1
|
Stojkovic Lalosevic M, Coric V, Pekmezovic T, Simic T, Pavlovic Markovic A, Pljesa Ercegovac M. GSTM1 and GSTP1 Polymorphisms Affect Outcome in Colorectal Adenocarcinoma. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:553. [PMID: 38674199 PMCID: PMC11052438 DOI: 10.3390/medicina60040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: Despite improvements in screening programs, a large number of patients with colorectal cancer (CRC) are diagnosed in an advanced disease stage. Previous investigations imply that glutathione transferases (GSTs) might be associated with the development and progression of CRC. Moreover, the detoxification mechanism of oxaliplatin, which represents the first line of treatment for advanced CRC, is mediated via certain GSTs. The aim of this study was to evaluate the significance of certain GST genetic variants on CRC prognosis and the efficacy of oxaliplatin-based treatment. Materials and Methods: This prospective study included 523 patients diagnosed with CRC in the period between 2014 and 2016, at the Digestive Surgery Clinic, University Clinical Center of Serbia, Belgrade. Patients were followed for a median of 43.47 ± 17.01 months (minimum 1-63 months). Additionally, 109 patients with advanced disease, after surgical treatment, received FOLFOX6 treatment as a first-line therapy between 2014 and 2020. The Kaplan-Meier method was used to analyze cumulative survival, and the Cox proportional hazard regression model was used to study the effects of different GST genotypes on overall survival. Results: Individuals with the GSTM1-null genotype and the GSTP1 IleVal+ValVal (variant) genotype had significantly shorter survival when compared to referent genotypes (GSTM1-active and GSTP1 IleIle) (log-rank: p = 0.001). Moreover, individuals with the GSTM1-null genotype who received 5-FU-based treatment had statistically significantly shorter survival when compared to individuals with the GSTM1-active genotype (log-rank: p = 0.05). Conclusions: Both GSTM1-null and GSTP1 IleVal+ValVal (variant) genotypes are associated with significantly shorter survival in CRC patients. What is more, the GSTM1-null genotype is associated with shorter survival in patients receiving FOLOFOX6 treatment.
Collapse
Affiliation(s)
- Milica Stojkovic Lalosevic
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (V.C.); (T.P.); (T.S.)
| | - Vesna Coric
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (V.C.); (T.P.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
| | - Tatjana Pekmezovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (V.C.); (T.P.); (T.S.)
- Institute of Epidemiology, 11000 Belgrade, Serbia
| | - Tatjana Simic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (V.C.); (T.P.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
| | - Aleksandra Pavlovic Markovic
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (V.C.); (T.P.); (T.S.)
| | - Marija Pljesa Ercegovac
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (V.C.); (T.P.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Celinšćak Ž, Zajc Petranović M, Šetinc M, Stojanović Marković A, Peričić Salihović M, Marija Zeljko H, Janićijević B, Smolej Narančić N, Škarić-Jurić T. Pharmacogenetic distinction of the Croatian population from the European average. Croat Med J 2022; 63:117-125. [PMID: 35505645 PMCID: PMC9086818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 02/09/2022] [Indexed: 09/17/2023] Open
Abstract
AIM To compare the Croatian and European population in terms of allele frequencies of clinically relevant polymorphisms in drug absorption, distribution, metabolism, and excretion (ADME) genes. METHODS In 429 Croatian participants, we genotyped 27 loci in 20 ADME genes. The obtained frequencies were merged with the published frequencies for the Croatian population by sample size weighting. The study sample obtained in this way was compared with the average data for the European population from the gnomAD database. RESULTS Variant allele frequencies in the Croatian population were higher in three and lower in two polymorphisms (Benjamini-Hochberg-corrected P values: 0.0027 for CYP2B6*4 rs2279343, CYP2C9*2 rs1799853, and VKORC1 rs9923231; 0.0297 for GSTP1 rs1695; 0.0455 for CYP2A6 rs1801272) compared with the European population. The most marked difference was observed for CYP2B6*4 (9.3% in Europe vs 24.3% in Croatia). The most clinically relevant findings were higher variant allele frequencies in two polymorphisms related to lower warfarin requirements: VKORC1*2 (34.9% in Europe vs 40.1% in Croatia) and CYP2C9*2 (12.3% in Europe vs 14.7% in Croatia). This indicates that three-quarters of Croatian people have at least one variant allele at these loci. Variants in genes GSTP1 and CYP2A6 were significantly less frequently observed in Croatia. CONCLUSIONS Croatian population has a higher bleeding and over-anticoagulation risk, which is why we recommend the prescription of lower doses of anticoagulation drugs such as warfarin and acenocoumarol. Lower phenytoin, and higher bupropion and efavirenz doses are also recommended in the Croatian population.
Collapse
Affiliation(s)
- Željka Celinšćak
- Željka Celinšćak, Institute for Anthropological Research, Gajeva ulica 32, 10000 Zagreb, Croatia,
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Kaissarian NM, Meyer D, Kimchi-Sarfaty C. Synonymous Variants: Necessary Nuance in our Understanding of Cancer Drivers and Treatment Outcomes. J Natl Cancer Inst 2022; 114:1072-1094. [PMID: 35477782 PMCID: PMC9360466 DOI: 10.1093/jnci/djac090] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/24/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Once called "silent mutations" and assumed to have no effect on protein structure and function, synonymous variants are now recognized to be drivers for some cancers. There have been significant advances in our understanding of the numerous mechanisms by which synonymous single nucleotide variants (sSNVs) can affect protein structure and function by affecting pre-mRNA splicing, mRNA expression, stability, folding, miRNA binding, translation kinetics, and co-translational folding. This review highlights the need for considering sSNVs in cancer biology to gain a better understanding of the genetic determinants of human cancers and to improve their diagnosis and treatment. We surveyed the literature for reports of sSNVs in cancer and found numerous studies on the consequences of sSNVs on gene function with supporting in vitro evidence. We also found reports of sSNVs that have statistically significant associations with specific cancer types but for which in vitro studies are lacking to support the reported associations. Additionally, we found reports of germline and somatic sSNVs that were observed in numerous clinical studies and for which in silico analysis predicts possible effects on gene function. We provide a review of these investigations and discuss necessary future studies to elucidate the mechanisms by which sSNVs disrupt protein function and are play a role in tumorigeneses, cancer progression, and treatment efficacy. As splicing dysregulation is one of the most well recognized mechanisms by which sSNVs impact protein function, we also include our own in silico analysis for predicting which sSNVs may disrupt pre-mRNA splicing.
Collapse
Affiliation(s)
- Nayiri M Kaissarian
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Douglas Meyer
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Chava Kimchi-Sarfaty
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
4
|
Park HA, Seibold P, Edelmann D, Benner A, Canzian F, Alwers E, Jansen L, Schneider M, Hoffmeister M, Brenner H, Chang-Claude J. Validation of Genetic Markers Associated with Survival in Colorectal Cancer Patients Treated with Oxaliplatin-Based Chemotherapy. Cancer Epidemiol Biomarkers Prev 2022; 31:352-361. [PMID: 34862210 PMCID: PMC9789680 DOI: 10.1158/1055-9965.epi-21-0814] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/13/2021] [Accepted: 12/01/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Associations between candidate genetic variants and treatment outcomes of oxaliplatin, a drug commonly used for colorectal cancer patients, have been reported but not robustly established. This study aimed to validate previously reported prognostic and predictive genetic markers for oxaliplatin treatment outcomes and evaluate additional putative functional variants. METHODS Fifty-three SNPs were selected based on previous reports (40 SNPs) or putative function in candidate genes (13 SNPs). We used data from 1,502 patients with stage II-IV colorectal cancer who received primary adjuvant chemotherapy, 37% of whom received oxaliplatin treatment. Multivariable Cox proportional hazards models for overall survival and progression-free survival were applied separately in stage II-III and stage IV patients. For predictive SNPs, differential outcomes according to the type of chemotherapy (oxaliplatin-based vs. others) were evaluated using an interaction term. For prognostic SNPs, the association was assessed solely in patients with oxaliplatin-based treatment. RESULTS Twelve SNPs were predictive and/or prognostic at P < 0.05 with differential survival based on the type of treatment, in patients with stage II-III (GSTM5-rs11807, ERCC2-rs13181, ERCC2-rs1799793, ERCC5-rs2016073, XPC-rs2228000, P2RX7-rs208294, HMGB1-rs1360485) and in patients with stage IV (GSTM5-rs11807, MNAT1-rs3783819, MNAT1-rs4151330, CXCR1-rs2234671, VEGFA-rs833061, P2RX7-rs2234671). In addition, five novel putative functional SNPs were identified to be predictive (ATP8B3-rs7250872, P2RX7-rs2230911, RPA1-rs5030755, MGMT-rs12917, P2RX7-rs2227963). CONCLUSIONS Some SNPs yielded prognostic and/or predictive associations significant at P < 0.05, however, none of the associations remained significant after correction for multiple testing. IMPACT We did not robustly confirm previously reported SNPs despite some suggestive findings but identified further potential predictive SNPs, which warrant further investigation in well-powered studies.
Collapse
Affiliation(s)
- Hanla A. Park
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Edelmann
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elizabeth Alwers
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lina Jansen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Country German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Cancer Epidemiology Group, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Corresponding Author: Jenny Chang-Claude, Division of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 581, Heidelberg, 69120, Germany. E-mail:
| |
Collapse
|
5
|
Emelyanova M, Pokataev I, Shashkov I, Kopantseva E, Lyadov V, Heydarov R, Mikhailovich V. TYMS 3'-UTR Polymorphism: A Novel Association with FOLFIRINOX-Induced Neurotoxicity in Pancreatic Cancer Patients. Pharmaceutics 2021; 14:pharmaceutics14010077. [PMID: 35056973 PMCID: PMC8779442 DOI: 10.3390/pharmaceutics14010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/17/2021] [Accepted: 12/25/2021] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal malignancy that has the worst 5-year survival rate of all of the common malignant tumors. Surgery, chemotherapy, and/or chemoradiation remain the main tactics for PDAC treatment. The efficacy of chemotherapy is often compromised because of the substantial risk of severe toxicities. In our study, we focused on identification of polymorphisms in the genes involved in drug metabolism, DNA repair and replication that are associated with inter-individual differences in drug-induced toxicities. Using the microarray, we genotyped 12 polymorphisms in the DPYD, XPC, GSTP1, MTHFR, ERCC1, UGT1A1, and TYMS genes in 78 PDAC patients treated with FOLFIRINOX. It was found that the TYMS rs11280056 polymorphism (6 bp-deletion in TYMS 3'-UTR) predicted grade 1-2 neurotoxicity (p = 0.0072 and p = 0.0019, according to co-dominant (CDM) and recessive model (RM), respectively). It is the first report on the association between TYMS rs11280056 and peripheral neuropathy. We also found that PDAC patients carrying the GSTP1 rs1695 GG genotype had a decreased risk for grade 3-4 hematological toxicity as compared to those with the AA or AG genotypes (p = 0.032 and p = 0.014, CDM and RM, respectively). Due to relatively high p-values, we consider that the impact of GSTP1 rs1695 requires further investigation in a larger sample size.
