1
|
Keshawa Ediriweera M. Fatty acids as histone deacetylase inhibitors: old biochemistry tales in a new life sciences town. Drug Discov Today 2023; 28:103569. [PMID: 36990144 DOI: 10.1016/j.drudis.2023.103569] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Histone acetylation is a key epigenetic event. Although the keywords fatty acids, histones, and histone acetylation have a long history in biochemistry, these topics continue to attract much attention among researchers. The acetylation of histones is controlled by the activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). An imbalance in the activities of HATs and HDACs is common in a range of human cancers. Histone deacetylase inhibitors (HDACi) can restore dysregulated histone acetylation profiles in cancer cells and have been identified as promising anti-cancer therapeutics. Short-chain fatty acids mediate anti-cancer effects by inhibiting the activity of HDACs. Recent studies have identified odd-chain fatty acids as novel HDACi. This review summarizes recent findings regarding fatty acids as HDACi in cancer therapy. Teaser: Inhibition of histone deacetylase (HDAC) activity by fatty acids.
Collapse
|
2
|
Oncolytic virotherapy: Challenges and solutions. Curr Probl Cancer 2021; 45:100639. [DOI: 10.1016/j.currproblcancer.2020.100639] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
|
3
|
Coxsackievirus and adenovirus receptor mediates the responses of endothelial cells to fluid shear stress. Exp Mol Med 2019; 51:1-15. [PMID: 31776326 PMCID: PMC6881322 DOI: 10.1038/s12276-019-0347-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/15/2019] [Accepted: 09/25/2019] [Indexed: 01/30/2023] Open
Abstract
Endothelial mechanotransduction by fluid shear stress (FSS) modulates endothelial function and vascular pathophysiology through mechanosensors on the cell membrane. The coxsackievirus and adenovirus receptor (CAR) is not only a viral receptor but also a component of tight junctions and plays an important role in tissue homeostasis. Here, we demonstrate the expression, regulatory mechanism, and role of CAR in vascular endothelial cells (ECs) under FSS conditions. Disturbed flow increased, whereas unidirectional laminar shear stress (LSS) decreased, CAR expression in ECs through the Krüppel-like factor 2 (KLF2)/activator protein 1 (AP-1) axis. Deletion of CAR reduced the expression of proinflammatory genes and endothelial inflammation induced by disturbed flow via the suppression of NF-κB activation. Consistently, disturbed flow-induced atherosclerosis was reduced in EC-specific CAR KO mice. CAR was found to be involved in endothelial mechanotransduction through the regulation of platelet endothelial cell adhesion molecule 1 (PECAM-1) phosphorylation. Our results demonstrate that endothelial CAR is regulated by FSS and that this regulated CAR acts as an important modulator of endothelial mechanotransduction by FSS. Research into the mechanisms by which blood flow disturbances affect the function of endothelial cells (ECs), the cells lining the interior of blood vessels, reveals potential new targets for treating atherosclerosis. Kihwan Kwon at Ewha Womans University in Seoul, South Korea, and colleagues found that a membrane protein, the coxsackie and adenovirus receptor, CAR, mediates the response of ECs to the shear stress exerted by blood flow. They showed, in human tissue and in mice, that CAR protein levels in ECs increase when they are exposed to low or oscillatory blood flow, which is linked to the build-up of plaque inside arteries. Lowering CAR levels in ECs reduced the expression of proinflammatory genes and the formation of atherosclerotic lesions in mice. These findings suggest that reducing CAR activity could be a promising approach for treating atherosclerosis.
Collapse
|
4
|
Garcia-Moure M, Martinez-Velez N, Gonzalez-Huarriz M, Marrodán L, Cascallo M, Alemany R, Patiño-García A, Alonso MM. The oncolytic adenovirus VCN-01 promotes anti-tumor effect in primitive neuroectodermal tumor models. Sci Rep 2019; 9:14368. [PMID: 31591461 PMCID: PMC6779892 DOI: 10.1038/s41598-019-51014-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/23/2019] [Indexed: 01/14/2023] Open
Abstract
Last advances in the treatment of pediatric tumors has led to an increase of survival rates of children affected by primitive neuroectodermal tumors, however, still a significant amount of the patients do not overcome the disease. In addition, the survivors might suffer from severe side effects caused by the current standard treatments. Oncolytic virotherapy has emerged in the last years as a promising alternative for the treatment of solid tumors. In this work, we study the anti-tumor effect mediated by the oncolytic adenovirus VCN-01 in CNS-PNET models. VCN-01 is able to infect and replicate in PNET cell cultures, leading to a cytotoxicity and immunogenic cell death. In vivo, VCN-01 increased significantly the median survival of mice and led to long-term survivors in two orthotopic models of PNETs. In summary, these results underscore the therapeutic effect of VCN-01 for rare pediatric cancers such as PNETs, and warrants further exploration on the use of this virus to treat them.
Collapse
Affiliation(s)
- Marc Garcia-Moure
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain.,Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, University Hospital of Navarra, Pamplona, 31008, Spain
| | - Naiara Martinez-Velez
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain.,Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, University Hospital of Navarra, Pamplona, 31008, Spain
| | - Marisol Gonzalez-Huarriz
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain.,Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, University Hospital of Navarra, Pamplona, 31008, Spain
| | - Lucía Marrodán
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain.,Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, University Hospital of Navarra, Pamplona, 31008, Spain
| | - Manel Cascallo
- VCN Biosciences, Sant Cugat del Vallés, 08174, Barcelona, Spain
| | - Ramón Alemany
- Translational Research Laboratory, IDIBELL-Institut Catalá d'Oncologia, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Ana Patiño-García
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain.,Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, University Hospital of Navarra, Pamplona, 31008, Spain
| | - Marta M Alonso
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain. .,Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain. .,Department of Pediatrics, University Hospital of Navarra, Pamplona, 31008, Spain.
| |
Collapse
|
5
|
Deng H, Liu H, de Silva T, Xue Y, Mohamud Y, Ng CS, Qu J, Zhang J, Jia WW, Lockwood WW, Luo H. Coxsackievirus Type B3 Is a Potent Oncolytic Virus against KRAS-Mutant Lung Adenocarcinoma. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:266-278. [PMID: 31463367 PMCID: PMC6709373 DOI: 10.1016/j.omto.2019.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/13/2019] [Indexed: 02/05/2023]
Abstract
KRAS mutant (KRASmut) lung adenocarcinoma is a refractory cancer without available targeted therapy. The current study explored the possibility to develop coxsackievirus type B3 (CVB3) as an oncolytic agent for the treatment of KRASmut lung adenocarcinoma. In cultured cells, we discovered that CVB3 selectively infects and lyses KRASmut lung adenocarcinoma cells (A549, H2030, and H23), while sparing normal lung epithelial cells (primary, BEAS2B, HPL1D, and 1HAEo) and EGFRmut lung adenocarcinoma cells (HCC4006, PC9, H3255, and H1975). Using stable cells expressing a single driver mutation of either KRASG12V or EGFRL858R in normal lung epithelial cells (HPL1D), we further showed that CVB3 specifically kills HPL1D-KRASG12V cells with minimal harm to HPL1D-EGFRL858R and control cells. Mechanistically, we demonstrated that aberrant activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and compromised type I interferon immune response in KRASmut lung adenocarcinoma cells serve as key factors contributing to the sensitivity to CVB3-induced cytotoxicity. Lastly, we conducted in vivo xenograft studies using two immunocompromised mouse models. Our results revealed that intratumoral injection of CVB3 results in a marked tumor regression of KRASmut lung adenocarcinoma in both non-obese diabetic (NOD) severe combined immunodeficiency (SCID) gamma (NSG) and NOD-SCID xenograft models. Together, our findings suggest that CVB3 is an excellent candidate to be further developed as a targeted therapy for KRASmut lung adenocarcinoma.
Collapse
Affiliation(s)
- Haoyu Deng
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Vascular Surgery, RenJi Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huitao Liu
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tanya de Silva
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - YuanChao Xue
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yasir Mohamud
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chen Seng Ng
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Junyan Qu
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Jingchun Zhang
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - William W.G. Jia
- Department of Surgery, Division of Neurosurgery, University of British Columbia, Vancouver, BC, Canada
| | - William W. Lockwood
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
- Corresponding author: William W. Lockwood, Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada.
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Corresponding author: Honglin Luo, Centre for Heart Lung Innovation, St. Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada.
| |
Collapse
|
6
|
Altinoz MA, Nalbantoglu J, Ozpinar A, Emin Ozcan M, Del Maestro RF, Elmaci I. From epidemiology and neurodevelopment to antineoplasticity. Medroxyprogesterone reduces human glial tumor growth in vitro and C6 glioma in rat brain in vivo. Clin Neurol Neurosurg 2018; 173:20-30. [PMID: 30055402 DOI: 10.1016/j.clineuro.2018.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/03/2018] [Accepted: 07/13/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Glial tumor growth may accelerate during gestation, but epidemiological studies consistently demonstrated that parousity reduces life long risk of glial tumors. Pregnancy may also accelerate growth of medulloblastoma and meningioma, but parousity does not confer protection against these tumors. We were the first to show that medroxyprogesterone acetate (MPA) reduces rat C6 glioma growth in vitro. Now we aimed to determine the effects of MPA on human brain cancers (particularly glioblastoma) in vitro and C6 glioma in vivo. PATIENTS AND METHODS We evaluated the effects of MPA on: i) monolayer growth of human U87 and U251 glioblastoma, ii) 3D-spheroid growth and invasion of C6 rat glioma and human U251 glioma, iii) interactions with PI3-Kinase inhibitors and coxsackie-adenovirus receptor (CAR) in modifying 3D-spheroid invasion of glioma. RESULTS MPA at low doses (3.25-13 μM) insignificantly stimulated and at high doses (above 52 μM) strongly suppressed the growth of human U87 and U251 cells in vitro. MPA also binds to glucocorticoid receptors similar to dexamethasone (Dex) and unexpectedly, PI3-Kinase inhibitors at low doses suppressed anti-invasive efficacies of MPA and Dex. MPA exerted higher invasion-inhibitory effects on CAR-expressing human glioma cells. Lastly, MPA suppressed growth of C6 glioma implanted into rat brain. CONCLUSION Progesterone analogues deserve to be studied in future experimental models of high grade glial brain tumors.
