchrotron, 71 avenue des Martyrs, 38000 Grenoble, France
| | - C. Chang
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - R. C. Tiberio
- Stanford Nano Shared Facilities, Stanford University, 348 Via Pueblo, Stanford, CA 94305, USA
| | - A. Sakdinawat
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - G. J. Williams
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - S. M. Gruner
- Laboratory for Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| | - A. P. Mancuso
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
28
|
Abstract
A proposal for building a Free Electron Laser, EuPRAXIA@SPARC_LAB, at the Laboratori Nazionali di Frascati, is at present under consideration. This FEL facility will provide a unique combination of a high brightness GeV-range electron beam generated in a X-band RF linac, a 0.5 PW-class laser system and the first FEL source driven by a plasma accelerator. The FEL will produce ultra-bright pulses, with up to 10 12 photons/pulse, femtosecond timescale and wavelength down to 3 nm, which lies in the so called “water window”. The experimental activity will be focused on the realization of a plasma driven short wavelength FEL able to provide high-quality photons for a user beamline. In this paper, we describe the main classes of experiments that will be performed at the facility, including coherent diffraction imaging, soft X-ray absorption spectroscopy, Raman spectroscopy, Resonant Inelastic X-ray Scattering and photofragmentation measurements. These techniques will allow studying a variety of samples, both biological and inorganic, providing information about their structure and dynamical behavior. In this context, the possibility of inducing changes in samples via pump pulses leading to the stimulation of chemical reactions or the generation of coherent excitations would tremendously benefit from pulses in the soft X-ray region. High power synchronized optical lasers and a TeraHertz radiation source will indeed be made available for THz and pump–probe experiments and a split-and-delay station will allow performing XUV-XUV pump–probe experiments.
Collapse
|
29
|
Lunin VY, Lunina NL, Petrova TE, Baumstark MW, Urzhumtsev AG. Mask-based approach to phasing of single-particle diffraction data. II. Likelihood-based selection criteria. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:79-89. [DOI: 10.1107/s2059798318016959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/28/2018] [Indexed: 11/10/2022]
Abstract
A new type of mask-selection criterion is suggested for mask-based phasing. In this phasing approach, a large number of connected molecular masks are randomly generated. Structure-factor phases corresponding to a trial mask are accepted as an admissible solution of the phase problem if the mask satisfies some specified selection rules that are key to success. The admissible phase sets are aligned and averaged to give a preliminary solution of the phase problem. The new selection rule is based on the likelihood of the generated mask. It is defined as the probability of reproducing the observed structure-factor magnitudes by placing atoms randomly into the mask. While the result of the direct comparison of mask structure-factor magnitudes with observed ones using a correlation coefficient is highly dominated by a few very strong low-resolution reflections, a new method gives higher weight to relatively weak high-resolution reflections that allows them to be phased accurately. This mask-based phasing procedure with likelihood-based selection has been applied to simulated single-particle diffraction data of the photosystem II monomer. The phase set obtained resulted in a 16 Å resolution Fourier synthesis (more than 4000 reflections) with 98% correlation with the exact phase set and 69% correlation for about 2000 reflections in the highest resolution shell (20–16 Å). This work also addresses another essential problem of phasing methods, namely adequate estimation of the resolution achieved. A model-trapping analysis of the phase sets obtained by the mask-based phasing procedure suggests that the widely used `50% shell correlation' criterion may be too optimistic in some cases.
Collapse
|
30
|
Oberthür D. Biological single-particle imaging using XFELs - towards the next resolution revolution. IUCRJ 2018; 5:663-666. [PMID: 30443350 PMCID: PMC6211524 DOI: 10.1107/s2052252518015129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Better injectors resulting from careful iterative optimization used at high repetition XFELs in combination with better detectors and further developed algorithms might, in the not so distant future, result in a 'resolution revolution' in SPI, enabling the molecular and atomic imaging of the dynamics of biological macromolecules without the need to freeze or crystallize the sample.