Collapse
Affiliation(s)
- Marina Emelyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.E.); (I.S.); (E.K.); (R.H.)
| | - Ilya Pokataev
- Department of Oncology, Moscow Clinical Oncology Hospital No.1, Moscow City Health Department, 105005 Moscow, Russia; (I.P.); (V.L.)
| | - Igor Shashkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.E.); (I.S.); (E.K.); (R.H.)
- Federal Research Centre ‘Fundamentals of Biotechnology’, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Elena Kopantseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.E.); (I.S.); (E.K.); (R.H.)
| | - Vladimir Lyadov
- Department of Oncology, Moscow Clinical Oncology Hospital No.1, Moscow City Health Department, 105005 Moscow, Russia; (I.P.); (V.L.)
- Department of Oncology and Palliative Medicine, Russian Medical Academy of Continuous Professional Education, 123242 Moscow, Russia
- Department of Oncology, Novokuznetsk State Institute for Continuous Medical Education, 654005 Novokuznetsk, Russia
| | - Rustam Heydarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.E.); (I.S.); (E.K.); (R.H.)
| | - Vladimir Mikhailovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.E.); (I.S.); (E.K.); (R.H.)
- Correspondence: or ; Tel./Fax: +7-499-1351177
| |
Collapse
|
6
|
Walia HK, Singh N, Sharma S. GSTP1 Ile105Val polymorphism among North Indian lung cancer patients treated using monotherapy and poly-pharmacy. Hum Exp Toxicol 2021; 40:S739-S752. [PMID: 34780261 DOI: 10.1177/09603271211059496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Genetic polymorphism within the P1 isoenzyme of the Glutathione-S-Transferase (GST) family is found to modulate and alter the enzyme activity of GSTP1 protein and thus may result in a change of sensitivity to platinum-based chemotherapy. We investigated the relationship between GSTP1 Ile105Val polymorphisms and overall survival, treatment response, and for both hematological and non-hematological toxicity of advanced North Indian lung cancer patients undergoing platinum-based double chemotherapy. METHODS The polymorphism of GSTP1 Ile105Val in North Indian lung cancer patients was assessed by polymerase chain reaction-restriction fragment length polymorphism. A total of 682 lung cancer patients were enrolled in the study, and it was observed that patients who were carrying both the mutant alleles (Val/Val) for the GSTP1 polymorphism showed a higher trend of median survival time (MST) as compared to the patients bearing the wild type of genotype (Ile/Ile) (MST = 8.30 vs. 7.47, p = 0.56). Based on toxicity profiling, we observed that lung cancer patients with the mutant genotype of GSTP1 (Val/Val) had an increased risk of leukopenia (OR = 2.41; 95% CI = 1.39-4.18, p = 0.001) as compared to subjects carrying both copies of the wild alleles (Ile/Ile). Our data suggested that patients with heterozygous genotype (Ile/Val) had a 2.14-fold increased risk of developing severe anemia (OR = 2.14, 95% CI = 0.97-4.62, p = 0.03). Our data also showed that in small cell lung carcinoma (SCLC) patients' polymorphism of GSTP1 was associated with thrombocytopenia (χ2 test = 7.32, p = 0.02). CONCLUSIONS Our results suggest that GSTP1 Ile105Val polymorphism could be a predictive biomarker for hematological toxicity, like leukopenia and anemia, but not thrombocytopenia or neutropenia.
Collapse
Affiliation(s)
- Harleen Kaur Walia
- Department of Biotechnology, 29080Thapar Institute of Engineering & Technology, Patiala, India
| | - Navneet Singh
- Department of Pulmonary Medicine, 29751Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Siddharth Sharma
- Department of Biotechnology, 29080Thapar Institute of Engineering & Technology, Patiala, India
| |
Collapse
|
7
|
ERCC1 19007 Polymorphism in Greek Patients with Advanced Urothelial Cancer Treated with Platinum-Based Chemotherapy: Effect of the Changing Treatment Paradigm: A Cohort Study by the Hellenic GU Cancer Group. Curr Oncol 2021; 28:4474-4484. [PMID: 34898581 PMCID: PMC8653964 DOI: 10.3390/curroncol28060380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
We previously showed that ERCC1 19007 C>T polymorphism was associated with cancer-specific survival (CSS) after platinum-based chemotherapy in patients with advanced urothelial cancer (aUC). We aimed to confirm this association in a different cohort of patients. Genotyping of the 19007C>T polymorphism was carried out by polymerase chain reaction (PCR) amplification and restriction fragment length polymorphism (RFLP) in 98 aUC patients, treated with platinum-based chemotherapy. Median age of the patients was 68.8, 13.3% of them were female, 90.8% had ECOG PS of 0 or 1, and 48% received cisplatin-based chemotherapy. In addition to chemotherapy, 32.7% of the patients received immunotherapy, and 19.4% vinflunine. Eighty-one patients (82.7%) were carriers of the 19007T polymorphic allele: 46 (46.9%) were heterozygotes, and 35 (35.7%) were homozygotes. The ERCC1 polymorphism was not associated with CSS, progression-free (PFS), or overall (OS) survival in the total population. Nevertheless, there was a significant interaction between the prognostic significance of ERCC1 polymorphism and the use of modern immunotherapy: the T allele was associated with worse outcome in patients who received chemotherapy only, while this association was lost in patients who received both chemotherapy and immune checkpoint inhibitors. Our study suggests that novel therapies may influence the significance of ERCC1 polymorphism in patients with aUC. Its determination may be useful in the changing treatment landscape of the disease.
Collapse
|
8
|
Bertsimas D, Borenstein A, Mingardi L, Nohadani O, Orfanoudaki A, Stellato B, Wiberg H, Sarin P, Varelmann DJ, Estrada V, Macaya C, Gil IJN. Personalized prescription of ACEI/ARBs for hypertensive COVID-19 patients. Health Care Manag Sci 2021; 24:339-355. [PMID: 33721153 PMCID: PMC7958102 DOI: 10.1007/s10729-021-09545-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/22/2021] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic has prompted an international effort to develop and repurpose medications and procedures to effectively combat the disease. Several groups have focused on the potential treatment utility of angiotensin-converting-enzyme inhibitors (ACEIs) and angiotensin-receptor blockers (ARBs) for hypertensive COVID-19 patients, with inconclusive evidence thus far. We couple electronic medical record (EMR) and registry data of 3,643 patients from Spain, Italy, Germany, Ecuador, and the US with a machine learning framework to personalize the prescription of ACEIs and ARBs to hypertensive COVID-19 patients. Our approach leverages clinical and demographic information to identify hospitalized individuals whose probability of mortality or morbidity can decrease by prescribing this class of drugs. In particular, the algorithm proposes increasing ACEI/ARBs prescriptions for patients with cardiovascular disease and decreasing prescriptions for those with low oxygen saturation at admission. We show that personalized recommendations can improve patient outcomes by 1.0% compared to the standard of care when applied to external populations. We develop an interactive interface for our algorithm, providing physicians with an actionable tool to easily assess treatment alternatives and inform clinical decisions. This work offers the first personalized recommendation system to accurately evaluate the efficacy and risks of prescribing ACEIs and ARBs to hypertensive COVID-19 patients.
Collapse
Affiliation(s)
- Dimitris Bertsimas
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
- Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Alison Borenstein
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Luca Mingardi
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Omid Nohadani
- Benefits Science Technologies, Boston, MA, 02110, USA
| | - Agni Orfanoudaki
- Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Bartolomeo Stellato
- Operations Research and Financial Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Holly Wiberg
- Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Pankaj Sarin
- Brigham and Women's Hospital, Boston, MA, 02115, USA
| | | | | | | | | |
Collapse
|
9
|
Goričar K, Dolžan V, Lenassi M. Extracellular Vesicles: A Novel Tool Facilitating Personalized Medicine and Pharmacogenomics in Oncology. Front Pharmacol 2021; 12:671298. [PMID: 33995103 PMCID: PMC8120271 DOI: 10.3389/fphar.2021.671298] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
Biomarkers that can guide cancer therapy based on patients' individual cancer molecular signature can enable a more effective treatment with fewer adverse events. Data on actionable somatic mutations and germline genetic variants, studied by personalized medicine and pharmacogenomics, can be obtained from tumor tissue or blood samples. As tissue biopsy cannot reflect the heterogeneity of the tumor or its temporal changes, liquid biopsy is a promising alternative approach. In recent years, extracellular vesicles (EVs) have emerged as a potential source of biomarkers in liquid biopsy. EVs are a heterogeneous population of membrane bound particles, which are released from all cells and accumulate into body fluids. They contain various proteins, lipids, nucleic acids (miRNA, mRNA, and DNA) and metabolites. In cancer, EV biomolecular composition and concentration are changed. Tumor EVs can promote the remodeling of the tumor microenvironment and pre-metastatic niche formation, and contribute to transfer of oncogenic potential or drug resistance during chemotherapy. This makes them a promising source of minimally invasive biomarkers. A limited number of clinical studies investigated EVs to monitor cancer progression, tumor evolution or drug resistance and several putative EV-bound protein and RNA biomarkers were identified. This review is focused on EVs as novel biomarker source for personalized medicine and pharmacogenomics in oncology. As several pharmacogenes and genes associated with targeted therapy, chemotherapy or hormonal therapy were already detected in EVs, they might be used for fine-tuning personalized cancer treatment.
Collapse
Affiliation(s)
| | | | - Metka Lenassi
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
Han X, Wang Z, Zhang L, Shen Y, Tan Q, Sun Y, Wang J, Qian X, Yang H, Shi Y. SLF1 polymorphism predicts response to oxaliplatin-based adjuvant chemotherapy in patients with colon cancer. Am J Cancer Res 2021; 11:1522-1539. [PMID: 33948371 PMCID: PMC8085871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023] Open
Abstract
Response to oxaliplatin-based adjuvant chemotherapy varies among patients with stage II and III colon cancer; however, genetic alterations associated with this response remain incompletely characterized. A three-stage analytical framework, including the discovery, validation, and replication stages, was designed to explore genetic alterations modulating response to oxaliplatin-based chemotherapy in adjuvant setting among patients with stage II and III colon cancer receiving complete resection of tumor. Except for several somatic mutated genes, such as ARSD and ACE, showing less definitive associations with response to oxaliplatin-based adjuvant chemotherapy, we found stable associations of rs6891545C > A polymorphism in SLF1 gene, a key component of DNA damage response system, with the response across all three stages. Patients with rs6891545 A allele had significantly lower risk of poor responsiveness to oxaliplatin-based adjuvant chemotherapy at both discovery and validation stages, compared with ones possessing wild homozygous genotype CC (discovery stage: odds ratio, 0; 95% CI, 0-0.48; P = .005; validation stage: odds ratio, 0.33; 95% CI, 0.11-0.99; P = .048). In the replication cohort, rs6891545 A allele was confirmed to be strongly associated with improved DFS (hazard ratio, 0.43; 95% CI, 0.23-0.81; P = .007). Notably, the improvement persisted after controlling for sex, age, tumor location, differentiation, and stage (hazard ratio, 0.42; 95% CI, 0.22-0.80; P = .009). Moreover, in silico analysis unraveled strong impact of rs6891545 A allele on local secondary structure of SLF1 mRNA, possibly leading to low SLF1 protein expression. We conclude that the rs6891545C > A polymorphism may serve as an independent marker of response to oxaliplatin-based adjuvant chemotherapy in patients with stage II and III colon cancer, with improved clinical benefit observed in patients with the A allele possibly attributable to low expression of SLF1 protein resulting in deficient DNA repair capacity.