Collapse
Affiliation(s)
- Meric A Altinoz
- Neuroacademy Research Group, Istanbul, Turkey; Department of Psychiatry, Maastricht University, Holland, Netherlands.
| | - Josephine Nalbantoglu
- Department of Neuroimmunology, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Aysel Ozpinar
- Department of Medical Biochemistry, Acibadem University, Istanbul, Turkey
| | - M Emin Ozcan
- Department of Neurology, Kizilay Hospital, Bakirkoy, Istanbul, Turkey
| | | | - Ilhan Elmaci
- Neuroacademy Research Group, Istanbul, Turkey; Department of Neurosurgery, Memorial Hospital, Istanbul, Turkey
| |
Collapse
|
7
|
Oncolytic adenoviruses as a therapeutic approach for osteosarcoma: A new hope. J Bone Oncol 2016; 9:41-47. [PMID: 29226089 PMCID: PMC5715440 DOI: 10.1016/j.jbo.2016.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/16/2016] [Accepted: 12/02/2016] [Indexed: 01/07/2023] Open
Abstract
Osteosarcoma is the most common bone cancer among those with non-hematological origin and affects mainly pediatric patients. In the last 50 years, refinements in surgical procedures, as well as the introduction of aggressive neoadjuvant and adjuvant chemotherapeutic cocktails, have increased to nearly 70% the survival rate of these patients. Despite the initial therapeutic progress the fight against osteosarcoma has not substantially improved during the last three decades, and almost 30% of the patients do not respond or recur after the standard treatment. For this group there is an urgent need to implement new therapeutic approaches. Oncolytic adenoviruses are conditionally replicative viruses engineered to selectively replicate in and kill tumor cells, while remaining quiescent in healthy cells. In the last years there have been multiple preclinical and clinical studies using these viruses as therapeutic agents in the treatment of a broad range of cancers, including osteosarcoma. In this review, we summarize some of the most relevant published literature about the use of oncolytic adenoviruses to treat human osteosarcoma tumors in subcutaneous, orthotopic and metastatic mouse models. In conclusion, up to date the preclinical studies with oncolytic adenoviruses have demonstrated that are safe and efficacious against local and metastatic osteosarcoma. Knowledge arising from phase I/II clinical trials with oncolytic adenoviruses in other tumors have shown the potential of viruses to awake the patient´s own immune system generating a response against the tumor. Generating osteosarcoma immune-competent adenoviruses friendly models will allow to better understand this potential. Future clinical trials with oncolytic adenoviruses for osteosarcoma tumors are warranted.
Collapse
|
8
|
Loss of CAR promotes migration and proliferation of HaCaT cells, and accelerates wound healing in rats via Src-p38 MAPK pathway. Sci Rep 2016; 6:19735. [PMID: 26804208 PMCID: PMC4726158 DOI: 10.1038/srep19735] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/15/2015] [Indexed: 12/30/2022] Open
Abstract
The coxsackie and adenovirus receptor (CAR) is a cell adhesion molecule mostly localized to cell-cell contacts in epithelial and endothelial cells. CAR is known to regulate tumor progression, however, its physiological role in keratinocyte migration and proliferation, two essential steps in re-epithelialization during wound healing, has less been investigated. Here we showed that CAR was predominantly expressed in the epidermis of human skin, CAR knockdown by RNAi significantly accelerated HaCaT cell migration and proliferation. In addition, knockdown of CAR in vitro increased p-Src, p-p38, and p-JNK protein levels; however, Src inhibitor PP2 prevented the increase of p-Src and p-p38 induced by CAR RNAi, but not p-JNK, and decelerated cell migration and proliferation. More intriguingly, in vivo CAR RNAi on the skin area surrounding the wounds on rat back visually accelerated wound healing and re-epithelialization process, while treatment with PP2 or p38 inhibitor SB203580 obviously inhibited these effects. By contrast, overexpressing CAR in HaCaT cells significantly decelerated cell migration and proliferation. Above results demonstrate that suppression of CAR could accelerate HaCaT cell migration and proliferation, and promote wound healing in rat skin, probably via Src-p38 MAPK pathway. CAR thus might serve as a novel therapeutic target for facilitating wound healing.
Collapse
|
9
|
Loustalot F, Kremer EJ, Salinas S. Membrane Dynamics and Signaling of the Coxsackievirus and Adenovirus Receptor. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 322:331-62. [PMID: 26940522 DOI: 10.1016/bs.ircmb.2015.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The coxsackievirus and adenovirus receptor (CAR) belongs to the immunoglobulin superfamily and acts as a receptor for some adenovirus types and group B coxsackieviruses. Its role is best described in epithelia where CAR participates to tight junction integrity and maintenance. Recently, several studies aimed to characterize its potential interaction with intracellular signaling pathways and highlighted several features linking CAR to gene expression. In addition, the molecular mechanisms leading to CAR-specific membrane targeting via the secretory pathway in polarized cells and its internalization are starting to be unraveled. This chapter discusses the interaction between membrane dynamics, intracellular trafficking, and signaling of CAR.
Collapse
Affiliation(s)
- Fabien Loustalot
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier, France
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier, France.
| | - Sara Salinas
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier, France.
| |
Collapse
|
10
|
Cockbill LMR, Murk K, Love S, Hanley JG. Protein interacting with C kinase 1 suppresses invasion and anchorage-independent growth of astrocytic tumor cells. Mol Biol Cell 2015; 26:4552-61. [PMID: 26466675 PMCID: PMC4678014 DOI: 10.1091/mbc.e15-05-0270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/07/2015] [Indexed: 12/11/2022] Open
Abstract
Astrocytic tumors are the most common form of primary brain tumor. Astrocytic tumor cells infiltrate the surrounding CNS tissue, allowing them to evade removal upon surgical resection of the primary tumor. Dynamic changes to the actin cytoskeleton are crucial to cancer cell invasion, but the specific mechanisms that underlie the particularly invasive phenotype of astrocytic tumor cells are unclear. Protein interacting with C kinase 1 (PICK1) is a PDZ and BAR domain-containing protein that inhibits actin-related protein 2/3 (Arp2/3)-dependent actin polymerization and is involved in regulating the trafficking of a number of cell-surface receptors. Here we report that, in contrast to other cancers, PICK1 expression is down-regulated in grade IV astrocytic tumor cell lines and also in clinical cases of the disease in which grade IV tumors have progressed from lower-grade tumors. Exogenous expression of PICK1 in the grade IV astrocytic cell line U251 reduces their capacity for anchorage-independent growth, two-dimensional migration, and invasion through a three-dimensional matrix, strongly suggesting that low PICK1 expression plays an important role in astrocytic tumorigenesis. We propose that PICK1 negatively regulates neoplastic infiltration of astrocytic tumors and that manipulation of PICK1 is an attractive possibility for therapeutic intervention.
Collapse
Affiliation(s)
- Louisa M R Cockbill
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Kai Murk
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Seth Love
- School of Clinical Sciences, University of Bristol, Bristol BS10 5NB, United Kingdom
| | - Jonathan G Hanley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
11
|
Leech AO, Cruz RGB, Hill ADK, Hopkins AM. Paradigms lost-an emerging role for over-expression of tight junction adhesion proteins in cancer pathogenesis. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:184. [PMID: 26366401 DOI: 10.3978/j.issn.2305-5839.2015.08.01] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 12/31/2022]
Abstract
Tight junctions (TJ) are multi-protein complexes located at the apicalmost tip of the lateral membrane in polarised epithelial and endothelial cells. Their principal function is in mediating intercellular adhesion and polarity. Accordingly, it has long been a paradigm that loss of TJ proteins and consequent deficits in cell-cell adhesion are required for tumour cell dissemination in the early stages of the invasive/metastatic cascade. However it is becoming increasingly apparent that TJ proteins play important roles in not just adhesion but also intracellular signalling events, activation of which can contribute to, or even drive, tumour progression and metastasis. In this review, we shall therefore highlight cases wherein the gain of TJ proteins has been associated with signals promoting tumour progression. We will also discuss the potential of overexpressed TJ proteins to act as therapeutic targets in cancer treatment. The overall purpose of this review is not to disprove the fact that loss of TJ-based adhesion contributes to the progression of several cancers, but rather to introduce the growing body of evidence that gain of TJ proteins may have adhesion-independent consequences for promoting progression in other cancers.
Collapse
Affiliation(s)
- Astrid O Leech
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Rodrigo G B Cruz
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Arnold D K Hill
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ann M Hopkins
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
12
|
Krivega M, Geens M, Van de Velde H. CAR expression in human embryos and hESC illustrates its role in pluripotency and tight junctions. Reproduction 2014; 148:531-44. [PMID: 25118298 DOI: 10.1530/rep-14-0253] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Coxsackie virus and adenovirus receptor, CXADR (CAR), is present during embryogenesis and is involved in tissue regeneration, cancer and intercellular adhesion. We investigated the expression of CAR in human preimplantation embryos and embryonic stem cells (hESC) to identify its role in early embryogenesis and differentiation. CAR protein was ubiquitously present during preimplantation development. It was localised in the nucleus of uncommitted cells, from the cleavage stage up to the precursor epiblast, and corresponded with the presence of soluble CXADR3/7 splice variant. CAR was displayed on the membrane, involving in the formation of tight junction at compaction and blastocyst stages in both outer and inner cells, and CAR corresponded with the full-length CAR-containing transmembrane domain. In trophectodermal cells of hatched blastocysts, CAR was reduced in the membrane and concentrated in the nucleus, which correlated with the switch in RNA expression to the CXADR4/7 and CXADR2/7 splice variants. The cells in the outer layer of hESC colonies contained CAR on the membrane and all the cells of the colony had CAR in the nucleus, corresponding with the transmembrane CXADR and CXADR4/7. Upon differentiation of hESC into cells representing the three germ layers and trophoblast lineage, the expression of CXADR was downregulated. We concluded that CXADR is differentially expressed during human preimplantation development. We described various CAR expressions: i) soluble CXADR marking undifferentiated blastomeres; ii) transmembrane CAR related with epithelial-like cell types, such as the trophectoderm (TE) and the outer layer of hESC colonies; and iii) soluble CAR present in TE nuclei after hatching. The functions of these distinct forms remain to be elucidated.