Collapse
Affiliation(s)
- Dominik Oberthür
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
31
|
Woitowich NC, Halavaty AS, Waltz P, Kupitz C, Valera J, Tracy G, Gallagher KD, Claesson E, Nakane T, Pandey S, Nelson G, Tanaka R, Nango E, Mizohata E, Owada S, Tono K, Joti Y, Nugent AC, Patel H, Mapara A, Hopkins J, Duong P, Bizhga D, Kovaleva SE, St. Peter R, Hernandez CN, Ozarowski WB, Roy-Chowdhuri S, Yang JH, Edlund P, Takala H, Ihalainen J, Brayshaw J, Norwood T, Poudyal I, Fromme P, Spence JCH, Moffat K, Westenhoff S, Schmidt M, Stojković EA. Structural basis for light control of cell development revealed by crystal structures of a myxobacterial phytochrome. IUCRJ 2018; 5:619-634. [PMID: 30224965 PMCID: PMC6126659 DOI: 10.1107/s2052252518010631] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 07/23/2018] [Indexed: 05/11/2023]
Abstract
Phytochromes are red-light photoreceptors that were first characterized in plants, with homologs in photosynthetic and non-photosynthetic bacteria known as bacteriophytochromes (BphPs). Upon absorption of light, BphPs interconvert between two states denoted Pr and Pfr with distinct absorption spectra in the red and far-red. They have recently been engineered as enzymatic photoswitches for fluorescent-marker applications in non-invasive tissue imaging of mammals. This article presents cryo- and room-temperature crystal structures of the unusual phytochrome from the non-photosynthetic myxo-bacterium Stigmatella aurantiaca (SaBphP1) and reveals its role in the fruiting-body formation of this photomorphogenic bacterium. SaBphP1 lacks a conserved histidine (His) in the chromophore-binding domain that stabilizes the Pr state in the classical BphPs. Instead it contains a threonine (Thr), a feature that is restricted to several myxobacterial phytochromes and is not evolutionarily understood. SaBphP1 structures of the chromophore binding domain (CBD) and the complete photosensory core module (PCM) in wild-type and Thr-to-His mutant forms reveal details of the molecular mechanism of the Pr/Pfr transition associated with the physiological response of this myxobacterium to red light. Specifically, key structural differences in the CBD and PCM between the wild-type and the Thr-to-His mutant involve essential chromophore contacts with proximal amino acids, and point to how the photosignal is transduced through the rest of the protein, impacting the essential enzymatic activity in the photomorphogenic response of this myxobacterium.
Collapse
Affiliation(s)
| | - Andrei S. Halavaty
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Patricia Waltz
- Department of Biology, Northeastern Illinois University, Chicago, IL, USA
| | | | - Joseph Valera
- Department of Biology, Northeastern Illinois University, Chicago, IL, USA
| | - Gregory Tracy
- Department of Biology, Northeastern Illinois University, Chicago, IL, USA
| | - Kevin D. Gallagher
- Department of Biology, Northeastern Illinois University, Chicago, IL, USA
| | - Elin Claesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Suraj Pandey
- Department of Physics, University of Wisconsin, Milwaukee, WI, USA
| | - Garrett Nelson
- Center for Applied Structural Discovery, Arizona State University, 85287 Tempe, AZ, USA
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, 679-5148 Hyogo, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, 679-5148 Hyogo, Japan
| | - Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, 679-5148 Hyogo, Japan
| | - Kensure Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, 679-5148 Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yasumasa Joti
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, 679-5148 Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Angela C. Nugent
- Department of Biology, Northeastern Illinois University, Chicago, IL, USA
| | - Hardik Patel
- Department of Biology, Northeastern Illinois University, Chicago, IL, USA
| | - Ayesha Mapara
- Department of Biology, Northeastern Illinois University, Chicago, IL, USA
| | - James Hopkins
- Department of Biology, Northeastern Illinois University, Chicago, IL, USA
| | - Phu Duong
- Department of Biology, Northeastern Illinois University, Chicago, IL, USA
| | - Dorina Bizhga
- Department of Biology, Northeastern Illinois University, Chicago, IL, USA
| | | | - Rachael St. Peter
- Department of Biology, Northeastern Illinois University, Chicago, IL, USA
| | | | | | | | - Jay-How Yang
- Center for Applied Structural Discovery, Arizona State University, 85287 Tempe, AZ, USA
| | - Petra Edlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Heikki Takala
- Faculty of Medicine, Anatomy, University of Helsinki, 00014 Helsinki, Finland
- Nanoscience Center, Department of Biological and Environmental Sciences, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Janne Ihalainen
- Nanoscience Center, Department of Biological and Environmental Sciences, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | | | - Tyler Norwood
- Department of Physics, University of Wisconsin, Milwaukee, WI, USA
| | - Ishwor Poudyal
- Department of Physics, University of Wisconsin, Milwaukee, WI, USA
| | - Petra Fromme
- Center for Applied Structural Discovery, Arizona State University, 85287 Tempe, AZ, USA
| | - John C. H. Spence
- Center for Applied Structural Discovery, Arizona State University, 85287 Tempe, AZ, USA
| | - Keith Moffat
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Marius Schmidt