Collapse
Affiliation(s)
- Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing 100032, China
| | - Zheng Wang
- Department of Pathology, Beijing HospitalBeijing 100730, China
| | - Lei Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted DrugsBeijing 100021, China
| | - Yinchen Shen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted DrugsBeijing 100021, China
| | - Qiaoyun Tan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted DrugsBeijing 100021, China
| | - Yongkun Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted DrugsBeijing 100021, China
| | - Jianfei Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted DrugsBeijing 100021, China
| | - Xiaoyan Qian
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted DrugsBeijing 100021, China
| | - Hongying Yang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing 100021, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted DrugsBeijing 100021, China
| |
Collapse
|
11
|
Afrin S, Forbes-Hernández TY, Giampieri F, Battino M. Manuka honey, oxidative stress, 5-fluorouracil treatment, and colon cancer cells. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Simões AR, Fernández-Rozadilla C, Maroñas O, Carracedo Á. The Road so Far in Colorectal Cancer Pharmacogenomics: Are We Closer to Individualised Treatment? J Pers Med 2020; 10:E237. [PMID: 33228198 PMCID: PMC7711884 DOI: 10.3390/jpm10040237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
In recent decades, survival rates in colorectal cancer have improved greatly due to pharmacological treatment. However, many patients end up developing adverse drug reactions that can be severe or even life threatening, and that affect their quality of life. These remain a limitation, as they may force dose reduction or treatment discontinuation, diminishing treatment efficacy. From candidate gene approaches to genome-wide analysis, pharmacogenomic knowledge has advanced greatly, yet there is still huge and unexploited potential in the use of novel technologies such as next-generation sequencing strategies. This review summarises the road of colorectal cancer pharmacogenomics so far, presents considerations and directions to be taken for further works and discusses the path towards implementation into clinical practice.
Collapse
Affiliation(s)
- Ana Rita Simões
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain; (A.R.S.); (O.M.); (Á.C.)
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Ceres Fernández-Rozadilla
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain; (A.R.S.); (O.M.); (Á.C.)
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Olalla Maroñas
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain; (A.R.S.); (O.M.); (Á.C.)
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain; (A.R.S.); (O.M.); (Á.C.)
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica; SERGAS, 15706 Santiago de Compostela, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Raras—CIBERER, 28029 Madrid, Spain
| |
Collapse
|
13
|
Hulshof EC, Lim L, de Hingh IHJT, Gelderblom H, Guchelaar HJ, Deenen MJ. Genetic Variants in DNA Repair Pathways as Potential Biomarkers in Predicting Treatment Outcome of Intraperitoneal Chemotherapy in Patients With Colorectal Peritoneal Metastasis: A Systematic Review. Front Pharmacol 2020; 11:577968. [PMID: 33117169 PMCID: PMC7575928 DOI: 10.3389/fphar.2020.577968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
Background The introduction of cytoreductive surgery (CRS) followed by hyperthermic intraperitoneal chemotherapy (HIPEC) with either oxaliplatin or mitomycin C for patients with colorectal peritoneal metastasis (CPM) has resulted in a major increase in overall survival. Nonetheless, despite critical patient selection, the majority of patients will develop recurrent disease within one year following CRS + HIPEC. Therefore, improvement of patient and treatment selection is needed and may be achieved by the incorporation of genetic biomarkers. This systematic review aims to provide an overview of genetic biomarkers in the DNA repair pathway that are potentially predictive for treatment outcome of patients with colorectal peritoneal metastases treated with CRS + HIPEC with oxaliplatin or mitomycin C. Methods A systematic review was conducted according to the PRISMA guidelines. Given the limited number of genetic association studies of intraperitoneal mitomycin C and oxaliplatin in patients with CPM, we expanded the review and extrapolated the data from biomarker studies conducted in colorectal cancer patients treated with systemic mitomycin C– and oxaliplatin-based chemotherapy. Results In total, 43 papers were included in this review. No study reported potential pharmacogenomic biomarkers in patients with colorectal cancer undergoing mitomycin C–based chemotherapy. For oxaliplatin-based chemotherapy, a total of 26 genetic biomarkers within 14 genes were identified that were significantly associated with treatment outcome. The most promising genetic biomarkers were ERCC1 rs11615, XPC rs1043953, XPD rs13181, XPG rs17655, MNAT rs3783819/rs973063/rs4151330, MMR status, ATM protein expression, HIC1 tandem repeat D17S5, and PIN1 rs2233678. Conclusion Several genetic biomarkers have proven predictive value for the treatment outcome of systemically administered oxaliplatin. By extrapolation, these genetic biomarkers may also be predictive for the efficacy of intraperitoneal oxaliplatin. This should be the subject of further investigation.
Collapse
Affiliation(s)
- Emma C Hulshof
- Department of Clinical Pharmacy, Catharina Hospital, Eindhoven, Netherlands.,Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Lifani Lim
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Ignace H J T de Hingh
- Department of Surgical Oncology, Catharina Hospital, Eindhoven, Netherlands.,GROW, School for Oncology and Development Biology, Maastricht University, Maastricht, Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands.,Leiden Network for Personalized Therapeutics, Leiden, Netherlands
| | - Maarten J Deenen
- Department of Clinical Pharmacy, Catharina Hospital, Eindhoven, Netherlands.,Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
14
|
Bertsimas D, Orfanoudaki A, Weiner RB. Personalized treatment for coronary artery disease patients: a machine learning approach. Health Care Manag Sci 2020; 23:482-506. [DOI: 10.1007/s10729-020-09522-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
|
15
|
The Treatment of Heterotopic Human Colon Xenograft Tumors in Mice with 5-Fluorouracil Attached to Magnetic Nanoparticles in Combination with Magnetic Hyperthermia Is More Efficient than Either Therapy Alone. Cancers (Basel) 2020; 12:cancers12092562. [PMID: 32916798 PMCID: PMC7566013 DOI: 10.3390/cancers12092562] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022] Open
Abstract
Magnetic nanoparticles (MNPs) have shown promising features to be utilized in combinatorial magnetic hyperthermia and chemotherapy. Here, we assessed if a thermo-chemotherapeutic approach consisting of the intratumoral application of functionalized chitosan-coated MNPs (CS-MNPs) with 5-fluorouracil (5FU) and magnetic hyperthermia prospectively improves the treatment of colorectal cancer. With utilization of a human colorectal cancer (HT29) heterotopic tumor model in mice, we showed that the thermo-chemotherapeutic treatment is more efficient in inactivating colon cancer than either tumor treatments alone (i.e., magnetic hyperthermia vs. the presence of 5FU attached to MNPs). In particular, the thermo-chemotherapeutic treatment significantly (p < 0.01) impacts tumor volume and tumor cell proliferation (Ki67 expression, p < 0.001) compared to the single therapy modalities. The thermo-chemotherapeutic treatment: (a) affects DNA replication and repair as measured by H2AX and phosphorylated H2AX expression (p < 0.05 to 0.001), (b) it does not distinctly induce apoptosis nor necroptosis in target cells, since expression of p53, PARP cleaved-PARP, caspases and phosphorylated-RIP3 was non-conspicuous, (c) it renders tumor cells surviving therapy more sensitive to further therapy sessions as indicated by an increased expression of p53, reduced expression of NF-κB and HSPs, albeit by tendency with p > 0.05), and (d) that it impacts tumor vascularity (reduced expression of CD31 and αvβ3 integrin (p < 0.01 to 0.001) and consequently nutrient supply to tumors. We further hypothesize that tumor cells die, at least in parts, via a ROS dependent mechanism called oxeiptosis. Taken together, a very effective elimination of colon cancers seems to be feasible by utilization of repeated thermo-chemotherapeutic therapy sessions in the long-term.
Collapse
|
16
|
Salimzadeh H, Lindskog EB, Gustavsson B, Wettergren Y, Ljungman D. Association of DNA repair gene variants with colorectal cancer: risk, toxicity, and survival. BMC Cancer 2020; 20:409. [PMID: 32397974 PMCID: PMC7216326 DOI: 10.1186/s12885-020-06924-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/03/2020] [Indexed: 02/08/2023] Open
Abstract
Background Single nucleotide polymorphisms (SNPs) in DNA repair genes have a potential clinical value in predicting treatment outcomes. In the current study, we examined the association of SNPs in the genes XRCC1-rs25487, ERCC1-rs11615, ERCC2-rs238406, and ERCC2-rs13181 with colorectal cancer (CRC) risk, relapse-free survival (RFS), overall survival (OS), and toxicity during chemotherapy. Methods SNPs were analysed in 590 CRC cases and 300 controls using TaqMan technology. The association of SNPs with CRC risk and toxicity during chemotherapy was analysed using Chi2 test. The Kaplan–Meier method and log-rank test was used to measure the effects of the SNPs on RFS and OS. Results The CC genotype of ERCC2-rs238406 and the ERCC2-rs13181 C allele were associated with a significantly increased risk of CRC. The ERCC1-rs11615 genotype T/T was associated with stomatitis in adjuvant chemotherapy (p = 0.03). Also, more patients with the ERCC2-rs13181 C allele needed dose reduction compared to patients with the A/A genotype (p = 0.02). In first line chemotherapy, more patients with the ERCC1-rs11615 C allele suffered from nausea compared to those with the T/T genotype (p = 0.04) and eye reactions and thrombocytopenia were more common in patients with the ERCC2-rs13181 C allele compared to the A/A genotype (p = 0.006 and p = 0.004, respectively). ERCC2- rs238406 C/C was also associated with a higher frequency of thrombocytopenia (p = 0.03). A shorter 5-year OS was detected in stage I & II CRC patients with the ERCC2- rs238406 C allele (p = 0.02). However, there was no significant association between the SNPs and 5-year RFS. Conclusions Both SNPs in ERCC2 were associated with risk of CRC as well as toxicity during first line treatment. In addition, ERCC2- rs238406 was linked to OS in early stage CRC. The ERCC1-rs11615 variant was associated with toxicity during adjuvant chemotherapy. The results add support to previous findings that SNPs in ERCC1 and ERCC2 have a prognostic and predictive value in clinical management of CRC.