Collapse
Affiliation(s)
- M Krivega
- Research Group Reproduction and GeneticsFaculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, BelgiumCentre for Reproductive Medicine (CRG)UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - M Geens
- Research Group Reproduction and GeneticsFaculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, BelgiumCentre for Reproductive Medicine (CRG)UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - H Van de Velde
- Research Group Reproduction and GeneticsFaculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, BelgiumCentre for Reproductive Medicine (CRG)UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium Research Group Reproduction and GeneticsFaculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, BelgiumCentre for Reproductive Medicine (CRG)UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
13
|
Uchino J, Curiel DT, Ugai H. Species D human adenovirus type 9 exhibits better virus-spread ability for antitumor efficacy among alternative serotypes. PLoS One 2014; 9:e87342. [PMID: 24503714 PMCID: PMC3913592 DOI: 10.1371/journal.pone.0087342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/20/2013] [Indexed: 11/19/2022] Open
Abstract
Species C human adenovirus serotype 5 (HAdV-C5) is widely used as a vector for cancer gene therapy, because it efficiently transduces target cells. A variety of HAdV-C5 vectors have been developed and tested in vitro and in vivo for cancer gene therapy. While clinical trials with HAdV-C5 vectors resulted in effective responses in many cancer patients, administration of HAdV-C5 vectors to solid tumors showed responses in a limited area. A biological barrier in tumor mass is considered to hinder viral spread of HAdV-C5 vectors from infected cells. Therefore, efficient virus-spread from an infected tumor cell to surrounding tumor cells is required for successful cancer gene therapy. In this study, we compared HAdV-C5 to sixteen other HAdV serotypes selected from species A to G for virus-spread ability in vitro. HAdV-D9 showed better virus-spread ability than other serotypes, and its viral progeny were efficiently released from infected cells during viral replication. Although the HAdV-D9 fiber protein contains a binding site for coxsackie B virus and adenovirus receptor (CAR), HAdV-D9 showed expanded tropism for infection due to human CAR (hCAR)-independent attachment to target cells. HAdV-D9 infection effectively killed hCAR-negative cancer cells as well as hCAR-positive cancer cells. These results suggest that HADV-D9, with its better virus-spread ability, could have improved therapeutic efficacy in solid tumors compared to HAdV-C5.
Collapse
Affiliation(s)
- Junji Uchino
- Cancer Biology Division, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - David T. Curiel
- Cancer Biology Division, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Hideyo Ugai
- Cancer Biology Division, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
14
|
Schreiber J, Langhorst H, Jüttner R, Rathjen FG. The IgCAMs CAR, BT-IgSF, and CLMP: Structure, Function, and Diseases. ADVANCES IN NEUROBIOLOGY 2014; 8:21-45. [DOI: 10.1007/978-1-4614-8090-7_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Chen H, Zheng X, Di B, Wang D, Zhang Y, Xia H, Mao Q. Aptamer modification improves the adenoviral transduction of malignant glioma cells. J Biotechnol 2013. [DOI: 10.1016/j.jbiotec.2013.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Houri N, Huang KC, Nalbantoglu J. The Coxsackievirus and Adenovirus Receptor (CAR) undergoes ectodomain shedding and regulated intramembrane proteolysis (RIP). PLoS One 2013; 8:e73296. [PMID: 24015300 PMCID: PMC3756012 DOI: 10.1371/journal.pone.0073296] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/19/2013] [Indexed: 11/18/2022] Open
Abstract
The Coxsackievirus and Adenovirus Receptor (CAR) is a cell adhesion molecule originally characterized as a virus receptor but subsequently shown to be involved in physiological processes such as neuronal and heart development, epithelial tight junction integrity, and tumour suppression. Proteolysis of cell adhesion molecules and a wide variety of other cell surface proteins serves as a mechanism for protein turnover and, in some cases, cell signaling. Metalloproteases such as A Disintegrin and Metalloprotease (ADAM) family members cleave cell surface receptors to release their substrates' ectodomains, while the presenilin/ɣ-secretase complex mediates regulated intramembrane proteolysis (RIP), releasing intracellular domain fragments from the plasma membrane. In the case of some substrates such as Notch and amyloid precursor protein (APP), the released intracellular domains enter the nucleus to modulate gene expression. We report that CAR ectodomain is constitutively shed from glioma cells and developing neurons, and is also shed when cells are treated with the phorbol ester phorbol 12-myristate 13-acetate (PMA) and the calcium ionophore ionomycin. We identified ADAM10 as a sheddase of CAR using assays involving shRNA knockdown and rescue, overexpression of wild-type ADAM10 and inhibition of ADAM10 activity by addition of its prodomain. In vitro peptide cleavage, mass spectrometry and mutagenesis revealed the amino acids M224 to L227 of CAR as the site of ADAM10-mediated ectodomain cleavage. CAR also undergoes RIP by the presenilin/γ-secretase complex, and the intracellular domain of CAR enters the nucleus. Ectodomain shedding is a prerequisite for RIP of CAR. Thus, CAR belongs to the increasing list of cell surface molecules that undergo ectodomain shedding and that are substrates for ɣ-secretase-mediated RIP.
Collapse
Affiliation(s)
- Nadia Houri
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Kuo-Cheng Huang
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Josephine Nalbantoglu
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
17
|
Expression of the coxsackie and adenovirus receptor in human lung cancers. Tumour Biol 2013; 34:17-24. [PMID: 23307165 DOI: 10.1007/s13277-012-0342-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/23/2012] [Indexed: 01/09/2023] Open
Abstract
The aim of this study is to elucidate the relation between expression of coxsackie and adenovirus receptor (CAR) and formation of lung cancer. We investigated the expression of CAR by immunohistochemistry, Western blot and real-time RT-PCR in 120 lung cancers. We found that CAR expression in tumor tissues was significantly higher than that in normal lung tissues. CAR expression had a correlation with the histological grade of lung squamous cell carcinoma; however, there was no relationship between the CAR expression and the other clinical pathological features. In vitro, silencing or overexpression of CAR could significantly inhibit or promote colony formation, cell adhesion, and invasion in A549 cells. Our findings demonstrated that CAR may play an essential role in the formation of lung cancer.
Collapse
|
18
|
Transcription factor Sp1 is involved in expressional regulation of coxsackie and adenovirus receptor in cancer cells. J Biomed Biotechnol 2011; 2011:636497. [PMID: 22190856 PMCID: PMC3228682 DOI: 10.1155/2011/636497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/17/2011] [Accepted: 10/07/2011] [Indexed: 12/14/2022] Open
Abstract
Coxsackie and adenovirus receptor (CAR) was first known as a virus receptor. Recently, it is also known to have tumor suppressive activity such as inhibition of cell proliferation, migration, and invasion. It is important to understand how CAR expression can be regulated in cancers. Based on an existence of putative Sp1 binding site within CAR promoter, we investigated whether indeed Sp1 is involved in the regulation of CAR expression. We observed that deletion or mutation of Sp1 binding motif (−503/−498) prominently impaired the Sp1 binding affinity and activity of CAR promoter. Histone deacetylase inhibitor (TSA) treatment enhanced recruitment of Sp1 to the CAR promoter in ChIP assay. Meanwhile, Sp1 binding inhibitor suppressed the recruitment. Exogenous expression of wild-type Sp1 increased CAR expression in CAR-negative cells; meanwhile, dominant negative Sp1 decreased the CAR expression in CAR-positive cells. These results indicate that Sp1 is involved in regulation of CAR expression.
Collapse
|
19
|
Majhen D, Stojanović N, Špeljko T, Brozovic A, De Zan T, Osmak M, Ambriović-Ristov A. Increased expression of the coxsackie and adenovirus receptor downregulates αvβ3 and αvβ5 integrin expression and reduces cell adhesion and migration. Life Sci 2011; 89:241-9. [PMID: 21712047 DOI: 10.1016/j.lfs.2011.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/17/2011] [Accepted: 06/04/2011] [Indexed: 12/21/2022]
Abstract
AIMS Coxsackie and adenovirus receptor (CAR) is a tumor suppressor and a primary receptor for adenovirus type 5 (Ad5). Our study aims to examine the influence of forced expression of CAR in rhabdomyosarcoma cells (RD) on expression levels of integrins implicated in Ad5 entry, and the effect of CAR on cell-extracellular matrix adhesion and migration. MAIN METHODS CAR expressing clones were established from RD cells by stable transfection. Flow cytometry was used to evaluate the expression of CAR and integrins. Adhesion was measured in plates previously coated with vitronectin or fibronectin. Boyden chambers were used to investigate migration. Transfection of cells with siRNA was used to achieve integrin silencing. Ad5-mediated transgene expression was measured by β-gal staining. KEY FINDINGS Increased expression of CAR in RD cells reduces the expression of αvβ3 and αvβ5 integrins. Cells overexpressing CAR exhibit significantly reduced adhesion to vitronectin and fibronectin, and reduced cell migration. Specifically silencing αvβ3 integrin in RD cells reduced cell migration indicating that reduced migration could be the consequence of αvβ3 integrin downregulation. This study also demonstrates the negative effect of reduced levels of αvβ3 and αvβ5 integrins on Ad5-mediated transgene expression with Ad5 retargeted to αv integrins. SIGNIFICANCE The pharmacological upregulation of CAR aimed to increase Ad5-mediated transgene expression may actually downregulate αvβ3 and αvβ5 integrins and thus alter Ad5-mediated gene transfer. The mechanism of decreased cell migration, a prerequisite for metastasis and invasion, due to increased CAR expression may be explained by reduced αvβ3 integrin expression.
Collapse
Affiliation(s)
- Dragomira Majhen
- Laboratory for Genotoxic Agents, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | | | | | | | | | | | | |
Collapse
|
20
|
Silver J, Mei YF. Transduction and oncolytic profile of a potent replication-competent adenovirus 11p vector (RCAd11pGFP) in colon carcinoma cells. PLoS One 2011; 6:e17532. [PMID: 21455297 PMCID: PMC3063781 DOI: 10.1371/journal.pone.0017532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 02/07/2011] [Indexed: 02/02/2023] Open
Abstract
Replication-competent adenovirus type 5 (Ad5) vectors promise to be more efficient gene delivery vehicles than their replication-deficient counterparts, and chimeric Ad5 vectors that are capable of targeting CD46 are more effective than Ad5 vectors with native fibers. Although several strategies have been used to improve gene transduction and oncolysis, either by modifying their tropism or enhancing their replication capacity, some tumor cells are still relatively refractory to infection by chimeric Ad5. The oncolytic effects of the vectors are apparent in certain tumors but not in others. Here, we report the biological and oncolytic profiles of a replication-competent adenovirus 11p vector (RCAd11pGFP) in colon carcinoma cells. CD46 was abundantly expressed in all cells studied; however, the transduction efficiency of RCAd11pGFP varied. RCAd11pGFP efficiently transduced HT-29, HCT-8, and LS174T cells, but it transduced T84 cells, derived from a colon cancer metastasis in the lung, less efficiently. Interestingly, RCAd11p replicated more rapidly in the T84 cells than in HCT-8 and LS174T cells and as rapidly as in HT-29 cells. Cell toxicity and proliferation assays indicated that RCAd11pGFP had the highest cell-killing activities in HT29 and T84 cells, the latter of which also expressed the highest levels of glycoproteins of the carcinoma embryonic antigen (CEA) family. In vivo experiments showed significant growth inhibition of T84 and HT-29 tumors in xenograft mice treated with either RCAd11pGFP or Ad11pwt compared to untreated controls. Thus, RCAd11pGFP has a potent cytotoxic effect on colon carcinoma cells.