- Department of Physics, University of Wisconsin, Milwaukee, WI, USA
| | - Emina A. Stojković
- Department of Biology, Northeastern Illinois University, Chicago, IL, USA
| |
Collapse
|
32
|
Sun Z, Fan J, Li H, Liu H, Nam D, Kim C, Kim Y, Han Y, Zhang J, Yao S, Park J, Kim S, Tono K, Yabashi M, Ishikawa T, Song C, Fan C, Jiang H. Necessary Experimental Conditions for Single-Shot Diffraction Imaging of DNA-Based Structures with X-ray Free-Electron Lasers. ACS NANO 2018; 12:7509-7518. [PMID: 29986128 DOI: 10.1021/acsnano.8b01838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It has been proposed that the radiation damage to biological particles and soft condensed matter can be overcome by ultrafast and ultraintense X-ray free-electron lasers (FELs) with short pulse durations. The successful demonstration of the "diffraction-before-destruction" concept has made single-shot diffraction imaging a promising tool to achieve high resolutions under the native states of samples. However, the resolution is still limited because of the low signal-to-noise ratio, especially for biological specimens such as cells, viruses, and macromolecular particles. Here, we present a demonstration single-shot diffraction imaging experiment of DNA-based structures at SPring-8 Angstrom Compact Free Electron Laser (SACLA), Japan. Through quantitative analysis of the reconstructed images, the scattering abilities of gold and DNA were demonstrated. Suggestions for extracting valid DNA signals from noisy diffraction patterns were also explained and outlined. To sketch out the necessary experimental conditions for the 3D imaging of DNA origami or DNA macromolecular particles, we carried out numerical simulations with practical detector noise and experimental geometry using the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory, USA. The simulated results demonstrate that it is possible to capture images of DNA-based structures at high resolutions with the technique development of current and next-generation X-ray FEL facilities.
Collapse
Affiliation(s)
- Zhibin Sun
- State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Jiadong Fan
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Haoyuan Li
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
- Department of Physics , Stanford University , Stanford , California 94305 , United States
| | - Huajie Liu
- Laboratory of Physical Biology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , China
| | - Daewoong Nam
- Pohang Accelerator Laboratory , Pohang University of Science and Technology , Pohang 37673 , Korea
- Department of Physics , Pohang University of Science and Technology , Pohang 37673 , Korea
| | - Chan Kim
- European XFEL GmbH , Holzkoppel 4 , Schenefeld 22869 , Germany
- Department of Physics and Photon Science & School of Materials Science and Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Korea
| | - Yoonhee Kim
- European XFEL GmbH , Holzkoppel 4 , Schenefeld 22869 , Germany
- Department of Physics and Photon Science & School of Materials Science and Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Korea
| | - Yubo Han
- Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
- SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Jianhua Zhang
- State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Shengkun Yao
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Jaehyun Park
- Pohang Accelerator Laboratory , Pohang University of Science and Technology , Pohang 37673 , Korea
| | - Sunam Kim
- Pohang Accelerator Laboratory , Pohang University of Science and Technology , Pohang 37673 , Korea
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute , Kouto, Sayo-cho, Sayo-gun , Hyogo 679-5198 , Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center , Kouto, Sayo-cho, Sayo-gun , Hyogo 679-5148 , Japan
| | - Tetsuya Ishikawa
- RIKEN SPring-8 Center , Kouto, Sayo-cho, Sayo-gun , Hyogo 679-5148 , Japan
| | - Changyong Song
- Department of Physics , Pohang University of Science and Technology , Pohang 37673 , Korea
| | - Chunhai Fan
- Laboratory of Physical Biology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , China
| | - Huaidong Jiang
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| |
Collapse
|
33
|
Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background graphene. Nat Commun 2018; 9:1836. [PMID: 29743480 PMCID: PMC5943278 DOI: 10.1038/s41467-018-04116-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/03/2018] [Indexed: 11/09/2022] Open
Abstract
Here we present a new approach to diffraction imaging of amyloid fibrils, combining a free-standing graphene support and single nanofocused X-ray pulses of femtosecond duration from an X-ray free-electron laser. Due to the very low background scattering from the graphene support and mutual alignment of filaments, diffraction from tobacco mosaic virus (TMV) filaments and amyloid protofibrils is obtained to 2.7 Å and 2.4 Å resolution in single diffraction patterns, respectively. Some TMV diffraction patterns exhibit asymmetry that indicates the presence of a limited number of axial rotations in the XFEL focus. Signal-to-noise levels from individual diffraction patterns are enhanced using computational alignment and merging, giving patterns that are superior to those obtainable from synchrotron radiation sources. We anticipate that our approach will be a starting point for further investigations into unsolved structures of filaments and other weakly scattering objects.