Collapse
Affiliation(s)
- Hamideh Salimzadeh
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Östra, 416 85, Gothenburg, Sweden.,Digestive Oncology Research Centre, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elinor Bexe Lindskog
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Östra, 416 85, Gothenburg, Sweden.,Region Västra Götaland, Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bengt Gustavsson
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Östra, 416 85, Gothenburg, Sweden
| | - Yvonne Wettergren
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Östra, 416 85, Gothenburg, Sweden
| | - David Ljungman
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Östra, 416 85, Gothenburg, Sweden. .,Region Västra Götaland, Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
17
|
XPA: DNA Repair Protein of Significant Clinical Importance. Int J Mol Sci 2020; 21:ijms21062182. [PMID: 32235701 PMCID: PMC7139726 DOI: 10.3390/ijms21062182] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023] Open
Abstract
The nucleotide excision repair (NER) pathway is activated in response to a broad spectrum of DNA lesions, including bulky lesions induced by platinum-based chemotherapeutic agents. Expression levels of NER factors and resistance to chemotherapy has been examined with some suggestion that NER plays a role in tumour resistance; however, there is a great degree of variability in these studies. Nevertheless, recent clinical studies have suggested Xeroderma Pigmentosum group A (XPA) protein, a key regulator of the NER pathway that is essential for the repair of DNA damage induced by platinum-based chemotherapeutics, as a potential prognostic and predictive biomarker for response to treatment. XPA functions in damage verification step in NER, as well as a molecular scaffold to assemble other NER core factors around the DNA damage site, mediated by protein–protein interactions. In this review, we focus on the interacting partners and mechanisms of regulation of the XPA protein. We summarize clinical oncology data related to this DNA repair factor, particularly its relationship with treatment outcome, and examine the potential of XPA as a target for small molecule inhibitors.
Collapse
|
18
|
Abyarghamsari M, Hosseini Shirazi F, Tavakoli-Ardakani M, Rezvani H, Mirzaei HR, Salamzadeh J. Study of the Relationship between ERCC1 Polymorphisms and Response to Platinum-based Chemotherapy in Iranian Patients with Colorectal and Gastric Cancers. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:2163-2171. [PMID: 32184881 PMCID: PMC7059040 DOI: 10.22037/ijpr.2019.1100827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This study was designed to evaluate the effect of excision repair cross complementing group 1 (ERCC1) rs11615 codon 118C/T gene polymorphisms on treatment outcomes in Iranian patients receiving oxaliplatin-based regimens for colorectal (CRC) and gastric cancers (GC). Patients, who were candidates to receive oxaliplatin-based chemotherapy, entered into the study. In 2-week intervals, the patients received combination regimen of oxaliplatin, fluorouracil, and leucovorin (FOLFOX) for 3 months. ERCC1 rs11615 codon 118C/T polymorphism was tested by restriction fragment length polymorphism polymerase chain reaction (RFLP-PCR) method using patients’ peripheral blood lymphocytes. The tumor response to chemotherapy was evaluated by examining the size of the tumor using CT scan. Association between response rates, according to the RECIST criteria, and patients’ genotypes was evaluated. Any relationship between response rate and possible explanatory factors was also determined. Overall, 40 patients (13 females (32.5%), and 27 males (67.5%)) enrolled in the study. Four patients (10.0%) carried the homozygous mutation (T/T genotype), ten patients (25.0%) were heterozygous (C/T genotype), and twenty-six patients (65%) were homozygous (C/C genotype). Response rate were 30.77%, 20.00%, and 0.00% for the genotypes C/C, C/T, and T/T, respectively. No significant association between response rate and genotypes was observed (p = 0.64). Patients with well- and moderately-differentiated histological grade of the tumor showed a better response rate (100.00% of 2 patients and 66.66% of 12 patients, respectively) compared to those with poorly differentiated (0.00% of 26 patients) histological grade (p < 0.001). Further multicenter studies are recommended to confirm conclusively our findings.
Collapse
Affiliation(s)
- Mahdiye Abyarghamsari
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medial Sciences, Tehran, Iran
| | - Farshad Hosseini Shirazi
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maria Tavakoli-Ardakani
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medial Sciences, Tehran, Iran
| | - Hamid Rezvani
- Ayatollah Taleghani Hospital, Shahid Beheshti University of Medial Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Radiation Oncology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamshid Salamzadeh
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Al-Shaheri FN, Al-Shami KM, Gamal EH, Mahasneh AA, Ayoub NM. Association of DNA repair gene polymorphisms with colorectal cancer risk and treatment outcomes. Exp Mol Pathol 2019; 113:104364. [PMID: 31881200 DOI: 10.1016/j.yexmp.2019.104364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most common carcinoma worldwide. Despite the progress in screening and treatment, CRC remains a leading cause of cancer-related mortality. Alterations to normal nucleic acid processing may drive neoplastic transformation of colorectal epithelium. DNA repair machinery performs an essential function in the protection of genome by reducing the number of genetic polymorphisms/variations that may drive carcinogenicity. Four essential DNA repair systems are known which include nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), and double-strand break repair (DSBR). Polymorphisms of DNA repair genes have been shown to influence the risk of cancer development as well as outcomes of treatment. Several studies demonstrated the association between genetic polymorphism of DNA repair genes and increased risk of CRC in different populations. In this review, we have summarized the impact of DNA repair gene polymorphisms on risk of CRC development and treatment outcomes. Advancements of the current understanding for the impact of DNA repair gene polymorphisms on the risk and treatment of CRC may support diagnostic and predictive roles in patients with CRC.
Collapse
Affiliation(s)
- Fawaz N Al-Shaheri
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), ImNeuenheimer Feld 580, 69120 Heidelberg, Germany; Medical Faculty Heidelberg, University of Heidelberg, ImNeuenheimer Feld 672, 69120 Heidelberg, Germany; Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan.
| | - Kamal M Al-Shami
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 720 South Donahue Drive, Auburn, Alabama 36849, United States of America; Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Eshrak H Gamal
- Department of Oncology, Collage of Medicine, Bonn University, Germany; Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan.
| | - Amjad A Mahasneh
- Department of Applied Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| |
Collapse
|
20
|
Olivera G, Sendra L, Herrero MJ, Puig C, Aliño SF. Colorectal cancer: pharmacogenetics support for the correct drug prescription. Pharmacogenomics 2019; 20:741-763. [PMID: 31368847 DOI: 10.2217/pgs-2019-0041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pharmacogenetics (PGx) in clinical practice is a tool that the clinician can use to guide, in a personalized way, the most suitable treatment that will be administered to the patient. The objective of this review is to summarize in a practical and accessible rational way, the advances that currently exist for the application of PGx in colorectal cancer chemotherapy management through the study of the patients' germline polymorphisms. To define the polymorphisms that can be applied, we rely on three fundamental cornerstones: the recommendations of drug regulatory agencies; the implementation guidelines prepared by expert consortia in PGx and information from clinical annotations (the drug/polymorphism relation) according to the scientific level of evidence assigned by PharmGKB experts.
Collapse
Affiliation(s)
- Gladys Olivera
- Pharmacogenetics Platform, Instituto de Investigación Sanitaria la Fe, Valencia 46026, Spain.,Department of Pharmacology, University of Valencia, Valencia 46010, Spain
| | - Luis Sendra
- Pharmacogenetics Platform, Instituto de Investigación Sanitaria la Fe, Valencia 46026, Spain.,Department of Pharmacology, University of Valencia, Valencia 46010, Spain
| | - María José Herrero
- Pharmacogenetics Platform, Instituto de Investigación Sanitaria la Fe, Valencia 46026, Spain.,Department of Pharmacology, University of Valencia, Valencia 46010, Spain
| | - Carlos Puig
- Department of Pharmacology, University of Valencia, Valencia 46010, Spain
| | - Salvador F Aliño
- Pharmacogenetics Platform, Instituto de Investigación Sanitaria la Fe, Valencia 46026, Spain.,Department of Pharmacology, University of Valencia, Valencia 46010, Spain.,Clinical Pharmacology Unit, Hospital Universitario y Politécnico la Fe, Valencia 46026, Spain
| |
Collapse
|
21
|
Battaglin F, Lenz HJ. What Should We Do Better? Lessons from Negative Results of a Biomarker Validation Study. J Natl Cancer Inst 2019; 111:754-756. [PMID: 30649462 PMCID: PMC6695307 DOI: 10.1093/jnci/djy217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/20/2018] [Indexed: 10/14/2023] Open
Affiliation(s)
| | - Heinz-Josef Lenz
- See the Notes section for the full list of authors’ affiliations
| |
Collapse
|
22
|
Sun Y, Pan J, Tong X, Chen E, Yan W, Wu M, Qu Q, Qu J. Glutathione S-transferases genes variants and chemotherapy efficacy in gastrointestinal cancer patients: a meta-analysis based on 50 pharmacogenetic studies. J Cancer 2019; 10:2915-2926. [PMID: 31281468 PMCID: PMC6590047 DOI: 10.7150/jca.31130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/30/2019] [Indexed: 12/25/2022] Open
Abstract
Background: The role of glutathione s-transferase genes (GSTP1, GSTM1 and GSTT1) variants and the GSTP1 expression level on chemotherapy efficacy of gastrointestinal cancer (GIC) patients were inconsistent. Methods: A meta-analysis about GSTP1, GSTM1 and GSTT1 variants and the GSTP1 expression level on chemotherapy efficacy of GIC patients was performed using data from PubMed, PMC, EMBASE, Web of Science, and Wanfang database. Results: Our meta-analysis enrolled 50 publications including 6518 patients. We found that patients with GIC harboring GSTP1 (IIe105Val) Val locus had higher objective response rates (ORR) than the IIe/IIe genotypic patients (odds ratio (OR) = 1.580, 95% confidence interval (CI) = 1.159-2.154, P = 0.004). Significant associations were found between the Ile105Val variant and overall survival of Caucasian GIC patients (IIe/Val vs. IIe/IIe: OR = 0.797 (0.674-0.944), P = 0.009). Caucasian GIC patients and gastric cancer patients with GSTT1 null genotype had worse response rates compared to GSTT1 present patients (OR = 0.530 (0.356-0.789), P = 0.002; OR = 0.643 (0.463-0.895), P = 0.009, respectively). Conclusion: This meta-analysis illustrates that GSTP1 IIe105Val and GSTT1 null/present variants could be useful predictors of chemotherapy efficacy in patients with gastrointestinal cancer.