Collapse
Affiliation(s)
- Jim Silver
- Department of Clinical Microbiology/Virology, Umea University, Umeå, Sweden
| | - Ya-Fang Mei
- Department of Clinical Microbiology/Virology, Umea University, Umeå, Sweden
| |
Collapse
|
21
|
Mruk DD, Cheng CY. Tight junctions in the testis: new perspectives. Philos Trans R Soc Lond B Biol Sci 2010; 365:1621-35. [PMID: 20403874 DOI: 10.1098/rstb.2010.0010] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the testis, tight junctions (TJs) are found between adjacent Sertoli cells at the level of the blood-testis barrier (BTB) where they coexist with basal ectoplasmic specializations and desmosome-gap junctions. The BTB physically divides the seminiferous epithelium into two distinct compartments: a basal compartment where spermatogonia and early spermatocytes are found, and an adluminal compartment where more developed germ cells are sequestered from the systemic circulation. In order for germ cells (i.e. preleptotene spermatocytes) to enter the adluminal compartment, they must cross the BTB, a cellular event requiring the participation of several molecules and signalling pathways. Still, it is not completely understood how preleptotene spermatocytes traverse the BTB at stage VIII of the seminiferous epithelial cycle. In this review, we discuss largely how TJ proteins are exploited by viruses and cancer cells to cross endothelial and epithelial cells. We also discuss how this information may apply to future studies investigating the movement of preleptotene spermatocytes across the BTB.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
22
|
Expression of coxsackie and adenovirus receptor distinguishes transitional cancer states in therapy-induced cellular senescence. Cell Death Dis 2010; 1:e70. [PMID: 21364674 PMCID: PMC3032339 DOI: 10.1038/cddis.2010.47] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Therapy-induced cellular senescence describes the phenomenon of cell cycle arrest that can be invoked in cancer cells in response to chemotherapy. Sustained proliferative arrest is often overcome as a contingent of senescent tumor cells can bypass this cell cycle restriction. The mechanism regulating cell cycle re-entry of senescent cancer cells remains poorly understood. This is the first report of the isolation and characterization of two distinct transitional states in chemotherapy-induced senescent cells that share indistinguishable morphological senescence phenotypes and are functionally classified by their ability to escape cell cycle arrest. It has been observed that cell surface expression of coxsackie and adenovirus receptor (CAR) is downregulated in cancer cells treated with chemotherapy. We show the novel use of surface CAR expression and adenoviral transduction to differentiate senescent states and also show in vivo evidence of CAR downregulation in colorectal cancer patients treated with neoadjuvant chemoradiation. This study suggests that CAR is a candidate biomarker for senescence response to antitumor therapy, and CAR expression can be used to distinguish transitional states in early senescence to study fundamental regulatory events in therapy-induced senescence.
Collapse
|
23
|
Expression of coxsackievirus and adenovirus receptor in human lung cancer: Possible clinical significance. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11805-010-0048-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Murakami M, Ugai H, Belousova N, Pereboev A, Dent P, Fisher PB, Everts M, Curiel DT. Chimeric adenoviral vectors incorporating a fiber of human adenovirus 3 efficiently mediate gene transfer into prostate cancer cells. Prostate 2010; 70:362-76. [PMID: 19902467 PMCID: PMC2862273 DOI: 10.1002/pros.21070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND We have developed a range of adenoviral (Ad) vectors based on human adenovirus serotype 5 (HAdV-5) displaying the fiber shaft and knob domains of species B viruses (HAdV-3, -11, or -35). These species B Ads utilize different cellular receptors than HAdV-5 for infection. We evaluated whether Ad vectors displaying species B fiber shaft and knob domains (Ad5F3Luc1, Ad5F11Luc1, and Ad5F35Luc1) would efficiently infect cancer cells of distinct origins, including prostate cancer. METHODS The fiber chimeric Ad vectors were genetically generated and compared with the original Ad vector (Ad5Luc1) for transductional efficiency in a variety of cancer cell lines, including prostate cancer cells and primary prostate epithelial cells (PrEC), using luciferase as a reporter gene. RESULTS Prostate cancer cell lines infected with Ad5F3Luc1 expressed higher levels of luciferase than Ad5Luc1, as well as the other chimeric Ad vectors. We also analyzed the transductional efficiency via monitoring of luciferase activity in prostate cancer cells when expressed as a fraction of the gene transfer in PrEC cells. In the PC-3 and DU145 cell lines, the gene transfer ratio of cancer cells versus PrEC was once again highest for Ad5F3Luc1. CONCLUSION Of the investigated chimeric HAdV-5/species B vectors, Ad5F3Luc1 was judged to be the most suitable for targeting prostate cancer cells as it showed the highest transductional efficiency in these cells. It is foreseeable that an Ad vector incorporating the HAdV-3 fiber could potentially be used for prostate cancer gene therapy.
Collapse
Affiliation(s)
- Miho Murakami
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, Surgery, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hideyo Ugai
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Natalya Belousova
- Department of Experimental Diagnostic Imaging, MD Anderson Cancer Center, University of Texas, Houston, Texas
| | - Alexander Pereboev
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, Surgery, University of Alabama at Birmingham, Birmingham, Alabama
- Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Paul Dent
- Department of Biochemistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Paul B. Fisher
- Department of Human & Molecular Genetics, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Maaike Everts
- Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - David T. Curiel
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, Surgery, University of Alabama at Birmingham, Birmingham, Alabama
- Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama
- Correspondence to: David T. Curiel, MD. Ph.D., Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, Surgery, and the Gene Therapy Center, University of Alabama at Birmingham, 901 19th Street South, BMR2-502, Birmingham, Alabama 35294 USA. Phone: (205) 934-8627. Fax: (205) 975-7476.
| |
Collapse
|
25
|
GIAGINIS CONSTANTINOS, ZARROS APOSTOLOS, ALEXANDROU PARASKEVI, KLIJANIENKO JERZY, DELLADETSIMA IOANNA, THEOCHARIS STAMATIOS. Evaluation of coxsackievirus and adenovirus receptor expression in human benign and malignant thyroid lesions. APMIS 2010; 118:210-21. [DOI: 10.1111/j.1600-0463.2009.02582.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Abstract
Glioblastoma multiforme is the most common form of primary brain cancer. In the past decade, virotherapy of tumors has gained credence, particularly in glioma management, as these tumors are not completely resectable and tend to micro-metastasize. Adenoviral vectors have an advantage over other viral vectors in that they are relatively non-toxic and do not integrate in the genome. However, the lack of coxsackie and adenovirus receptors on surface of gliomas provides for inefficient transduction of wild-type adenoviral vectors in these tumors. By targeting receptors that are overexpressed in gliomas, modified adenoviral constructs have been shown to efficiently infect glioma cells. In addition, by taking advantage of tumor-specific promoter elements, oncolytic adenoviral vectors offer the promise of selective tumor-specific replication. This dual targeting strategy has enabled specificity in both laboratory and pre-clinical settings. This review examines current trends in adenoviral virotherapy of gliomas, with an emphasis on targeting modalities and future clinical applications.
Collapse
Affiliation(s)
- Suvobroto Nandi
- The University of Chicago, The Brain Tumor Center, Chicago, Illinois 60637, USA
| | | |
Collapse
|
27
|
Vigl B, Zgraggen C, Rehman N, Banziger-Tobler NE, Detmar M, Halin C. Coxsackie- and adenovirus receptor (CAR) is expressed in lymphatic vessels in human skin and affects lymphatic endothelial cell function in vitro. Exp Cell Res 2008; 315:336-47. [PMID: 19007771 DOI: 10.1016/j.yexcr.2008.10.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 10/22/2008] [Accepted: 10/23/2008] [Indexed: 01/30/2023]
Abstract
Lymphatic vessels play an important role in tissue fluid homeostasis, intestinal fat absorption and immunosurveillance. Furthermore, they are involved in pathologic conditions, such as tumor cell metastasis and chronic inflammation. In comparison to blood vessels, the molecular phenotype of lymphatic vessels is less well characterized. Performing comparative gene expression analysis we have recently found that coxsackie- and adenovirus receptor (CAR) is significantly more highly expressed in cultured human, skin-derived lymphatic endothelial cells (LECs), as compared to blood vascular endothelial cells. Here, we have confirmed these results at the protein level, using Western blot and FACS analysis. Immunofluorescence performed on human skin confirmed that CAR is expressed at detectable levels in lymphatic vessels, but not in blood vessels. To address the functional significance of CAR expression, we modulated CAR expression levels in cultured LECs in vitro by siRNA- and vector-based transfection approaches. Functional assays performed with the transfected cells revealed that CAR is involved in distinct cellular processes in LECs, such as cell adhesion, migration, tube formation and the control of vascular permeability. In contrast, no effect of CAR on LEC proliferation was observed. Overall, our data suggest that CAR stabilizes LEC-LEC interactions in the skin and may contribute to lymphatic vessel integrity.
Collapse
Affiliation(s)
- Benjamin Vigl
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Wolfgang-Pauli Str. 10, CH-8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
28
|
Hossain Z, Hirata T. Molecular mechanism of intestinal permeability: interaction at tight junctions. MOLECULAR BIOSYSTEMS 2008; 4:1181-5. [PMID: 19396381 DOI: 10.1039/b800402a] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The intestinal barrier plays a critical role in humans in the transport of nutrients and macromolecules. At the same time, it has to provide an effective barrier to harmful macromolecules and microorganisms. The tight junction (TJ) is an essential component of this barrier. The junctional complexes of the plasma membrane are not simply epithelial barriers in paracellular transport or barriers preventing diffusion in the plasma membrane, but also contain proteins involved in signal transduction and the maintenance of the physiological epithelial cell state. Occludin, claudin, junctional adhesion molecules, and the coxsackie virus and adenovirus receptor are the major components of TJs. This article highlights the structure and function of TJs as well as the molecular interactions occurring during permeation through TJs.