Collapse
|
34
|
Rose M, Senkbeil T, von Gundlach AR, Stuhr S, Rumancev C, Dzhigaev D, Besedin I, Skopintsev P, Loetgering L, Viefhaus J, Rosenhahn A, Vartanyants IA. Quantitative ptychographic bio-imaging in the water window. OPTICS EXPRESS 2018; 26:1237-1254. [PMID: 29402000 DOI: 10.1364/oe.26.001237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/05/2017] [Indexed: 06/07/2023]
Abstract
Coherent X-ray ptychography is a tool for highly dose efficient lensless nano-imaging of biological samples. We have used partially coherent soft X-ray synchrotron radiation to obtain a quantitative image of a laterally extended, dried, and unstained fibroblast cell by ptychography. We used data with and without a beam stop that allowed us to measure coherent diffraction with a high-dynamic range of 1.7·106. As a quantitative result, we obtained the refractive index values for two regions of the cell with respect to a reference area. Due to the photon energy in the water window we obtained an extremely high contrast of 53% at 71 nm half-period resolution. The dose applied in our experiment was 9.5·104 Gy and is well below the radiation damage threshold. The concept for dynamic range improvement for low dynamic range detectors with a beam stop opens the path for high resolution nano-imaging of a variety of samples including cryo-preserved, hydrated and unstained biological cells.
Collapse
|
35
|
Current Status of Single Particle Imaging with X-ray Lasers. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8010132] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Seddon EA, Clarke JA, Dunning DJ, Masciovecchio C, Milne CJ, Parmigiani F, Rugg D, Spence JCH, Thompson NR, Ueda K, Vinko SM, Wark JS, Wurth W. Short-wavelength free-electron laser sources and science: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:115901. [PMID: 29059048 DOI: 10.1088/1361-6633/aa7cca] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area.
Collapse
Affiliation(s)
- E A Seddon
- ASTeC, STFC Daresbury Laboratory, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire, WA4 4AD, United Kingdom. The School of Physics and Astronomy and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom. The Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire, WA4 4AD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wiedorn MO, Awel S, Morgan AJ, Barthelmess M, Bean R, Beyerlein KR, Chavas LMG, Eckerskorn N, Fleckenstein H, Heymann M, Horke DA, Knoška J, Mariani V, Oberthür D, Roth N, Yefanov O, Barty A, Bajt S, Küpper J, Rode AV, Kirian RA, Chapman HN. Post-sample aperture for low background diffraction experiments at X-ray free-electron lasers. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:1296-1298. [PMID: 29091073 PMCID: PMC5665296 DOI: 10.1107/s1600577517011961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
The success of diffraction experiments from weakly scattering samples strongly depends on achieving an optimal signal-to-noise ratio. This is particularly important in single-particle imaging experiments where diffraction signals are typically very weak and the experiments are often accompanied by significant background scattering. A simple way to tremendously reduce background scattering by placing an aperture downstream of the sample has been developed and its application in a single-particle X-ray imaging experiment at FLASH is demonstrated. Using the concept of a post-sample aperture it was possible to reduce the background scattering levels by two orders of magnitude.
Collapse
Affiliation(s)
- Max O. Wiedorn
- Center for Free-Electron Laser Scienece, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Salah Awel
- Center for Free-Electron Laser Scienece, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Andrew J. Morgan
- Center for Free-Electron Laser Scienece, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Miriam Barthelmess
- Center for Free-Electron Laser Scienece, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Richard Bean
- European XFEL GmbH, Albert-Einstein-Ring 19, D-22671 Hamburg, Germany
| | - Kenneth R. Beyerlein
- Center for Free-Electron Laser Scienece, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Leonard M. G. Chavas
- Center for Free-Electron Laser Scienece, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Niko Eckerskorn
- Laser Physics Centre, Research School of Physics and Engineering, Australian National University, ACT 2601, Canberra, Australia
| | - Holger Fleckenstein
- Center for Free-Electron Laser Scienece, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Michael Heymann
- Center for Free-Electron Laser Scienece, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Daniel A. Horke
- Center for Free-Electron Laser Scienece, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Juraj Knoška
- Center for Free-Electron Laser Scienece, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Valerio Mariani
- Center for Free-Electron Laser Scienece, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Dominik Oberthür
- Center for Free-Electron Laser Scienece, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Nils Roth
- Center for Free-Electron Laser Scienece, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Scienece, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Anton Barty
- Center for Free-Electron Laser Scienece, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Saša Bajt
- Photon Science, DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Scienece, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Andrei V. Rode
- Laser Physics Centre, Research School of Physics and Engineering, Australian National University, ACT 2601, Canberra, Australia
| | | | - Henry N. Chapman
- Center for Free-Electron Laser Scienece, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
38
|
Šrajer V, Schmidt M. Watching Proteins Function with Time-resolved X-ray Crystallography. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2017; 50:373001. [PMID: 29353938 PMCID: PMC5771432 DOI: 10.1088/1361-6463/aa7d32] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron X-ray sources. An expansive database of more than 100,000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al., 2005a; Schmidt 2008; Neutze and Moffat, 2012; Šrajer 2014). In this approach, short and intense X-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron X-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard X-rays (XFELs; 5-20 keV), which provide exceptionally intense, femtosecond X-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al., 2014; Barends et al., 2015; Pande et al., 2016). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We also outline challenges and further developments necessary to broaden the application of these methods to many important proteins and enzymes of biomedical relevance.