Collapse
Affiliation(s)
- Yuesheng Sun
- Department of General Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People 's Hospital, Wenzhou, 325000, People's Republic of China
| | - Jianghua Pan
- Department of General Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People 's Hospital, Wenzhou, 325000, People's Republic of China
| | - Xiaochun Tong
- Department of General Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People 's Hospital, Wenzhou, 325000, People's Republic of China
| | - Ende Chen
- Department of General Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People 's Hospital, Wenzhou, 325000, People's Republic of China
| | - Wangxin Yan
- Department of General Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People 's Hospital, Wenzhou, 325000, People's Republic of China
| | - Mengpei Wu
- Department of General Surgery, Taishun People's Hospital, Wenzhou, 325000, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410078, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha 410011, People's Republic of China
| |
Collapse
|
23
|
Yang L, Wei W, Zhou L, Wang J, Hu G. High/positive expression of ERCC1 predicts poor treatment response and survival prognosis in nasopharyngeal carcinoma: A systematic meta-analysis from 21 studies. Medicine (Baltimore) 2019; 98:e15641. [PMID: 31124943 PMCID: PMC6571253 DOI: 10.1097/md.0000000000015641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Excision repair cross-complementation group 1 (ERCC1) protein is a member of the nucleotide excision repair (NER) system, which plays an important role in DNA damage repair. Recently, its predictive and prognostic value in nasopharyngeal carcinoma (NPC) has been investigated by several studies. However, their results remain controversial. OBJECTIVES In an attempt to address this issue, we conducted the present comprehensive meta-analysis. DATA SOURCES Studies published until November 2017 were searched. Finally, total 21 literatures involving 22 cohorts and 2921 NPC patients fulfilled the inclusion criteria. RESULTS The pooled results showed that high/positive expression of ERCC1 predicted poor objective response rate (ORR) [odds ratio (OR) = 2.83; 95% confidence interval (CI) = 2.11-3.80; P <.001], overall survival (OS) [hazard ratio (HR) = 1.77; 95% CI = 1.48-2.12; P <.001], and disease-free survival (DFS) (HR = 1.60; 95% CI = 1.43-1.79; P <.001) in NPC. Low heterogeneity was detected among these studies (ORR: I = 0.0%, P = .776; DFS: I = 38.7%, P = .148; OS: I = 0.0%; P = .530). The results of sensitivity analyses and publication bias verified the reliability of our findings. CONCLUSIONS This study suggested ERCC1 as a potential predictive and prognostic biomarker for the treatment response and survival prognosis of NPC patients.
Collapse
Affiliation(s)
- Lin Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | | | | | | | | |
Collapse
|
24
|
Katayanagi S, Katsumata K, Mori Y, Narahara K, Shigoka M, Matsudo T, Enomoto M, Suda T, Ishizaki T, Hisada M, Nagakawa Y, Tsuchida A. GSTP1 as a potential predictive factor for adverse events associated with platinum-based antitumor agent-induced peripheral neuropathy. Oncol Lett 2019; 17:2897-2904. [PMID: 30854066 PMCID: PMC6365892 DOI: 10.3892/ol.2019.9907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023] Open
Abstract
Glutathione S-transferase (GST) exhibits antidotal effects on numerous drugs, including platinum-based antineoplastic drugs. Furthermore, GST Pi 1 (GSTP1) polymorphism is associated with peripheral neuropathy. In the present study, it was determined whether GSTP1 can predict adverse events associated with platinum-based antitumor agent-induced peripheral neuropathy among Japanese patients. The subjects included 122 patients, among whom 105 patients had colorectal, 16 had gastric, and one patient had pancreatic cancer. It was indicated that wild type (AA) GSTP1 was expressed in 99 patients (81.1%), whereas heterozygous (AG) and homozygous (GG) GSTP1 polymorphisms were present in 22 (18.0%) and 1 (0.8%) patients, respectively. Among patients with colorectal cancer, the expression of homozygous GSTP1 was observed in 88 patients (83.8%), whereas that of heterozygous GSTP1 was observed in 17 patients (16.2%). Peripheral neuropathy of grade ≥3 occurred in 10 patients (9.5%) receiving mFOLFOX therapy (a biweekly cycle consisting of a 2-h infusion of 85 mg/m2 oxaliplatin and 200 mg/m2 leucovorin followed by a bolus administration of 400 mg/m2 5-fluorouracil and a continuous 48-h infusion of 2,400 mg/m2 5-fluorouracil) for colorectal cancer, which included 6 patients with the AA allele (6.8%) and 4 patients with the AG allele (23.5%). The number of peripheral neuropathy cases of grade ≥3 was increased among patients with the AG allele, compared with patients with the AA allele (P=0.032). In patients with gastric cancer, the AA and AG types of GSTP1 were expressed in 11 (68.8%) and 5 (31.2%) patients, respectively. Cisplatin, administered to patients with gastric cancer, did not induce peripheral neuropathy. The aforementioned indicated that GSTP1 genetic polymorphism is associated with peripheral neuropathy induced by oxaliplatin treatment for colorectal cancer, and therefore serves as a predictive marker. Furthermore, early dose reduction or drug withdrawal should be implemented depending on the severity of peripheral neuropathy as a potential method for reducing the number of patients discontinuing the drug, due to adverse events involving peripheral neuropathy.
Collapse
Affiliation(s)
- Sou Katayanagi
- Department of Digestive and Pediatric Surgery, Tokyo Medical University Hospital, Tokyo 160-0023, Japan
- Correspondence to: Dr Sou Katayanagi, Department of Digestive and Pediatric Surgery, Tokyo Medical University Hospital, 7-1 6-chome, Tokyo 160-0023, Japan, E-mail:
| | - Kenji Katsumata
- Department of Digestive and Pediatric Surgery, Tokyo Medical University Hospital, Tokyo 160-0023, Japan
| | - Yasuharu Mori
- Department of Digestive and Pediatric Surgery, Tokyo Medical University Hospital, Tokyo 160-0023, Japan
| | - Katsunori Narahara
- Department of Digestive and Pediatric Surgery, Tokyo Medical University Hospital, Tokyo 160-0023, Japan
| | - Masatoshi Shigoka
- Department of Digestive and Pediatric Surgery, Tokyo Medical University Hospital, Tokyo 160-0023, Japan
| | - Takaaki Matsudo
- Department of Digestive and Pediatric Surgery, Tokyo Medical University Hospital, Tokyo 160-0023, Japan
| | - Masanori Enomoto
- Department of Digestive and Pediatric Surgery, Tokyo Medical University Hospital, Tokyo 160-0023, Japan
| | - Takeshi Suda
- Department of Digestive and Pediatric Surgery, Tokyo Medical University Hospital, Tokyo 160-0023, Japan
| | - Tetsuo Ishizaki
- Department of Digestive and Pediatric Surgery, Tokyo Medical University Hospital, Tokyo 160-0023, Japan
| | - Masayuki Hisada
- Department of Digestive and Pediatric Surgery, Tokyo Medical University Hospital, Tokyo 160-0023, Japan
| | - Yuuichi Nagakawa
- Department of Digestive and Pediatric Surgery, Tokyo Medical University Hospital, Tokyo 160-0023, Japan
| | - Akihiko Tsuchida
- Department of Digestive and Pediatric Surgery, Tokyo Medical University Hospital, Tokyo 160-0023, Japan
| |
Collapse
|
25
|
Overcoming stemness and chemoresistance in colorectal cancer through miR-195-5p-modulated inhibition of notch signaling. Int J Biol Macromol 2018; 117:445-453. [DOI: 10.1016/j.ijbiomac.2018.05.151] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022]
|
26
|
DNA Repair Gene XRCC1 and XPD Polymorphisms and Gastric Cancer Risk: A Case-Control Study Outcome from Kashmir, India. Anal Cell Pathol (Amst) 2018; 2018:3806514. [PMID: 30225185 PMCID: PMC6129361 DOI: 10.1155/2018/3806514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/03/2018] [Accepted: 06/05/2018] [Indexed: 01/25/2023] Open
Abstract
Coding polymorphisms in several DNA repair genes have been reported to affect the DNA repair capacity and are associated with genetic susceptibility to many human cancers, including gastric cancer. An understanding of these DNA repair gene polymorphisms might assess not only the risk of humans exposed to environmental carcinogens but also their responses to different therapeutical approaches, which target the DNA repair pathway. In the present study, polymorphic variants of two DNA repair genes, XRCC1 Arg399Gln and XPD Lys751Gln, were chosen to be studied in association with gastric cancer susceptibility in the Kashmiri population. A total of 180 confirmed cases of gastric cancer (GC) and 200 hospital-based controls from Government Shri Maharaja Hari Singh Hospital, Srinagar, were included in the study. The genotyping for XRCC1 and XPD genes was carried out by polymerase chain reaction-restriction fragment length polymorphism. We found that tobacco smoking is strongly associated with GC risk (OR = 25.65; 95% CI: 5.49–119.7). However, we did not find any association of polymorphism of XRCC1 Arg399Gln (OR = 1.56; 95% CI: 0.32–7.82) and XPD Lys751Gln (OR = 0.46; CI: 0.10–2.19) with GC risk in the study population. The combination of genotypes and gender stratification of XRCC1 and XPD genotypic frequency did not change the results. Consumption of large volumes of salt tea was also not associated with gastric cancer risk. Polymorphic variants of XRCC1 Arg399Gln and XPD Lys751Gln are not associated with the risk of gastric cancer in the Kashmiri population. However, replicative studies with larger sample size are needed to substantiate the findings.
Collapse
|
27
|
Arakawa Y, Shirai Y, Hayashi K, Tanaka Y, Matsumoto A, Nishikawa K, Yano S. Effects of gene polymorphisms on the risk of severe hyponatremia during DCF chemotherapy for patients with esophageal squamous cell carcinoma. Oncol Lett 2018; 16:5455-5462. [PMID: 30214618 DOI: 10.3892/ol.2018.9236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023] Open
Abstract
Combination chemotherapy using docetaxel, cisplatin and 5-fluorouracil (DCF) is a promising treatment option for patients with advanced esophageal squamous cell carcinoma (ESCC), although its clinical application is limited by severe systemic toxicities. There are no validated markers for predicting the adverse effects caused by this regimen. This pharmacogenetic study enrolled 57 patients with chemotherapy-naive advanced ESCC between July 2012 and March 2016 (UMIN000008462). All patients received at least one course of DCF chemotherapy (docetaxel, 60 mg/m2 on day 1; cisplatin, 70 mg/m2 on day 1; 5-fluorouracil, 600 mg/m2 on days 1-5). The associations between four gene polymorphisms (ERCC1 rs11615, GSTP1 rs1695, TYMS rs151264360 and XPD rs13181) and the development of grade 3/4 adverse events during the first course of chemotherapy were prospectively investigated. The patients had a median age of 66 years (range, 45-77 years) and the majority were male (51 males vs. 6 females). The treatment settings were neoadjuvant (47 patients), adjuvant (1 patient) and salvage (9 patients), with dose intensities of 100% (51 patients) or 80% (6 patients). The severe adverse events were leukopenia (70.2%), neutropenia (86.0%), febrile neutropenia (36.8%), acute kidney injury (29.1%) and hyponatremia (43.9%). Two polymorphisms were independently associated with the development of severe hyponatremia among patients carrying the minor allele (vs. patients with major homozygote genotype): TYMS 3'-UTR rs151264360 (odds ratio, 3.64; 95% confidence interval, 1.11-11.9) and XPD Lys751Gln rs13181 (odds ratio, 10.1; 95% confidence interval, 1.10-93.3). Therefore, the presence of the TYMS and XPD polymorphisms may aid in identifying patients with a high risk of developing severe hyponatremia during DCF chemotherapy.