Collapse
Affiliation(s)
- Zakir Hossain
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
29
|
Tsuruta Y, Pereboeva L, Breidenbach M, Rein DT, Wang M, Alvarez RD, Siegal GP, Dent P, Fisher PB, Curiel DT. A fiber-modified mesothelin promoter-based conditionally replicating adenovirus for treatment of ovarian cancer. Clin Cancer Res 2008; 14:3582-8. [PMID: 18519792 DOI: 10.1158/1078-0432.ccr-07-5053] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Recently, virotherapy has been proposed as a new therapeutic approach for ovarian cancer. Conditionally replicative adenoviruses (CRAd) may contain tumor-specific promoters that restrict virus replication to cancer cells. Mesothelin, a cell surface glycoprotein, is overexpressed in ovarian cancer but not in normal ovarian tissues. The purpose of this study was to explore the therapeutic utility of a mesothelin promoter-based CRAd in a murine model of ovarian cancer, using noninvasive in vivo imaging. EXPERIMENTAL DESIGN We constructed a mesothelin promoter-based CRAd with a chimeric Ad5/3 fiber (AdMSLNCRAd5/3) that contains an Ad5 tail, Ad5 shaft, and an Ad3 knob. Previously, a chimeric Ad5/3 fiber has shown improved infectivity in many ovarian cancer cells. Viral replication and oncolysis were assessed in a panel of ovarian cancer cell lines. To test the oncolytic efficacy of AdMSLNCRAd5/3 in a murine model, bioluminescence imaging of tumor luciferase activity and survival analysis were done. RESULTS AdMSLNCRAd5/3 achieved up to a 10,000-fold higher cell killing effect and up to 120-fold higher levels of viral replication in all human ovarian cancer cells, compared with wild-type Ad5. AdMSLNCRAd5/3 significantly inhibited tumor growth as confirmed by in vivo imaging (P < 0.05). Survival with AdMSLNCRAd5/3 was significantly enhanced when compared with no virus or with a wild-type Ad5-treated group (P < 0.05). CONCLUSIONS The robust replication, oncolysis, and in vivo therapeutic efficacy of AdMSLNCRAd5/3 showed that this CRAd is a promising candidate for treating ovarian cancer. Importantly, we have applied in vivo imaging that has allowed repeated and longitudinal measurements of tumor growth after CRAd treatment.
Collapse
Affiliation(s)
- Yuko Tsuruta
- Division of Human Gene Therapy, Department of Medicine, Obstetrics and Gynecology, The University of Alabama at Birmingham, 901 19th Street South, BMR2-508, Birmingham, AL 35294-2180, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Auer D, Reimer D, Porto V, Fleischer M, Roessler J, Wiedemair A, Marth C, Müller-Holzner E, Daxenbichler G, Zeimet AG. Expression of coxsackie-adenovirus receptor is related to estrogen sensitivity in breast cancer. Breast Cancer Res Treat 2008; 116:103-11. [DOI: 10.1007/s10549-008-0108-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
|
31
|
Kuhn I, Harden P, Bauzon M, Chartier C, Nye J, Thorne S, Reid T, Ni S, Lieber A, Fisher K, Seymour L, Rubanyi GM, Harkins RN, Hermiston TW. Directed evolution generates a novel oncolytic virus for the treatment of colon cancer. PLoS One 2008; 3:e2409. [PMID: 18560559 PMCID: PMC2423470 DOI: 10.1371/journal.pone.0002409] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 04/30/2008] [Indexed: 12/22/2022] Open
Abstract
Background Viral-mediated oncolysis is a novel cancer therapeutic approach with the potential to be more effective and less toxic than current therapies due to the agents selective growth and amplification in tumor cells. To date, these agents have been highly safe in patients but have generally fallen short of their expected therapeutic value as monotherapies. Consequently, new approaches to generating highly potent oncolytic viruses are needed. To address this need, we developed a new method that we term “Directed Evolution” for creating highly potent oncolytic viruses. Methodology/Principal Findings Taking the “Directed Evolution” approach, viral diversity was increased by pooling an array of serotypes, then passaging the pools under conditions that invite recombination between serotypes. These highly diverse viral pools were then placed under stringent directed selection to generate and identify highly potent agents. ColoAd1, a complex Ad3/Ad11p chimeric virus, was the initial oncolytic virus derived by this novel methodology. ColoAd1, the first described non-Ad5-based oncolytic Ad, is 2–3 logs more potent and selective than the parent serotypes or the most clinically advanced oncolytic Ad, ONYX-015, in vitro. ColoAd1's efficacy was further tested in vivo in a colon cancer liver metastasis xenograft model following intravenous injection and its ex vivo selectivity was demonstrated on surgically-derived human colorectal tumor tissues. Lastly, we demonstrated the ability to arm ColoAd1 with an exogenous gene establishing the potential to impact the treatment of cancer on multiple levels from a single agent. Conclusions/Significance Using the “Directed Evolution” methodology, we have generated ColoAd1, a novel chimeric oncolytic virus. In vitro, this virus demonstrated a >2 log increase in both potency and selectivity when compared to ONYX-015 on colon cancer cells. These results were further supported by in vivo and ex vivo studies. Furthermore, these results have validated this methodology as a new general approach for deriving clinically-relevant, highly potent anti-cancer virotherapies.
Collapse
Affiliation(s)
- Irene Kuhn
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
| | - Paul Harden
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
| | - Maxine Bauzon
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
| | - Cecile Chartier
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
| | - Julie Nye
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
| | - Steve Thorne
- Palo Alto Veteran's Hospital and Stanford University, Palo Alto, California, United States of America
| | - Tony Reid
- Palo Alto Veteran's Hospital and Stanford University, Palo Alto, California, United States of America
| | - Shaoheng Ni
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Andre Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | | | - Len Seymour
- Hybrid systems Ltd, Oxfordshire, United Kingdom
| | - Gabor M. Rubanyi
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
| | - Richard N. Harkins
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
| | - Terry W. Hermiston
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Giaginis CT, Zarros AC, Papaefthymiou MA, Papadopouli AE, Sfiniadakis IK, Theocharis SE. Coxsackievirus and adenovirus receptor expression in human endometrial adenocarcinoma: possible clinical implications. World J Surg Oncol 2008; 6:59. [PMID: 18558015 PMCID: PMC2440381 DOI: 10.1186/1477-7819-6-59] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 06/17/2008] [Indexed: 11/29/2022] Open
Abstract
The coxsackievirus and adenovirus receptor (CAR) is a crucial receptor for the entry of both coxsackie B viruses and adenoviruses into host cells. CAR expression on tumor cells was reported to be associated with their sensitivity to adenoviral infection, while it was considered as a surrogate marker for monitoring and/or predicting the outcome of adenovirus-mediated gene therapy. The aim of the present study was to evaluate the clinical significance of CAR expression in endometrial adenocarcinoma. CAR expression was assessed immunohistochemically in tumoral samples of 41 endometrial adenocarcinoma patients and was statistically analyzed in relation to various clinicopathological parameters, tumor proliferative capacity and patient survival. CAR positivity was noted in 23 out of 41 (56%) endometrial adenocarcinoma cases, while high CAR expression in 8 out of 23 (35%) positive ones. CAR intensity of immunostaining was classified as mild in 11 (48%), moderate in 10 (43%) and intense in 2 (9%) out of the 23 positive cases. CAR positivity was significantly associated with tumor histological grade (p = 0.036), as well differentiated tumors more frequently demonstrating no CAR expression. CAR staining intensity was significantly associated with tumor histological type (p = 0.016), as tumors possessing squamous elements presented more frequently intense CAR immunostaining. High CAR expression showed a trend to be correlated with increased tumor proliferative capacity (p = 0.057). Patients with tumors presenting moderate or intense CAR staining intensity were characterized by longer survival times than those with mild one; however, this difference did not reach statistical significance. These data reveal, for the first time, the expression of CAR in clinical material obtained from patients with endometrial adenocarcinoma in relation to important clinicopathological parameters for their management. As CAR appears to modulate the proliferation and characteristics of cancer cells, its expression could be considered of possible clinical importance for future (gene) therapy applications.
Collapse
Affiliation(s)
- Costas T Giaginis
- Department of Forensic Medicine and Toxicology, Medical School, University of Athens, Greece.
| | | | | | | | | | | |
Collapse
|
33
|
Ulasov IV, Rivera AA, Han Y, Curiel DT, Zhu ZB, Lesniak MS. Targeting adenovirus to CD80 and CD86 receptors increases gene transfer efficiency to malignant glioma cells. J Neurosurg 2007; 107:617-27. [PMID: 17886563 DOI: 10.3171/jns-07/09/0617] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECT Gene therapy protocols for malignant gliomas utilize adenoviral vectors that rely almost exclusively on the adenovirus serotype 5 (Ad5) backbone. The authors have previously shown that chimeric vectors that bind to the Ad3 receptor, or CD46, increase the transduction efficiency of malignant brain tumors. In light of the debate regarding the efficacy of CD46 compared with CD80/CD86 in binding Ad3 virions, the authors now examine the expression and transduction efficiency of Ad5/3 chimeras that bind via CD80/CD86. METHODS The authors first analyzed CD80/CD86 expression in glioma cell lines. They then used three replication-defective vectors containing a luciferase reporter gene: Ad5/3 (containing the tail and shaft domain of Ad5 and the knob domain of Ad3); Ad3/5 (containing the tail of Ad5, shaft of Ad3, and knob of Ad5); and Ad3/3 (containing the tail of Ad5, shaft of Ad3, and knob of Ad3). These vectors were analyzed both in vitro and in vivo against malignant glioma cells. To examine further the effect of Ad5/3 fiber modification, the authors created an oncolytic vector, conditionally replicative Ad5/3 (CRAd5/3). RESULTS The Ad5/3 vector showed a 10- to 100-fold enhanced transduction efficiency of malignant glioma compared with replication-defective wild-type adenovirus (reAd5) (p < 0.05). Moreover the use of Ad5/3 reduced transgene expression by more than 90% in normal human brain cells compared with reAd5. Finally, the use of CRAd5/3 inhibited tumor cell proliferation by 43% more than replication-competent wild-type virus in vitro (p < 0.05). CONCLUSIONS The results of this study demonstrate that the Ad5/3 vector offers superior transduction efficiency and low toxicity in the setting of brain tumors, and therefore represents a potential new approach to gene therapy for malignant gliomas.