Collapse
Affiliation(s)
- Vukica Šrajer
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, USA
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, IL, USA
| |
Collapse
|
39
|
Pietrini A, Nettelblad C. Artifact reduction in the CSPAD detectors used for LCLS experiments. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:1092-1097. [PMID: 28862634 DOI: 10.1107/s160057751701058x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
The existence of noise and column-wise artifacts in the CSPAD-140K detector and in a module of the CSPAD-2.3M large camera, respectively, is reported for the L730 and L867 experiments performed at the CXI Instrument at the Linac Coherent Light Source (LCLS), in low-flux and low signal-to-noise ratio regime. Possible remedies are discussed and an additional step in the preprocessing of data is introduced, which consists of performing a median subtraction along the columns of the detector modules. Thus, we reduce the overall variation in the photon count distribution, lowering the mean false-positive photon detection rate by about 4% (from 5.57 × 10-5 to 5.32 × 10-5 photon counts pixel-1 frame-1 in L867, cxi86715) and 7% (from 1.70 × 10-3 to 1.58 × 10-3 photon counts pixel-1 frame-1 in L730, cxi73013), and the standard deviation in false-positive photon count per shot by 15% and 35%, while not making our average photon detection threshold more stringent. Such improvements in detector noise reduction and artifact removal constitute a step forward in the development of flash X-ray imaging techniques for high-resolution, low-signal and in serial nano-crystallography experiments at X-ray free-electron laser facilities.
Collapse
Affiliation(s)
- Alberto Pietrini
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala 751 24, Sweden
| | - Carl Nettelblad
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala 751 24, Sweden
| |
Collapse
|
40
|
Fortmann-Grote C, Buzmakov A, Jurek Z, Loh NTD, Samoylova L, Santra R, Schneidmiller EA, Tschentscher T, Yakubov S, Yoon CH, Yurkov MV, Ziaja-Motyka B, Mancuso AP. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser. IUCRJ 2017; 4:560-568. [PMID: 28989713 PMCID: PMC5619849 DOI: 10.1107/s2052252517009496] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/26/2017] [Indexed: 05/23/2023]
Abstract
Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. It is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs.
Collapse
Affiliation(s)
| | - Alexey Buzmakov
- FSRC ‘Crystallography and Photonics’, Russian Academy of Sciences, Moscow, Russian Federation
| | - Zoltan Jurek
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Ne-Te Duane Loh
- Centre for Bio-Imaging Sciences, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- Department of Physics, National University of Singapore, Singapore
| | | | - Robin Santra
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, University of Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| | | | | | | | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park CA 94025, USA
| | | | - Beata Ziaja-Motyka
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | | |
Collapse
|
41
|
The Linac Coherent Light Source: Recent Developments and Future Plans. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7080850] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of X-ray free-electron lasers (XFELs) has launched a new era in X-ray science by providing ultrafast coherent X-ray pulses with a peak brightness that is approximately one billion times higher than previous X-ray sources. The Linac Coherent Light Source (LCLS) facility at the SLAC National Accelerator Laboratory, the world’s first hard X-ray FEL, has already demonstrated a tremendous scientific impact across broad areas of science. Here, a few of the more recent representative highlights from LCLS are presented in the areas of atomic, molecular, and optical science; chemistry; condensed matter physics; matter in extreme conditions; and biology. This paper also outlines the near term upgrade (LCLS-II) and motivating science opportunities for ultrafast X-rays in the 0.25–5 keV range at repetition rates up to 1 MHz. Future plans to extend the X-ray energy reach to beyond 13 keV (<1 Å) at high repetition rate (LCLS-II-HE) are envisioned, motivated by compelling new science of structural dynamics at the atomic scale.