Collapse
Affiliation(s)
- Yasuhiro Arakawa
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| | - Yoshihiro Shirai
- Department of Surgery, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| | - Kazumi Hayashi
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| | - Yujiro Tanaka
- Department of Surgery, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| | - Akira Matsumoto
- Department of Surgery, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| | - Katsunori Nishikawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| | - Shingo Yano
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| |
Collapse
|
28
|
Palmirotta R, Carella C, Silvestris E, Cives M, Stucci SL, Tucci M, Lovero D, Silvestris F. SNPs in predicting clinical efficacy and toxicity of chemotherapy: walking through the quicksand. Oncotarget 2018; 9:25355-25382. [PMID: 29861877 PMCID: PMC5982750 DOI: 10.18632/oncotarget.25256] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/07/2018] [Indexed: 12/19/2022] Open
Abstract
In the "precision medicine" era, chemotherapy still remains the backbone for the treatment of many cancers, but no affordable predictors of response to the chemodrugs are available in clinical practice. Single nucleotide polymorphisms (SNPs) are gene sequence variations occurring in more than 1% of the full population, and account for approximately 80% of inter-individual genomic heterogeneity. A number of studies have investigated the predictive role of SNPs of genes enrolled in both pharmacodynamics and pharmacokinetics of chemotherapeutics, but the clinical implementation of related results has been modest so far. Among the examined germline polymorphic variants, several SNPs of dihydropyrimidine dehydrogenase (DPYD) and uridine diphosphate glucuronosyltransferases (UGT) have shown a robust role as predictors of toxicity following fluoropyrimidine- and/or irinotecan-based treatments respectively, and a few guidelines are mandatory in their detection before therapy initiation. Contrasting results, however, have been reported on the capability of variants of other genes as MTHFR, TYMS, ERCC1, XRCC1, GSTP1, CYP3A4/3A5 and ABCB1, in predicting either therapy efficacy or toxicity in patients undergoing treatment with pyrimidine antimetabolites, platinum derivatives, irinotecan and taxanes. While formal recommendations for routine testing of these SNPs cannot be drawn at this moment, therapeutic decisions may indeed benefit of germline genomic information, when available. Here, we summarize the clinical impact of germline genomic variants on the efficacy and toxicity of major chemodrugs, with the aim to facilitate the therapeutic expectance of clinicians in the odiern quicksand field of complex molecular biology concepts and controversial trial data interpretation.
Collapse
Affiliation(s)
- Raffaele Palmirotta
- Department of Biomedical Sciences and Human Oncology, Section of Clinical and Molecular Oncology, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Claudia Carella
- Department of Biomedical Sciences and Human Oncology, Section of Clinical and Molecular Oncology, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Erica Silvestris
- Department of Biomedical Sciences and Human Oncology, Section of Clinical and Molecular Oncology, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Mauro Cives
- Department of Biomedical Sciences and Human Oncology, Section of Clinical and Molecular Oncology, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Stefania Luigia Stucci
- Department of Biomedical Sciences and Human Oncology, Section of Clinical and Molecular Oncology, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Marco Tucci
- Department of Biomedical Sciences and Human Oncology, Section of Clinical and Molecular Oncology, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Domenica Lovero
- Department of Biomedical Sciences and Human Oncology, Section of Clinical and Molecular Oncology, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, Section of Clinical and Molecular Oncology, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
29
|
Zhang Z, Jiang C, Hu L. Low Expression of Excision Repair Cross-complementation Group-1 Protein Predicts Better Outcome in Patients with Locally Advanced Nasopharyngeal Cancer Treated with Concurrent Chemoradiotherapy. TUMORI JOURNAL 2018. [DOI: 10.1177/1578.17218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhongxin Zhang
- Department of Oncology, Qilu Hospital, Shandong University, Jinan
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Changqing Jiang
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, China
| | - Likuan Hu
- Department of Oncology, Qilu Hospital, Shandong University, Jinan
| |
Collapse
|
30
|
Genetic polymorphisms and response to 5-fluorouracil, doxorubicin and cyclophosphamide chemotherapy in breast cancer patients. Oncotarget 2018; 7:66790-66808. [PMID: 27527855 PMCID: PMC5341838 DOI: 10.18632/oncotarget.11053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/18/2016] [Indexed: 11/25/2022] Open
Abstract
Clinical resistance to chemotherapy is one of the major problems in breast cancer treatment. In this study we analyzed possible impact of 22 polymorphic variants on the treatment response in 324 breast cancer patients. Selected genes were involved in FAC chemotherapy drugs transport (ABCB1, ABCC2, ABCG2, SLC22A16), metabolism (CYP1B1, CYP2C19, GSTT1, GSTM1, GSTP1, TYMS, MTHFR, DPYD), drug-induced damage repair (ERCC1, ERCC2, XRCC1) and involved in regulation of DNA damage response and cell cycle control (ATM, TP53). Apart from preexisting metastases three polymorphic variants were independent prognostic high risk factors of lack of response to FAC chemotherapy. Our results showed that the response to treatment depended of the variability in genes engaged in drugs’ transport (ABCC2 c.-24C>T, ABCB1 p.Ser893Ala/Thr) and in DNA repair machinery (ERCC2 p.Lys751Gln). Furthermore, the growing number of high-risk genotypes was reflected in gradual increase in risk of the non-responsiveness to treatment- from OR 2.68 for presence of two genotypes to OR 9.93 for carriers of all three negative genotypes in the group of all patients. Similar gene-dosage effect was observed in the subgroup of TNBCs. Also, TFFS significantly shortened with the increasing number of high-risk genotypes, with median of 54.4 months for carriers of one variant, to 51.5 and 34.9 months for the carriers of two and three genotypes, respectively. Our results demonstrate that results of cancer treatment are the effect of many clinical and genetic factors. It seems that multifactorial polymorphic models could be a potentially useful tool in personalization of cancer therapies. The novelty in our model is the over representation of triple negative breast cancer (TNBC) patients among the carriers of all unfavorable polymorphic variants. This finding contributes to the elucidation of the mechanisms of drug resistance in this subgroup of breast cancer patients.
Collapse
|
31
|
Murgas P, Bustamante N, Araya N, Cruz-Gómez S, Durán E, Gaete D, Oyarce C, López E, Herrada AA, Ferreira N, Pieringer H, Lladser A. A filamentous bacteriophage targeted to carcinoembryonic antigen induces tumor regression in mouse models of colorectal cancer. Cancer Immunol Immunother 2018; 67:183-193. [PMID: 29026949 PMCID: PMC11028317 DOI: 10.1007/s00262-017-2076-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 10/03/2017] [Indexed: 12/13/2022]
Abstract
Colorectal cancer is a deadly disease, which is frequently diagnosed at advanced stages, where conventional treatments are no longer effective. Cancer immunotherapy has emerged as a new form to treat different malignancies by turning-on the immune system against tumors. However, tumors are able to evade antitumor immune responses by promoting an immunosuppressive microenvironment. Single-stranded DNA containing M13 bacteriophages are highly immunogenic and can be specifically targeted to the surface of tumor cells to trigger inflammation and infiltration of activated innate immune cells, overcoming tumor-associated immunosuppression and promoting antitumor immunity. Carcinoembryonic antigen (CEA) is highly expressed in colorectal cancers and has been shown to promote several malignant features of colorectal cancer cells. In this work, we targeted M13 bacteriophage to CEA, a tumor-associated antigen over-expressed in a high proportion of colorectal cancers but largely absent in normal cells. The CEA-targeted M13 bacteriophage was shown to specifically bind to purified CEA and CEA-expressing tumor cells in vitro. Both intratumoral and systemic administration of CEA-specific bacteriophages significantly reduced tumor growth of mouse models of colorectal cancer, as compared to PBS and control bacteriophage administration. CEA-specific bacteriophages promoted tumor infiltration of neutrophils and macrophages, as well as maturation dendritic cells in tumor-draining lymph nodes, suggesting that antitumor T-cell responses were elicited. Finally, we demonstrated that tumor protection provided by CEA-specific bacteriophage particles is mediated by CD8+ T cells, as depletion of circulating CD8+ T cells completely abrogated antitumor protection. In summary, we demonstrated that CEA-specific M13 bacteriophages represent a potential immunotherapy against colorectal cancer.
Collapse
Affiliation(s)
- Paola Murgas
- Laboratory of Gene Immunotherapy, Fundación Ciencia & Vida, Av. Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Nicolás Bustamante
- Laboratory of Gene Immunotherapy, Fundación Ciencia & Vida, Av. Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Nicole Araya
- Laboratory of Gene Immunotherapy, Fundación Ciencia & Vida, Av. Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Sebastián Cruz-Gómez
- Laboratory of Gene Immunotherapy, Fundación Ciencia & Vida, Av. Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Eduardo Durán
- Laboratory of Gene Immunotherapy, Fundación Ciencia & Vida, Av. Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Diana Gaete
- Laboratory of Gene Immunotherapy, Fundación Ciencia & Vida, Av. Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - César Oyarce
- Laboratory of Gene Immunotherapy, Fundación Ciencia & Vida, Av. Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Ernesto López
- Laboratory of Gene Immunotherapy, Fundación Ciencia & Vida, Av. Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Andrés Alonso Herrada
- Laboratory of Gene Immunotherapy, Fundación Ciencia & Vida, Av. Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Nicolás Ferreira
- Phage Technologies, Parque Tecnológico Zañartu, Av. Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Hans Pieringer
- Phage Technologies, Parque Tecnológico Zañartu, Av. Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Alvaro Lladser
- Laboratory of Gene Immunotherapy, Fundación Ciencia & Vida, Av. Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile.