Collapse
Affiliation(s)
- Ilya V Ulasov
- Division of Neurosurgery, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
34
|
Activation of STAT1 transcription factor precedes up-regulation of coxsackievirus-adenovirus receptor during viral myocarditis. Cardiovasc Pathol 2007; 17:81-92. [PMID: 18329552 DOI: 10.1016/j.carpath.2007.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 07/05/2007] [Accepted: 07/10/2007] [Indexed: 11/22/2022] Open
Abstract
The coxsackievirus-adenovirus receptor (CAR) was originally described as a transmembrane protein involved in viral infection and was later found to be required for normal heart development. However, the role of CAR in virus-induced myocarditis has not been investigated so far. The purpose of this study was to assess myocardial CAR expression in response to cytokine-induced inflammatory reactions during the course of coxsackievirus-induced myocarditis. In Balb/c mice intraperitoneally infected with either 2x10(4) plaque-forming units (PFUs) of coxsackie B3 virus (CVB3) or 10(2) PFUs CVB3, CAR expression and tyrosine phosphorylation of signal transducer and activator of transcription 1 (STAT1), a known cytokine-inducible transcription factor involved in viral defense, were determined. Our results demonstrated that within the first 7 days after virus inoculation, when the viral replication and STAT1 activation in the heart tissue was most prominent, the expression of CAR did not surpass that of uninfected controls. However, the up-regulation of CAR was observed 9 weeks later, when enteroviral RNA was no longer detectable and activation of STAT1 had already ceased. In contrast to the STAT1 target genes Mig and Irf1, interferon gamma stimulation failed to up-regulate Car expression in isolated cardiomyocytes. In human endomyocardial biopsies, Car expression was found to be elevated in approximately one third of patients with dilated cardiomyopathy (9 of 30 patients) as compared with controls. Thus, activation of STAT1 clearly precedes the enhanced CAR expression observed during tissue reorganization, suggesting an essential role of STAT1 transcription factors in orchestrating the sequential actions involved in adaptive immune response.
Collapse
|
35
|
Tsuruta Y, Pereboeva L, Glasgow JN, Rein DT, Kawakami Y, Alvarez RD, Rocconi RP, Siegal GP, Dent P, Fisher PB, Curiel DT. A mosaic fiber adenovirus serotype 5 vector containing reovirus sigma 1 and adenovirus serotype 3 knob fibers increases transduction in an ovarian cancer ex vivo system via a coxsackie and adenovirus receptor-independent pathway. Clin Cancer Res 2007; 13:2777-83. [PMID: 17473211 PMCID: PMC2211731 DOI: 10.1158/1078-0432.ccr-06-2706] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE Adenovirus serotype 5 (Ad5) has been used for gene therapy with limited success due to insufficient infectivity in cells with low expression of the primary receptor, the coxsackie and adenovirus receptor (CAR). Evidence that adenovirus serotype receptors other than CAR may be of use was presented in previous studies that showed that the Ad3 receptor is expressed at high levels in ovarian cancer cells. We hypothesized that combined use of unique chimeric fibers in the context of novel mosaic adenovirus vectors would enhance infectivity via non-CAR pathways in ovarian cancer cells. EXPERIMENTAL DESIGN We constructed and characterized Ad5 vectors that use Ad3 knob and reovirus fibers to generate a mosaic fiber virion. Serotype 3 Dearing reovirus uses a fiber-like sigma 1 protein to infect cells expressing sialic acid and junction adhesion molecule 1. We therefore constructed a mosaic fiber Ad5 vector, designated Ad5/3-sigma 1, encoding two fibers: a sigma 1 chimeric fiber and the chimeric Ad5/3 fiber composed of an Ad3 knob. RESULTS Functionally, Ad5/3-sigma 1 used sialic acid, junction adhesion molecule 1, and Ad3 receptor for cell transduction and achieved maximum infectivity enhancement in ovarian cancer cells with low CAR expression. Furthermore, Ad5/3-sigma 1 achieved infectivity enhancement in primary tissue slices of human ovarian tumor. CONCLUSIONS We have developed a new type of Ad5 vector with the novel tropism, possessing fibers from Ad3 and reovirus, which exhibits enhanced infectivity via CAR-independent pathway(s). In addition, the flexible genetic platform of vector allows different combination of fiber variants that can be incorporated within the same particle.
Collapse
Affiliation(s)
- Yuko Tsuruta
- Division of Human Gene Therapy, University of Alabama at Birmingham Gene Therapy Center
| | - Larisa Pereboeva
- Division of Human Gene Therapy, University of Alabama at Birmingham Gene Therapy Center
- Departments of Medicine, Obstetrics and Gynecology, Pathology, and Surgery, University of Alabama at Birmingham Gene Therapy Center
| | - Joel N. Glasgow
- Division of Human Gene Therapy, University of Alabama at Birmingham Gene Therapy Center
- Departments of Medicine, Obstetrics and Gynecology, Pathology, and Surgery, University of Alabama at Birmingham Gene Therapy Center
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel T. Rein
- Division of Human Gene Therapy, University of Alabama at Birmingham Gene Therapy Center
- Department of Obstetrics and Gynecology, University of Düsseldorf Medical Center, Düsseldorf, Germany
| | - Yosuke Kawakami
- Division of Human Gene Therapy, University of Alabama at Birmingham Gene Therapy Center
| | - Ronald D. Alvarez
- Departments of Medicine, Obstetrics and Gynecology, Pathology, and Surgery, University of Alabama at Birmingham Gene Therapy Center
- Department of Obstetrics and Gynecology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Rodney P. Rocconi
- Department of Obstetrics and Gynecology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Gene P. Siegal
- Departments of Medicine, Obstetrics and Gynecology, Pathology, and Surgery, University of Alabama at Birmingham Gene Therapy Center
- Departments of Pathology, Cell Biology, and Surgery, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Paul Dent
- Department of Biochemistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Paul B. Fisher
- Departments of Pathology, Neurosurgery, and Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, New York
| | - David T. Curiel
- Division of Human Gene Therapy, University of Alabama at Birmingham Gene Therapy Center
- Departments of Medicine, Obstetrics and Gynecology, Pathology, and Surgery, University of Alabama at Birmingham Gene Therapy Center
| |
Collapse
|
36
|
Reimer D, Steppan I, Wiedemair A, Concin N, Hofstetter G, Marth C, Müller-Holzner E, Zeimet AG. Soluble isoforms but not the transmembrane form of coxsackie-adenovirus receptor are of clinical relevance in epithelial ovarian cancer. Int J Cancer 2007; 120:2568-75. [PMID: 17278108 DOI: 10.1002/ijc.22580] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The coxsackie-adenovirus receptor (hCAR) has been extensively studied in context of adenoviral-based gene therapy for cancer. However, there is strong evidence that besides its decisive role in coxsackie and adenovirus cell-entry, hCAR is a component of epithelial tight junctions and involved in cell-cell adhesions in normal and cancer cells. Furthermore, this adhesion molecule behaves like a cell surface receptor endowed with tumor suppressive properties via signal transduction. Moreover, 3 truncated soluble isoforms of hCAR were recently identified. We investigated the quantitative expression of all known CAR isoforms in a training set of 140 ovarian cancer samples and 21 controls by RT-PCR. The expression levels of the various isoforms were compared with clinicopathologic parameters and their prognostic significance was assessed. Expression levels of all CAR isoforms were elevated in ovarian carcinomas as compared with those of non-malignant controls. mRNA-expression correlated with protein levels. Moreover, expression of the soluble isoforms CAR 3/7 and CAR 4/7 but not that of hCAR was significantly increased in advanced ovarian cancer as revealed by a highly significant correlation with FIGO stage and residual disease > 2 cm in diameter after debulking surgery. High expression of CAR 3/7 and 4/7 was shown to be of independent prognostic relevance for progression-free (CAR 4/7) and overall survival (CAR 3/7 and CAR 4/7). In conclusion, soluble CAR isoforms 3/7 and 4/7 may play a pivotal role in ovarian cancer biology, possibly by counteracting migration- and growth-inhibitory properties of the membranous hCAR and thus favoring cancer cell dissemination throughout the peritoneal cavity.
Collapse
MESH Headings
- Aged
- Analysis of Variance
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/metabolism
- Carcinoma, Endometrioid/pathology
- Cell Line, Tumor
- Coxsackie and Adenovirus Receptor-Like Membrane Protein
- Cystadenocarcinoma, Mucinous/genetics
- Cystadenocarcinoma, Mucinous/metabolism
- Cystadenocarcinoma, Mucinous/pathology
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/metabolism
- Cystadenocarcinoma, Serous/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoblotting
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Middle Aged
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Prognosis
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Solubility
- Survival Analysis
Collapse
Affiliation(s)
- Daniel Reimer
- Department of Obstetrics and Gynecology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang LL, He DL, Li X, Li L, Zhu GD, Zhang D, Wang XY. Overexpression of coxsackie and adenovirus receptor inhibit growth of human bladder cancer cell in vitro and in vivo. Acta Pharmacol Sin 2007; 28:895-900. [PMID: 17506949 DOI: 10.1111/j.1745-7254.2007.00574.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIM To study the effect of the overexpression of coxsackie and the adenovirus receptor (CAR) on the growth of the human bladder cancer cell in vitro and in vivo. METHODS A retroviral vector pLXSN-CAR expressing CAR was constructed and confirmed by restriction enzyme mapping. The pLXSN-CAR vector and control vector pLXSN were transfected into the PT67 packaging cell line to generate retrovirus with high titer. The CAR-negative T24 cell was infected with the pLXSN-CAR and the pLXSN retrovirus, respectively. The positive clone cells were selected with G418 for 2 weeks. The expression level of the CAR protein was detected by Western blot assay. T24 cell growth in vitro was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Anchorage-independent growth was measured by soft-agar colony formation assay. In vivo cell growth was determined by a nude mice xenograft model. RESULTS The pLXSN-CAR vector containing full-length CAR cDNA was successfully constructed. Western blot analysis showed that a 46 kDa specific band was found in pLXSN-CA-transfected T24 cells. MTT assay identified the growth inhibition of T24/pLXSN-CAR cells. The cell colony forming ability of T24/pLXSN-CAR cells was significantly lower than that of T24/pLXSN and parental T24 cells. There was a reduction in the tumor size in the T24/pLXSN-CAR group as compared with that of the T24/pLXSN group and parental T24 group. CONCLUSION The overexpression of CAR in T24 bladder cancer cells can inhibit cell growth both in vitro and in vivo.
Collapse
Affiliation(s)
- Lin-Lin Zhang
- Institute of Urology, First Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The coxsackievirus and adenovirus receptor (CAR) mediates entry of coxsackievirus and adenovirus. CAR possesses an extracellular region that is comprised of 2 immunoglobulin domains termed CAR-D1 and CAR-D2. In the present work, the solution structure of CAR-D2, consisting of residues 142-235 of human CAR, has been determined by NMR spectroscopy. CAR-D2 is shown to be a beta-sandwich motif comprised of two beta-sheets, which are stabilized by two disulfide bonds. The first beta-sheet is comprised of beta-strands A, B, and E, and the second beta-sheet is comprised of beta-strands C, F, and G. A relatively hydrophobic helix is found between beta-strands C and E, which replaces beta-strand D of the classical c-type immunoglobulin fold.