Collapse
|
42
|
Lan TY, Wierman JL, Tate MW, Philipp HT, Elser V, Gruner SM. Reconstructing three-dimensional protein crystal intensities from sparse unoriented two-axis X-ray diffraction patterns. J Appl Crystallogr 2017; 50:985-993. [PMID: 28808431 PMCID: PMC5541350 DOI: 10.1107/s1600576717006537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/01/2017] [Indexed: 11/16/2022] Open
Abstract
Recently, there has been a growing interest in adapting serial microcrystallography (SMX) experiments to existing storage ring (SR) sources. For very small crystals, however, radiation damage occurs before sufficient numbers of photons are diffracted to determine the orientation of the crystal. The challenge is to merge data from a large number of such 'sparse' frames in order to measure the full reciprocal space intensity. To simulate sparse frames, a dataset was collected from a large lysozyme crystal illuminated by a dim X-ray source. The crystal was continuously rotated about two orthogonal axes to sample a subset of the rotation space. With the EMC algorithm [expand-maximize-compress; Loh & Elser (2009). Phys. Rev. E, 80, 026705], it is shown that the diffracted intensity of the crystal can still be reconstructed even without knowledge of the orientation of the crystal in any sparse frame. Moreover, parallel computation implementations were designed to considerably improve the time and memory scaling of the algorithm. The results show that EMC-based SMX experiments should be feasible at SR sources.
Collapse
Affiliation(s)
- Ti-Yen Lan
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer L. Wierman
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
- Macromolecular Diffraction Facility at CHESS (MacCHESS), Cornell University, Ithaca, NY 14853, USA
| | - Mark W. Tate
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Hugh T. Philipp
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Veit Elser
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Sol M. Gruner
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
- Macromolecular Diffraction Facility at CHESS (MacCHESS), Cornell University, Ithaca, NY 14853, USA
- Kavli Institute for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
43
|
Spence JCH. XFELs for structure and dynamics in biology. IUCRJ 2017; 4:322-339. [PMID: 28875020 PMCID: PMC5571796 DOI: 10.1107/s2052252517005760] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/17/2017] [Indexed: 05/20/2023]
Abstract
The development and application of the free-electron X-ray laser (XFEL) to structure and dynamics in biology since its inception in 2009 are reviewed. The research opportunities which result from the ability to outrun most radiation-damage effects are outlined, and some grand challenges are suggested. By avoiding the need to cool samples to minimize damage, the XFEL has permitted atomic resolution imaging of molecular processes on the 100 fs timescale under near-physiological conditions and in the correct thermal bath in which molecular machines operate. Radiation damage, comparisons of XFEL and synchrotron work, single-particle diffraction, fast solution scattering, pump-probe studies on photosensitive proteins, mix-and-inject experiments, caged molecules, pH jump and other reaction-initiation methods, and the study of molecular machines are all discussed. Sample-delivery methods and data-analysis algorithms for the various modes, from serial femtosecond crystallo-graphy to fast solution scattering, fluctuation X-ray scattering, mixing jet experiments and single-particle diffraction, are also reviewed.
Collapse
Affiliation(s)
- J. C. H. Spence
- Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| |
Collapse
|
44
|
Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source. Sci Data 2017; 4:170079. [PMID: 28654088 PMCID: PMC5501160 DOI: 10.1038/sdata.2017.79] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/27/2017] [Indexed: 11/08/2022] Open
Abstract
Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.