| |
Collapse
|
32
|
Liu Y, Sun W, Ma X, Hao Y, Liu G, Hu X, Shang H, Wu P, Zhao Z, Liu W. Logistic regression analysis for the identification of the metastasis-associated signaling pathways of osteosarcoma. Int J Mol Med 2018; 41:1233-1244. [PMID: 29328361 PMCID: PMC5819903 DOI: 10.3892/ijmm.2018.3360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common histological type of primary bone cancer. The present study was designed to identify the key genes and signaling pathways involved in the metastasis of OS. Microarray data of GSE39055 were downloaded from the Gene Expression Omnibus database, which included 19 OS biopsy specimens before metastasis (control group) and 18 OS biopsy specimens after metastasis (case group). After the differentially expressed genes (DEGs) were identified using the Linear Models for Microarray Analysis package, hierarchical clustering analysis and unsupervised clustering analysis were performed separately, using orange software and the self-organization map method. Based upon the Database for Annotation, Visualization and Integrated Discovery tool and Cytoscape software, enrichment analysis and protein-protein interaction (PPI) network analysis were conducted, respectively. After function deviation scores were calculated for the significantly enriched terms, hierarchical clustering analysis was performed using Cluster 3.0 software. Furthermore, logistic regression analysis was used to identify the terms that were significantly different. Those terms that were significantly different were validated using other independent datasets. There were 840 DEGs in the case group. There were various interactions in the PPI network [including intercellular adhesion molecule-1 (ICAM1), transforming growth factor β1 (TGFB1), TGFB1-platelet-derived growth factor subunit B (PDGFB) and PDGFB-platelet-derived growth factor receptor-β (PDGFRB)]. Regulation of cell migration, nucleotide excision repair, the Wnt signaling pathway and cell migration were identified as the terms that were significantly different. ICAM1, PDGFB, PDGFRB and TGFB1 were identified to be enriched in cell migration and regulation of cell migration. Nucleotide excision repair and the Wnt signaling pathway were the metastasis-associated pathways of OS. In addition, ICAM1, PDGFB, PDGFRB and TGFB1, which were involved in cell migration and regulation of cell migration may affect the metastasis of OS.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028007, P.R. China
| | - Wei Sun
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Xiaojun Ma
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Yuedong Hao
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Gang Liu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiaohui Hu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Houlai Shang
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Pengfei Wu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Zexue Zhao
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Weidong Liu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
33
|
Potential Role of Single Nucleotide Polymorphisms of XRCC1, XRCC3, and RAD51 in Predicting Acute Toxicity in Rectal Cancer Patients Treated With Preoperative Radiochemotherapy. Am J Clin Oncol 2017; 40:535-542. [PMID: 25811296 DOI: 10.1097/coc.0000000000000182] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVES To investigate the association between polymorphisms of DNA repair genes and xenobiotic with acute adverse effects in locally advanced rectal cancer patients treated with neoadjuvant radiochemotherapy. METHODS Sixty-seven patients were analyzed for the current study. Genotypes in DNA repair genes XRCC1 (G28152A), XRCC3 (A4541G), XRCC3 (C18067T), RAD51 (G315C), and GSTP1 (A313G) were determined by pyrosequencing technology. RESULTS The observed grade ≥3 acute toxicity rates were 23.8%. Chemotherapy and radiotherapy were interrupted for 46 and 14 days, respectively, due to critical complications. Four patients were hospitalized, 6 patients had been admitted to the ER, and 5 patients received invasive procedures (2 bladder catheters, 2 blood transfusions, and 1 growth factor therapy).RAD51 correlated with acute severe gastrointestinal toxicity in heterozygosity (Aa) and homozygosity (AA) (P=0.036). Grade ≥3 abdominal/pelvis pain toxicity was higher in the Aa group (P=0.017) and in the Aa+AA group (P=0.027) compared with homozygous (aa) patients. Acute skin toxicity of any grade occurred in 55.6% of the mutated patients versus 22.8% in the wild-type group (P=0.04) for RAD51. XRCC1 correlated with skin toxicity of any grade in the Aa+AA group (P=0.03) and in the Aa group alone (P=0.044). Grade ≥3 urinary frequency/urgency was significantly higher in patients with AA (P=0.01), Aa (P=0.022), and Aa+AA (P=0.031) for XRCC3 compared with aa group. CONCLUSIONS Our study suggested that RAD51, XRCC1, and XRCC3 polymorphisms may be predictive factors for radiation-induced acute toxicity in rectal cancer patients treated with preoperative combined therapy.
Collapse
|
34
|
Pharmacogenomic Variants May Influence the Urinary Excretion of Novel Kidney Injury Biomarkers in Patients Receiving Cisplatin. Int J Mol Sci 2017. [PMID: 28640195 PMCID: PMC5535826 DOI: 10.3390/ijms18071333] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nephrotoxicity is a dose limiting side effect associated with the use of cisplatin in the treatment of solid tumors. The degree of nephrotoxicity is dictated by the selective accumulation of cisplatin in renal tubule cells due to: (1) uptake by organic cation transporter 2 (OCT2) and copper transporter 1 (CTR1); (2) metabolism by glutathione S-transferases (GSTs) and γ-glutamyltransferase 1 (GGT1); and (3) efflux by multidrug resistance-associated protein 2 (MRP2) and multidrug and toxin extrusion protein 1 (MATE1). The purpose of this study was to determine the significance of single nucleotide polymorphisms that regulate the expression and function of transporters and metabolism genes implicated in development of acute kidney injury (AKI) in cisplatin treated patients. Changes in the kidney function were assessed using novel urinary protein biomarkers and traditional markers. Genotyping was conducted by the QuantStudio 12K Flex Real-Time PCR System using a custom open array chip with metabolism, transport, and transcription factor polymorphisms of interest to cisplatin disposition and toxicity. Traditional and novel biomarker assays for kidney toxicity were assessed for differences according to genotype by ANOVA. Allele and genotype frequencies were determined based on Caucasian population frequencies. The polymorphisms rs596881 (SLC22A2/OCT2), and rs12686377 and rs7851395 (SLC31A1/CTR1) were associated with renoprotection and maintenance of estimated glomerular filtration rate (eGFR). Polymorphisms in SLC22A2/OCT2, SLC31A1/CTRI, SLC47A1/MATE1, ABCC2/MRP2, and GSTP1 were significantly associated with increases in the urinary excretion of novel AKI biomarkers: KIM-1, TFF3, MCP1, NGAL, clusterin, cystatin C, and calbindin. Knowledge concerning which genotypes in drug transporters are associated with cisplatin-induced nephrotoxicity may help to identify at-risk patients and initiate strategies, such as using lower or fractionated cisplatin doses or avoiding cisplatin altogether, in order to prevent AKI.
Collapse
|
35
|
Bahrami A, Amerizadeh F, Hassanian SM, ShahidSales S, Khazaei M, Maftouh M, Ghayour-Mobarhan M, Ferns GA, Avan A. Genetic variants as potential predictive biomarkers in advanced colorectal cancer patients treated with oxaliplatin-based chemotherapy. J Cell Physiol 2017; 233:2193-2201. [DOI: 10.1002/jcp.25966] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Afsane Bahrami
- Department of Modern Sciences and Technologies; Faculty of Medicine, Mashhad University of Medical Sciences; Mashhad Iran
- Student Research Committee, Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Forouzan Amerizadeh
- Department of Modern Sciences and Technologies; Faculty of Medicine, Mashhad University of Medical Sciences; Mashhad Iran
- Student Research Committee, Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Department of Medical Biochemistry, Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | | | - Majid Khazaei
- Department of Physiology, Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Mina Maftouh
- Metabolic Syndrome Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School; Division of Medical Education; Falmer Brighton, Sussex UK
| | - Amir Avan
- Metabolic Syndrome Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
36
|
Heydarov R, Titov S, Abramov M, Timofeev E, Mikhailovich V. Hydrogel microarray for detection of polymorphisms in the UGT1A1, DPYD, GSTP1 and ABCB1 genes. Cancer Biomark 2017; 18:265-272. [PMID: 28085011 DOI: 10.3233/cbm-160165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Improving the efficacy of anticancer therapy remains an urgent and very important task. Screening of the individual genetic metabolism of cancer patients allows for prescribing adequate medication in the correct dose as well as for decreasing side effects associated with drug toxicity. OBJECTIVE Estimation of a microarray-based method for genotyping of the UGT1A1, DPYD, GSTP1, and ABCB1 metabolic regulation genes to evaluate for an increased risk of toxicity of anticancer drugs. METHODS The microarray was used to conduct genotyping of specimens taken from 115 cancer patients and 31 healthy donors. RESULTS A microarray-based method for identification of the rs8175347, rs3918290, rs1695, and rs1045642 polymorphisms in the corresponding UGT1A1, DPYD, GSTP1, and ABCB1 genes has been developed for genotyping. The results obtained were in full concordance with those obtained using control sequencing. The frequencies of the rs8175347, rs3918290, rs1695, and rs1045642 genetic variations were 0.38, 0, 0.35, and 0.56, respectively. CONCLUSION The implementation of this biochip-based method in diagnostic practice should increase the overall survival and quality of life of cancer patients, decrease the length of their hospital stay, and reduce treatment costs.
Collapse
|
37
|
Titov SV, Heydarov RN, Abramov ME, Timofeev EN, Mikhailovich VM. Determination of variations of the primary structure of the UGT1A1, DPYD, GSTP1, and ABCB1 genes involved in the metabolism of antitumor agents. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
38
|
Schirripa M, Procaccio L, Lonardi S, Loupakis F. The role of pharmacogenetics in the new ESMO colorectal cancer guidelines. Pharmacogenomics 2017; 18:197-200. [DOI: 10.2217/pgs-2016-0191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Marta Schirripa
- Oncologia Medica 1, Istituto Oncologico Veneto, IRCCS Padova, Italy
| | | | - Sara Lonardi
- Oncologia Medica 1, Istituto Oncologico Veneto, IRCCS Padova, Italy
| | - Fotios Loupakis
- Oncologia Medica 1, Istituto Oncologico Veneto, IRCCS Padova, Italy
| |
Collapse
|
39
|
Basharat Z, Yasmin A. Energy landscape of a GSTP1 polymorph linked with cytological function decay in response to chemical stressors. Gene 2017; 609:19-27. [PMID: 28153749 DOI: 10.1016/j.gene.2017.01.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/20/2016] [Accepted: 01/27/2017] [Indexed: 12/19/2022]
Abstract
Gene polymorphisms lead to varied structure and functional properties. A single nucleotide polymorphism (SNP) i.e. Ile105Val (rs1695) in glutathione S-transferase P1 (GSTP1) gene influences cytological toxicity and modulates the risk to occupational diseases. Apart from this, cancer, neuropathy, NOx, SOx and ozone mediated respiratory function decline including lung inflammation, asthma, allergy etc., have been reported in people with this missense mutation. Here, the functional properties of rs1695 polymorph are revisited through a computational approach. Changes incurred by GSTP1 antioxidant protein as a result of alteration in its sequence, have been studied through docking followed by Poisson-Boltzmann electrostatic equation interpretation, grid and coulombic energy profile mapping for protein polymorphs with DelPhi. Molecular docking simulation of variant and wild type (WT) protein was carried out with eight FDA approved compounds that target GSTP1 for treatment of various diseases. This was to observe binding pattern variation upon mutation induction. Grid, reaction field and coulombic energy calculation of WT and mutated polymorph, complexed with and without these moieties was then attempted. Alteration in conformation and energy was observed in apo- and holo- form of GSTP1 and their ligand-bound complexes as a result of this mutation. This study is a demo of appraising gene-environment interaction based deleteriousness through molecular docking and dynamics simulation approach.