Collapse
Affiliation(s)
- Shaokai Jiang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | |
Collapse
|
39
|
Okegawa T, Sayne JR, Nutahara K, Pong RC, Saboorian H, Kabbani W, Higashihara E, Hsieh JT. A Histone Deacetylase Inhibitor Enhances Adenoviral Infection of Renal Cancer Cells. J Urol 2007; 177:1148-56. [PMID: 17296436 DOI: 10.1016/j.juro.2006.10.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Indexed: 11/26/2022]
Abstract
PURPOSE Coxsackie and adenovirus receptor is a high affinity receptor for adenovirus type 5. To our knowledge the expression profile of coxsackie and adenovirus receptor in renal cancer has not been described. We evaluated the expression of coxsackie and adenovirus receptor in human renal cancer specimens and determined whether the histone deacetylase inhibitor FK-228 (Astelas Pharmaceutical, Osaka, Japan) increases the efficiency of adenoviral infections in renal carcinoma cells in vivo and in vitro. MATERIALS AND METHODS We used randomly selected renal cancer specimens. Specimens were analyzed for coxsackie and adenovirus receptor expression using reverse transcriptase-polymerase chain reaction and immunohistochemistry. In vitro experiments on cytotoxicity were performed to determine a nontoxic dose of FK-228 for renal cancer cells. The level of coxsackie and adenovirus receptor expression was determined by fluorescence activated cell scanning and/or reverse transcriptase-polymerase chain reaction in FK-228 treated renal cancer cells. The effect in vivo on adenoviral gene expression was investigated in athymic mice. RESULTS In several human renal cancer specimens a loss of or decreased coxsackie and adenovirus receptor expression was detected by reverse transcriptase-polymerase chain reaction based analysis and immunohistochemistry. The nontoxic dose of FK-228 for renal carcinoma cells was 0.5 ng/ml. Treatment of cancer cells with 0.5 ng/ml FK-228 increased levels of coxsackie and adenovirus receptor RNA and acetylated histone H3. This increase was associated with an approximately 10-fold increase in adenoviral infection, as evidenced by increased transgene expression from a beta-galactosidase containing adenoviral vector. Intravenous administration of FK-228 enhanced coxsackie and adenovirus receptor expression in athymic mice. The combination of beta-galactosidase adenovirus and FK-228 was significantly more effective than adenovirus only in A498 cells 3 weeks after treatment in vivo. The combination of p21 adenovirus and FK-228 resulted in significant tumor inhibition in vitro and in vivo. CONCLUSIONS In human renal cancer specimens a loss of or decrease in coxsackie and adenovirus receptor expression may be an early event in renal cancer progression. Pretreatment with FK-228 may increase tumor cell sensitivity to adenoviral gene therapy vectors.
Collapse
|
40
|
Fok PT, Huang KC, Holland PC, Nalbantoglu J. The Coxsackie and Adenovirus Receptor Binds Microtubules and Plays a Role in Cell Migration. J Biol Chem 2007; 282:7512-21. [PMID: 17210569 DOI: 10.1074/jbc.m607230200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Coxsackie and adenovirus receptor (CAR), a cell adhesion molecule of the immunoglobulin superfamily, inhibits cell growth of a variety of tumors. The cytoplasmic domain of CAR has been implicated in decreased invasion and intracerebral growth of human U87 glioma cells. Using affinity binding, we identified tubulin as an interaction partner for the cytoplasmic domain of CAR. The interaction was specific; CAR and tubulin co-immunoprecipitated in cells expressing endogenous CAR and partially co-localized in situ. The binding of CAR to tubulin heterodimers and to microtubules was direct, with dissociation constants of approximately 1 mum for tubulin and approximately 32 nm for in vitro assembled microtubules. Whereas CAR-expressing U87 glioma cells had decreased migration in a chemotactic assay in Boyden chambers as compared with control cells, an effect that depended on the presence of the cytoplasmic domain of CAR, the difference was abrogated at low, non-cytotoxic doses of the taxane paclitaxel, a microtubule-stabilizing agent. These results indicate that CAR may affect cell migration through its interaction with microtubules.
Collapse
Affiliation(s)
- Patrick T Fok
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery and Experimental Medicine, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | |
Collapse
|
41
|
Yamashita M, Ino A, Kawabata K, Sakurai F, Mizuguchi H. Expression of coxsackie and adenovirus receptor reduces the lung metastatic potential of murine tumor cells. Int J Cancer 2007; 121:1690-6. [PMID: 17546646 DOI: 10.1002/ijc.22852] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The coxsackie and adenovirus receptor (CAR) is involved in the epithelial cell tight junction, the downregulated expression of which is observed in different cancer types. In the present study, we examined CAR's role in tumor metastasis using a B16 melanoma and CT26 colon adenocarcinoma model of experimental metastasis. In lung metastasis, the colony number of B16 cells stably expressing CAR (B16CAR) was significantly lower than that of the control CAR-negative B16 cells. B16 and CT26 cells transiently expressing CAR, which were transduced with adenovirus (Ad) vector expressing CAR, also reduced lung metastasis, suggesting that CAR plays a role in the early stage of metastasis. CAR expression significantly decreased the accumulation of B16 cells in the lung after i.v. injection and the migration in vitro. CAR expression reduced expression of alpha(v), alpha(4), beta(3) and beta(1) integrin, which play important roles in attachment to cells or basement membrane. Thus, CAR expression likely acts as a metastatic suppressor.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Adenocarcinoma/secondary
- Adenoviridae
- Animals
- Blotting, Western
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/secondary
- Coxsackie and Adenovirus Receptor-Like Membrane Protein
- Enterovirus
- Female
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral
- Germ-Free Life
- Injections, Intravenous
- Integrins/metabolism
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Male
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/secondary
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Receptors, Virus/administration & dosage
- Receptors, Virus/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Manabu Yamashita
- National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | | | | | | | | |
Collapse
|
42
|
Wang Y, Wang S, Bao Y, Ni C, Guan N, Zhao J, Salford LG, Widegren B, Fan X. Coxsackievirus and adenovirus receptor expression in non-malignant lung tissues and clinical lung cancers. J Mol Histol 2006; 37:153-60. [PMID: 17031523 DOI: 10.1007/s10735-006-9055-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 08/23/2006] [Indexed: 11/29/2022]
Abstract
Adenoviral vector mediated gene delivery has been applied in clinical trials and mechanistic studies to explore new treatment approaches for lung cancers. The expression of coxsackievirus adenovirus receptor (CAR), the primary receptor for the most commonly used adenovirus serotype 5 (Ad5)-based vectors, predominantly determines the permissiveness of lung cancer cells. CAR expression is also suggested to modulate tumor cell proliferation capacity. Here, we studied CAR expression in archival lung cancer specimens by using well-characterized CAR 72 antibodies. High levels of CAR expression were observed in most of the 32 cases of squamous cell carcinoma lung cancers and in all the five cases of small cell lung cancers investigated. In contrast, high levels of CAR expression were detected only in 6 of 22 adenocarcinoma lung cancers. The relative levels of CAR expression did not correlate with the pathologic grade in lung cancers, and was thus inconsistent with a role of modulating cancer cell proliferation. Of note, CAR expression was not detected in non-malignant alveolar cells. Our data suggest a preferred utility of Ad5 vector mediated gene delivery to squamous cell carcinoma lung cancers, small cell lung cancers, but not to the majority of adenocarcinoma lung cancers.
Collapse
Affiliation(s)
- Yong Wang
- Changzhou Second Hospital, Nanjing Medical University, Jiangsu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tyler MA, Ulasov IV, Borovjagin A, Sonabend AM, Khramtsov A, Han Y, Dent P, Fisher PB, Curiel DT, Lesniak MS. Enhanced transduction of malignant glioma with a double targeted Ad5/3-RGD fiber-modified adenovirus. Mol Cancer Ther 2006; 5:2408-16. [PMID: 16985075 DOI: 10.1158/1535-7163.mct-06-0187] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant brain tumors remain refractory to adenovirus type 5 (Ad5)-based gene therapy, mostly due to the lack of the primary Ad5 receptor, the coxsackie and adenovirus receptor, on brain tumor cells. To bypass the dependence on coxsackie and adenovirus receptor for adenoviral entry and infectivity, we used a novel, double targeted Ad5 backbone-based vector carrying a chimeric Ad5/3 fiber with integrin-binding RGD motif incorporated in its Ad3 knob domain. We then tested the new virus in vitro and in vivo in the setting of malignant glioma. Ad5/3-RGD showed a 10-fold increase in gene expression in passaged cell lines and up to 75-fold increase in primary tumors obtained from patients relative to the control. These results were further corroborated in our in vivo human glioma xenograft model, where the Ad5/3-RGD vector showed a 1,000-fold increase in infectivity as compared with the control. Taken together, our findings indicate that Ad5/3-RGD may be a superior vector for applications in glioma gene therapy and therefore warrants further attention in the field of neuro-oncology.
Collapse
Affiliation(s)
- Matthew A Tyler
- Division of Neurosurgery, The University of Chicago, MC 3026, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Short JJ, Vasu C, Holterman MJ, Curiel DT, Pereboev A. Members of adenovirus species B utilize CD80 and CD86 as cellular attachment receptors. Virus Res 2006; 122:144-53. [PMID: 16920215 PMCID: PMC2203219 DOI: 10.1016/j.virusres.2006.07.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 07/14/2006] [Accepted: 07/14/2006] [Indexed: 11/13/2022]
Abstract
Alternate serotypes of adenovirus (Ad), including Ads of species B, are being explored to circumvent the disadvantages of Ad serotype 5 gene delivery vectors. Whereas the majority of human Ads utilize the Coxsackievirus and adenovirus receptor (CAR), none of the Ad species B use CAR. Ad species B is further divided into two subspecies, B1 and B2, and utilizes at least two classes of receptors: common Ad species B receptors and B2 specific receptors. CD46 has been implicated as a B2-specific receptor. Ad serotype 3 (Ad3), a member of B1, utilizes CD80 and CD86 as cellular attachment receptors. The receptor-interacting Ad fiber-knob domain is highly homologous among species B Ads. We hypothesized that other members of Ad species B may utilize CD80 and CD86 as cellular attachment receptors. All tested species B members showed specific binding to cells expressing CD80 and CD86, and the Ad fiber-knob domain from both B1 and B2 Ad efficiently blocked CD80- and CD86-mediated infection of Ad3 vectors. Members of both B1 and B2 demonstrated CD80- and CD86-specific infection of CHO cells expressing CD80 and CD86. Therefore, all of the members of Ad species B utilize CD80 and CD86 for infection of cells.