Collapse
|
45
|
Daurer BJ, Okamoto K, Bielecki J, Maia FRNC, Mühlig K, Seibert MM, Hantke MF, Nettelblad C, Benner WH, Svenda M, Tîmneanu N, Ekeberg T, Loh ND, Pietrini A, Zani A, Rath AD, Westphal D, Kirian RA, Awel S, Wiedorn MO, van der Schot G, Carlsson GH, Hasse D, Sellberg JA, Barty A, Andreasson J, Boutet S, Williams G, Koglin J, Andersson I, Hajdu J, Larsson DSD. Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses. IUCRJ 2017; 4:251-262. [PMID: 28512572 PMCID: PMC5414399 DOI: 10.1107/s2052252517003591] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/07/2017] [Indexed: 05/25/2023]
Abstract
This study explores the capabilities of the Coherent X-ray Imaging Instrument at the Linac Coherent Light Source to image small biological samples. The weak signal from small samples puts a significant demand on the experiment. Aerosolized Omono River virus particles of ∼40 nm in diameter were injected into the submicrometre X-ray focus at a reduced pressure. Diffraction patterns were recorded on two area detectors. The statistical nature of the measurements from many individual particles provided information about the intensity profile of the X-ray beam, phase variations in the wavefront and the size distribution of the injected particles. The results point to a wider than expected size distribution (from ∼35 to ∼300 nm in diameter). This is likely to be owing to nonvolatile contaminants from larger droplets during aerosolization and droplet evaporation. The results suggest that the concentration of nonvolatile contaminants and the ratio between the volumes of the initial droplet and the sample particles is critical in such studies. The maximum beam intensity in the focus was found to be 1.9 × 1012 photons per µm2 per pulse. The full-width of the focus at half-maximum was estimated to be 500 nm (assuming 20% beamline transmission), and this width is larger than expected. Under these conditions, the diffraction signal from a sample-sized particle remained above the average background to a resolution of 4.25 nm. The results suggest that reducing the size of the initial droplets during aerosolization is necessary to bring small particles into the scope of detailed structural studies with X-ray lasers.
Collapse
Affiliation(s)
- Benedikt J. Daurer
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Kenta Okamoto
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Johan Bielecki
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Filipe R. N. C. Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- NERSC, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Kerstin Mühlig
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - M. Marvin Seibert
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Max F. Hantke
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Carl Nettelblad
- Division of Scientific Computing, Department of Information Technology, Science for Life Laboratory, Uppsala University, Lägerhyddsvägen 2 (Box 337), SE-751 05 Uppsala, Sweden
| | - W. Henry Benner
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Martin Svenda
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Nicuşor Tîmneanu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- Molecular and Condensed Matter Physics, Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1 (Box 516), SE-751 20 Uppsala, Sweden
| | - Tomas Ekeberg
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - N. Duane Loh
- Centre for BioImaging Sciences, National University of Singapore, Singapore
| | - Alberto Pietrini
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Alessandro Zani
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Asawari D. Rath
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- Bhabha Atomic Research Center, Mumbai 400 085, India
| | - Daniel Westphal
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Richard A. Kirian
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Salah Awel
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Max O. Wiedorn
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Gijs van der Schot
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Gunilla H. Carlsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Dirk Hasse
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Jonas A. Sellberg
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- Biomedical and X-ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Anton Barty
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jakob Andreasson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- ELI Beamlines, Institute of Physics, Czech Academy of Science, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Garth Williams
- Brookhaven National Laboratory, 743 Brookhaven Avenue, Upton, NY 11973, USA
| | - Jason Koglin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Inger Andersson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Janos Hajdu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Daniel S. D. Larsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| |
Collapse
|
46
|
Wang H, Liu H. Determining Complex Structures using Docking Method with Single Particle Scattering Data. Front Mol Biosci 2017; 4:23. [PMID: 28487857 PMCID: PMC5403940 DOI: 10.3389/fmolb.2017.00023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/29/2017] [Indexed: 11/23/2022] Open
Abstract
Protein complexes are critical for many molecular functions. Due to intrinsic flexibility and dynamics of complexes, their structures are more difficult to determine using conventional experimental methods, in contrast to individual subunits. One of the major challenges is the crystallization of protein complexes. Using X-ray free electron lasers (XFELs), it is possible to collect scattering signals from non-crystalline protein complexes, but data interpretation is more difficult because of unknown orientations. Here, we propose a hybrid approach to determine protein complex structures by combining XFEL single particle scattering data with computational docking methods. Using simulations data, we demonstrate that a small set of single particle scattering data collected at random orientations can be used to distinguish the native complex structure from the decoys generated using docking algorithms. The results also indicate that a small set of single particle scattering data is superior to spherically averaged intensity profile in distinguishing complex structures. Given the fact that XFEL experimental data are difficult to acquire and at low abundance, this hybrid approach should find wide applications in data interpretations.
Collapse
Affiliation(s)
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research CenterBeijing, China
| |
Collapse
|
47
|
Li X, Chiu CY, Wang HJ, Kassemeyer S, Botha S, Shoeman RL, Lawrence RM, Kupitz C, Kirian R, James D, Wang D, Nelson G, Messerschmidt M, Boutet S, Williams GJ, Hartmann E, Jafarpour A, Foucar LM, Barty A, Chapman H, Liang M, Menzel A, Wang F, Basu S, Fromme R, Doak RB, Fromme P, Weierstall U, Huang MH, Spence JCH, Schlichting I, Hogue BG, Liu H. Diffraction data of core-shell nanoparticles from an X-ray free electron laser. Sci Data 2017; 4:170048. [PMID: 28398334 PMCID: PMC5387922 DOI: 10.1038/sdata.2017.48] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/13/2017] [Indexed: 11/09/2022] Open
Abstract
X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Scattering patterns resulting from single particles were selected and compiled into a dataset which can be valuable for algorithm developments in single particle scattering research.