Collapse
Affiliation(s)
- Joshua J. Short
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, and Surgery, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294-2172, USA
| | - Chenthamarakshan Vasu
- Departments of Surgery, and Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mark J. Holterman
- Departments of Surgery, and Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - David T. Curiel
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, and Surgery, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294-2172, USA
| | - Alexander Pereboev
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, and Surgery, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294-2172, USA
- * Correspondance to: BMR-2, 901, 19th Street, Room 406, Birmingham AL 35294-2172, USA. Tel.: +1 205 975 8734; fax: +1 205 975 8565., E-mail address: (A. Pereboev)
| |
Collapse
|
45
|
Mathis JM, Stewart PL, Zhu ZB, Curiel DT. Advanced generation adenoviral virotherapy agents embody enhanced potency based upon CAR-independent tropism. Clin Cancer Res 2006; 12:2651-6. [PMID: 16675555 PMCID: PMC2203211 DOI: 10.1158/1078-0432.ccr-06-0497] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- J. Michael Mathis
- Gene Therapy Program, Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Phoebe L. Stewart
- Department of Molecular Physiology and Biophysics,Vanderbilt University Medical Center, Nashville, Tennessee
| | - Zheng B. Zhu
- Division of Human GeneTherapy, Departments of Medicine, Surgery, Pathology, Obstetrics, and Gynecology and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Louisiana
| | - David T. Curiel
- Division of Human GeneTherapy, Departments of Medicine, Surgery, Pathology, Obstetrics, and Gynecology and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Louisiana
| |
Collapse
|
46
|
Jiang H, McCormick F, Lang FF, Gomez-Manzano C, Fueyo J. Oncolytic adenoviruses as antiglioma agents. Expert Rev Anticancer Ther 2006; 6:697-708. [PMID: 16759161 DOI: 10.1586/14737140.6.5.697] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The treatment for malignant gliomas is suboptimal. Oncolytic adenoviruses hold the promise of being effective agents for the treatment of solid tumors. Importantly, the first oncolytic viral therapy has just been approved for use in combination with chemotherapy for late-stage refractory nasopharyngeal cancer by the Chinese State FDA, following a successful Phase III randomized clinical trial. The concept underlying treatment with oncolytic adenoviruses is based on cancer selectivity by confining viral replication and infectivity to cancer cells. For this purpose, the main strategies used currently to modify the viruses include: functional deletions in essential viral genes; tumor- or tissue-specific promoters used to control the expression of these viral genes; and tropism modification to redirect adenovirus to the cancer cell surface. In the near future, oncolytic adenoviruses need to be optimized to fully realize their potential as critical anticancer tools and, thus, improve the prognosis for patients with malignant gliomas.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Box 316, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
47
|
Peng HH, Wu S, Davis JJ, Wang L, Roth JA, Marini FC, Fang B. A rapid and efficient method for purification of recombinant adenovirus with arginine-glycine-aspartic acid-modified fibers. Anal Biochem 2006; 354:140-7. [PMID: 16707084 PMCID: PMC1475777 DOI: 10.1016/j.ab.2006.04.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 04/14/2006] [Indexed: 11/27/2022]
Abstract
Recombinant adenoviral vectors (adenovectors) have been subject to various genetic modifications to improve their transduction efficiency and targeting capacity. Production and purification of adenovectors with modified capsid proteins can be problematic using conventional two-cycle CsCl gradient ultracentrifugation. We have developed a new method for purifying recombinant adenovectors in two steps: iodixanol discontinuous density gradient ultracentrifugation and size exclusion column chromatography. The purity and infectious activity of adenovectors isolated by the two methods were comparable. The new method yielded three to four times more adenovectors with arginine-glycine-aspartic acid (RGD)-modified fiber proteins than did the conventional CsCl method. For other fiber-modified and wild-type adenovectors, the yields of the two methods were comparable. Thus, the iodixanol-based method can be used not only to improve the production of RGD-modified adenovectors but also to purify adenovectors with or without fiber modifications. Moreover, the whole procedure can be completed in 3h. Therefore, this method is rapid and efficient for production of recombination adenovectors, especially those with RGD-modified fibers.
Collapse
Affiliation(s)
- Henry H Peng
- Department of Thoracic and Cardiovascular Surgery
| | - Shuhong Wu
- Department of Thoracic and Cardiovascular Surgery
| | | | - Li Wang
- Department of Thoracic and Cardiovascular Surgery
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery
| | - Frank C Marini
- Department of blood and marrow transplant, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery
- *To whom correspondence and reprints should be addressed at the Department of Thoracic and Cardiovascular Surgery, Unit 445, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030. Fax: (713) 794-4669. E-mail:
| |
Collapse
|
48
|
Ulasov IV, Tyler MA, Zheng S, Han Y, Lesniak MS. CD46 Represents a Target for Adenoviral Gene Therapy of Malignant Glioma. Hum Gene Ther 2006; 17:556-64. [PMID: 16716112 DOI: 10.1089/hum.2006.17.556] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Malignant gliomas remain refractory to adenovirus serotype 5 (Ad5) gene therapy because of the lack of the primary adenoviral receptor, the coxsackie-adenovirus receptor (CAR), on tumor cells. To bypass the dependence on CAR, we investigated the expression of adenovirus serotype 3 (Ad3) receptor, or CD46, on glioma cells. First, we analyzed the expression of CD46 by RT-PCR on primary and passaged glioma cells. We then performed immunofluorescence studies to examine protein expression of CAR and CD46 on the same tumor lines. Finally, we constructed a replication-defective Ad vector that binds to CD46 and contains a luciferase transgenic cassette in place of the deleted E1 region: Ad5/3 (containing tail/shaft domain of Ad5 and knob domain of Ad3). These vectors were analyzed in vitro and in vivo against malignant glioma and compared with wild-type Ad5 or control vector Ad3/5 (containing tail of Ad5, shaft of Ad3, and knob of Ad5). The chimeric vector Ad5/3 showed a significant increase in the transduction efficiency of glioma tumor cells. At the same time, blocking the CD46 receptor caused a 65% inhibition of adenoviral infection when using Ad5/3. Taken together, these results indicate that CD46 is overexpressed by malignant glioma. Retargeting to the Ad3 receptor enhances gene transfer and offers a novel target for gene therapy of malignant brain tumors.
Collapse
Affiliation(s)
- Ilya V Ulasov
- Division of Neurosurgery, University of Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
49
|
Chen JW, Zhou B, Yu QC, Shin SJ, Jiao K, Schneider MD, Baldwin HS, Bergelson JM. Cardiomyocyte-specific deletion of the coxsackievirus and adenovirus receptor results in hyperplasia of the embryonic left ventricle and abnormalities of sinuatrial valves. Circ Res 2006; 98:923-30. [PMID: 16543498 DOI: 10.1161/01.res.0000218041.41932.e3] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The coxsackievirus and adenovirus receptor (CAR), which mediates infection by the viruses most commonly associated with myocarditis, is a transmembrane component of specialized intercellular junctions, including the myocardial intercalated disc; it is known to mediate cell-cell recognition, but its natural function is poorly understood. We used conditional gene targeting to investigate the possible functions of CAR during embryonic development, generating mice with both germline and tissue-specific defects in CAR expression. Homozygous germline deletion of CAR exon 2 or cardiomyocyte-specific gene deletion at embryonic day 10 (E10) mediated by Cre recombinase expressed under the control of the cardiac troponin T promoter resulted in death by E12.5; embryos showed marked cardiac abnormalities by E10.5, with hyperplasia of the left ventricular myocardium, distention of the cardinal veins, and abnormalities of sinuatrial valves. Within the hyperplastic left ventricle, increased numbers of proliferating cells were evident; persistent expression of N-myc in the hyperplastic myocardium and attenuated expression of the trabecular markers atrial natriuretic factor and bone morphogenic protein 10 indicated that proliferating cardiomyocytes had failed to differentiate and form normal trabeculae. In electron micrographs, individual CAR-deficient cardiomyocytes within the left ventricle appeared normal, but intercellular junctions were ill-formed or absent, consistent with the known function of CAR as a junctional molecule; myofibrils were also poorly organized. When cardiomyocyte-specific deletion occurred somewhat later (by E11, mediated by Cre under control of the alpha-myosin heavy chain promoter), animals survived to adulthood and did not have evident cardiac abnormalities. These results indicate that during a specific temporal window, CAR expression on cardiomyocytes is essential for normal cardiac development. In addition, the results suggest that CAR-mediated intercellular contacts may regulate proliferation and differentiation of cardiomyocytes within the embryonic left ventricular wall.
Collapse
Affiliation(s)
- Jin-Wen Chen
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Nakayama M, Both GW, Banizs B, Tsuruta Y, Yamamoto S, Kawakami Y, Douglas JT, Tani K, Curiel DT, Glasgow JN. An adenovirus serotype 5 vector with fibers derived from ovine atadenovirus demonstrates CAR-independent tropism and unique biodistribution in mice. Virology 2006; 350:103-15. [PMID: 16516257 DOI: 10.1016/j.virol.2006.01.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 12/23/2005] [Accepted: 01/26/2006] [Indexed: 01/09/2023]
Abstract
Many clinically important tissues are refractory to adenovirus (Ad) infection due to negligible levels of the primary Ad5 receptor the coxsackie and adenovirus receptor CAR. Thus, development of novel CAR-independent Ad vectors should lead to therapeutic gain. Ovine atadenovirus type 7, the prototype member of genus Atadenovirus, efficiently transduces CAR-deficient human cells in vitro, and systemic administration of OAdV is not associated with liver sequestration in mice. The penton base of OAdV7 does not contain an RGD motif, implicating the long-shafted fiber molecule as a major structural dictate of OAdV tropism. We hypothesized that replacement of the Ad5 fiber with the OAdV7 fiber would result in an Ad5 vector with CAR-independent tropism in vitro and liver "detargeting" in vivo. An Ad5 vector displaying the OAdV7 fiber was constructed (Ad5Luc1-OvF) and displayed CAR-independent, enhanced transduction of CAR-deficient human cells. When administered systemically to C57BL/6 mice, Ad5Luc1-OvF reporter gene expression was reduced by 80% in the liver compared to Ad5 and exhibited 50-fold higher gene expression in the kidney than the control vector. To our knowledge, this is the first report of a fiber-pseudotyped Ad vector that simultaneously displays decreased liver uptake and a distinct organ tropism in vivo. This vector may have future utility in murine models of renal disease.
Collapse
Affiliation(s)
- Masaharu Nakayama
- Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham, 901 19th Street South BMR2-572, Birmingham, AL 35294-2180, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|