Collapse
Affiliation(s)
- Xuanxuan Li
- Complex Systems Division, Beijing Computational Science Research Center, ZPark II, Haidian, Beijing 100193, China.,Department of Engineering Physics, Tsinghua University, Beijing 100086, China
| | - Chun-Ya Chiu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsiang-Ju Wang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Stephan Kassemeyer
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Sabine Botha
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Robert L Shoeman
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Robert M Lawrence
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona 85287, USA.,Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, USA
| | - Christopher Kupitz
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Richard Kirian
- Department of Physics, Arizona State University, Tempe, Arizona 85297, USA
| | - Daniel James
- Department of Physics, Arizona State University, Tempe, Arizona 85297, USA
| | - Dingjie Wang
- Department of Physics, Arizona State University, Tempe, Arizona 85297, USA
| | - Garrett Nelson
- Department of Physics, Arizona State University, Tempe, Arizona 85297, USA
| | - Marc Messerschmidt
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Sébastien Boutet
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Garth J Williams
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Elisabeth Hartmann
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Aliakbar Jafarpour
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Lutz M Foucar
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Anton Barty
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Henry Chapman
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Mengning Liang
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Andreas Menzel
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Fenglin Wang
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Shibom Basu
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Raimund Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - R Bruce Doak
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Uwe Weierstall
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, USA.,Department of Physics, Arizona State University, Tempe, Arizona 85297, USA
| | - Michael H Huang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - John C H Spence
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, USA.,Department of Physics, Arizona State University, Tempe, Arizona 85297, USA
| | - Ilme Schlichting
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Brenda G Hogue
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona 85287, USA.,Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, USA.,School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, ZPark II, Haidian, Beijing 100193, China
| |
Collapse
|
48
|
Pedrini B, Menzel A, Guzenko VA, David C, Abela R, Gutt C. Model-independent particle species disentanglement by X-ray cross-correlation scattering. Sci Rep 2017; 7:45618. [PMID: 28374754 PMCID: PMC5379484 DOI: 10.1038/srep45618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 03/01/2017] [Indexed: 11/09/2022] Open
Abstract
Mixtures of different particle species are often investigated using the angular averages of the scattered X-ray intensity. The number of species is deduced by singular value decomposition methods. The full disentanglement of the data into per-species contributions requires additional knowledge about the system under investigation. We propose to exploit higher-order angular X-ray intensity correlations with a new computational protocol, which we apply to synchrotron data from two-species mixtures of two-dimensional static test nanoparticles. Without any other information besides the correlations, we demonstrate the assessment of particle species concentrations in the measured data sets, as well as the full ab initio reconstruction of both particle structures. The concept extends straightforwardly to more species and to the three-dimensional case, whereby the practical application will require the measurements to be performed at an X-ray free electron laser.
Collapse
Affiliation(s)
- B Pedrini
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - A Menzel
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - V A Guzenko
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - C David
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - R Abela
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - C Gutt
- Department Physik, Naturwissenschaftlich-Technische Fakultät, Universität Siegen, 57068, Siegen, Germany
| |
Collapse
|
49
|
|
50
|
Noh DY, Kim C, Kim Y, Song C. Enhancing resolution in coherent x-ray diffraction imaging. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:493001. [PMID: 27754981 DOI: 10.1088/0953-8984/28/49/493001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Achieving a resolution near 1 nm is a critical issue in coherent x-ray diffraction imaging (CDI) for applications in materials and biology. Albeit with various advantages of CDI based on synchrotrons and newly developed x-ray free electron lasers, its applications would be limited without improving resolution well below 10 nm. Here, we review the issues and efforts in improving CDI resolution including various methods for resolution determination. Enhancing diffraction signal at large diffraction angles, with the aid of interference between neighboring strong scatterers or templates, is reviewed and discussed in terms of increasing signal-to-noise ratio. In addition, we discuss errors in image reconstruction algorithms-caused by the discreteness of the Fourier transformations involved-which degrade the spatial resolution, and suggest ways to correct them. We expect this review to be useful for applications of CDI in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.
Collapse
Affiliation(s)
- Do Young Noh
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | | | | | | |
Collapse
|