Collapse
Affiliation(s)
- Zarrin Basharat
- Microbiology & Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan.
| | - Azra Yasmin
- Microbiology & Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan
| |
Collapse
|
40
|
Arul M, Roslani AC, Cheah SH. Heterogeneity in cancer cells: variation in drug response in different primary and secondary colorectal cancer cell lines in vitro. In Vitro Cell Dev Biol Anim 2017; 53:435-447. [DOI: 10.1007/s11626-016-0126-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/20/2016] [Indexed: 12/27/2022]
|
41
|
Pangeni R, Choi SW, Jeon OC, Byun Y, Park JW. Multiple nanoemulsion system for an oral combinational delivery of oxaliplatin and 5-fluorouracil: preparation and in vivo evaluation. Int J Nanomedicine 2016; 11:6379-6399. [PMID: 27942212 PMCID: PMC5138023 DOI: 10.2147/ijn.s121114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Oxaliplatin (OXA) is a third-generation cisplatin analog that has been approved as first-line chemotherapy in combination with 5-fluorouracil (5-FU) for the treatment of resectable and advanced colorectal cancer. However, the therapeutic efficacy of oral OXA and 5-FU is limited by their low bioavailability due to poor membrane permeability. The aim of the present study was to develop an oral delivery system for OXA and 5-FU. We constructed an ion-pairing complex of OXA with a deoxycholic acid derivative (Nα-deoxycholyl-l-lysyl-methylester, DCK) (OXA/DCK) as a permeation enhancer. Next, we prepared multiple water-in-oil-in-water nanoemulsions incorporating OXA/DCK and 5-FU to enhance their oral absorption. To evaluate their membrane permeability, we assessed in vitro permeabilities of OXA/DCK and 5-FU through an artificial intestinal membrane and Caco-2 cell monolayer. Finally, oral bioavailability in rats and tumor growth inhibition in the colorectal adenocarcinoma cell (CT26)-bearing mouse model were investigated after oral administration of nanoemulsion containing OXA/DCK and 5-FU. The droplet size of the optimized nanoemulsion was 20.3±0.22 nm with a zeta potential of −4.65±1.68 mV. In vitro permeabilities of OXA/DCK and 5-FU from the nanoemulsion through a Caco-2 cell monolayer were 4.80- and 4.30-fold greater than those of OXA and 5-FU, respectively. The oral absorption of OXA/DCK and 5-FU from the nanoemulsion also increased significantly, and the resulting oral bioavailability values of OXA/DCK and 5-FU in the nanoemulsive system were 9.19- and 1.39-fold higher than those of free OXA and 5-FU, respectively. Furthermore, tumor growth in CT26 tumor-bearing mice given the oral OXA/DCK- and 5-FU-loaded nanoemulsion was maximally inhibited by 73.9%, 48.5%, and 38.1%, compared with tumor volumes in the control group and the oral OXA and 5-FU groups, respectively. These findings demonstrate the therapeutic potential of a nanoemulsion incorporating OXA/DCK and 5-FU as an oral combination therapy for colorectal cancer.
Collapse
Affiliation(s)
- Rudra Pangeni
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun
| | - Sang Won Choi
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun
| | - Ok-Cheol Jeon
- Pharosgen R&D Center, Asan Institute for Life Sciences
| | - Youngro Byun
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jin Woo Park
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun
| |
Collapse
|
42
|
Sorscher S. Are We Making Personalized Cancer Care Less Personalized? Front Oncol 2016; 6:220. [PMID: 27812510 PMCID: PMC5071359 DOI: 10.3389/fonc.2016.00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/05/2016] [Indexed: 11/16/2022] Open
|
43
|
Mlakar V, Huezo-Diaz Curtis P, Satyanarayana Uppugunduri CR, Krajinovic M, Ansari M. Pharmacogenomics in Pediatric Oncology: Review of Gene-Drug Associations for Clinical Use. Int J Mol Sci 2016; 17:ijms17091502. [PMID: 27618021 PMCID: PMC5037779 DOI: 10.3390/ijms17091502] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/02/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
During the 3rd congress of the European Society of Pharmacogenomics and Personalised Therapy (ESPT) in Budapest in 2015, a preliminary meeting was held aimed at establishing a pediatric individualized treatment in oncology and hematology committees. The main purpose was to facilitate the transfer and harmonization of pharmacogenetic testing from research into clinics, to bring together basic and translational research and to educate health professionals throughout Europe. The objective of this review was to provide the attendees of the meeting as well as the larger scientific community an insight into the compiled evidence regarding current pharmacogenomics knowledge in pediatric oncology. This preliminary evaluation will help steer the committee’s work and should give the reader an idea at which stage researchers and clinicians are, in terms of personalizing medicine for children with cancer. From the evidence presented here, future recommendations to achieve this goal will also be suggested.
Collapse
Affiliation(s)
- Vid Mlakar
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
| | - Patricia Huezo-Diaz Curtis
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
| | | | - Maja Krajinovic
- Charles-Bruneau Cancer Center, Centre hospitalier universitaire Sainte-Justine, 4515 Rue de Rouen, Montreal, QC H1V 1H1, Canada.
- Department of Pediatrics, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, QC H3T 1J4, Canada.
- Department of Pharmacology, Faculty of Medicine, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, QC H3T 1J4, Canada.
| | - Marc Ansari
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
- Pediatric Department, Onco-Hematology Unit, Geneva University Hospital, Rue Willy-Donzé 6, 1205 Geneva, Switzerland.
| |
Collapse
|
44
|
Postlewait LM, Ethun CG, Kooby DA, Sarmiento JM, Chen Z, Staley CA, Brutcher E, Adsay V, El-Rayes B, Maithel SK. Combination gemcitabine/cisplatin therapy and ERCC1 expression for resected pancreatic adenocarcinoma: Results of a Phase II prospective trial. J Surg Oncol 2016; 114:336-41. [PMID: 27501338 DOI: 10.1002/jso.24317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 05/21/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Standard adjuvant treatment for pancreatic adenocarcinoma (PDAC) is gemcitabine [Gem(CONKO-001: Gem vs. placebo DFS:13.4 vs. 6.7 mo; P < 0.001; OS:22.8 vs. 20.2 mo; P = 0.01)]. Addition of cisplatin (Cis) to Gem has resulted in increased PFS for advanced and metastatic disease, which may be predicted by low expression of excision repair cross-complementing group-1 (ERCC1), the key enzyme in nucleotide excision repair. This Phase II prospective trial assesses outcomes of patients treated with adjuvant Gem/Cis, stratifying results by tumor ERCC1 expression. METHODS Patients with resected PDAC were enrolled (2010-2013) and received Gem(1,000 mg/m(2) )/Cis(50 mg/m(2) ). Tumor ERCC1 expression was evaluated by immunohistochemistry and dichotomized into low or high expression. Primary outcomes were recurrence-free and overall survival (RFS/OS). RESULTS Of 22 pts, 16(73%) were Stage IIB, 5(23%) Stage IIA, and 1(4%) Stage IA. Grade 3/4 toxicity occurred in 13 pts (59%); neutropenia was most common (n = 9;41%). Median follow-up was 37.5 months. Median RFS was 16.7 mo; OS was 35.5 mo. Low ERCC1 (n = 15;75%) compared to high ERCC1 (n = 5;25%) was not associated with improved RFS (12.4 vs. 16.7 mo; P = 0.68) or OS (Median not reached vs. 21.6 mo; P = 0.22). CONCLUSIONS Adjuvant Gem/Cis is feasible in patients with resected pancreatic adenocarcinoma. RFS and OS for Gem/Cis appear promising compared to historic control. Tumor ERCC1 expression can be reliably evaluated, and low expression is present in most patients. J. Surg. Oncol. 2016;114:336-341. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lauren M Postlewait
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Cecilia G Ethun
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - David A Kooby
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Juan M Sarmiento
- Division of General Surgery, Department of Surgery, Emory University, Atlanta, Georgia
| | - Zhengjia Chen
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Charles A Staley
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Edith Brutcher
- Department of Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Volkan Adsay
- Department of Pathology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Bassel El-Rayes
- Department of Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Shishir K Maithel
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
45
|
Kap EJ, Popanda O, Chang-Claude J. Nucleotide excision repair and response and survival to chemotherapy in colorectal cancer patients. Pharmacogenomics 2016; 17:755-94. [DOI: 10.2217/pgs-2015-0017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Several new chemotherapeutic agents have become available for the treatment of colorectal cancer, which has led to increased complexity in treatment planning. Treatment decision making for individual patients could be facilitated if guided by predictive and prognostic markers. As most cytotoxic drugs induce DNA damage, the DNA damage repair pathways hold potential for yielding such biomarkers. Here, we review the current evidence of a possible involvement of the nucleotide excision repair pathway in the efficacy of chemotherapeutic agents used in the treatment of colorectal cancer. Although a large number of studies have been conducted, they are generally of moderate size and heterogeneous in design. Up to date no firm conclusions can be drawn to translate these results into the clinic. We recommend further comprehensive investigations of the nucleotide excision repair pathway in large patient studies that include both discovery and validation cohorts.
Collapse
Affiliation(s)
- Elisabeth J Kap
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Odilia Popanda
- Division of Epigenomics & Cancer Risk Factors, DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
46
|
Lin WR, Chiang JM, Liang KH, Lim SN, Lai MW, Tsou YK, Hsieh TY, Hsu CK, Yeh CT. GALNT14 Genotype Predicts Postoperative Outcome of Stage III Colorectal Cancer With Oxaliplatin as Adjuvant Chemotherapy. Medicine (Baltimore) 2016; 95:e3487. [PMID: 27124048 PMCID: PMC4998711 DOI: 10.1097/md.0000000000003487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adjuvant oxaliplatin-based chemotherapy is widely used for stage III colorectal cancer (CRC) after curative surgery. CRC is a molecularly heterogeneous disease, and our current knowledge of therapeutic response-related genetic factors remains limited. N-acetylgalactosaminyltransferase 14 (GALNT14)-rs9679162 genotype is a prognostic predictor for chemotherapy response in advanced hepatocellular carcinoma. Here, we investigated whether this genotype was related to the therapeutic outcome of stage III CRC.A cohort of 300 stage III CRC patients receiving curative resection followed by oxaliplatin-based chemotherapy was retrospectively recruited. GALNT14 genotypes and the clinicopathological factors were correlated with posttherapeutic prognosis.Of these patients, 18% patients had GALNT14-rs9679162 "TT" and 82% had the "GT" + "GG" genotypes. The analysis showed that the "TT" genotype was associated with unfavorable overall survival (OS, P = 0.009) but not with recurrence-free survival (RFS, P = 0.700). The subgroup analysis showed that the "TT" genotype was associated with unfavorable OS in the following subgroups: age ≤65 years, men, left side CRC, N2 stage, carcinoembryonic antigen >5 ng/mL, and mucinous histology (P = 0.012, 0.011, 0.009, 0.025, 0.013, and 0.007, respectively). Within the latter 2 subgroups, the "TT" genotype was the only independent predictor for OS. Finally, the "TT" genotype was associated with the T4 tumor stage (P = 0.017) and in patients with T4 tumors, the "TT" genotype was the only independent predictor for unfavorable RFS (P = 0.007).GALNT14 "TT" genotype was associated with unfavorable OS in stage III CRC patients receiving curative surgery and adjuvant oxaliplatin-based chemotherapy.
Collapse
Affiliation(s)
- Wey-Ran Lin
- From the Department of Gastroenterology and Hepatology (W-RL, Y-KT, C-TY); Liver Research Center (W-RL, K-HL, M-WL, Y-KT, C-TY), Linkou Chang Gung Memorial Hospital; Chang Gung University College of Medicine (W-RL, J-MC, S-NL, M-WL, Y-KT, T-YH, C-KH, C-TY); Department of Colorectal Surgery (J-MC); Department of Neurology (S-NL), Linkou Chang Gung Memorial Hospital; and Department of Pediatrics (M-WL), Chang Gung Children's Hospital, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Semrad TJ, Kim EJ. Molecular testing to optimize therapeutic decision making in advanced colorectal cancer. J Gastrointest Oncol 2016; 7:S11-20. [PMID: 27034809 DOI: 10.3978/j.issn.2078-6891.2015.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death in the United States. In recent years, therapeutic advances have prolonged the survival of patients with advanced disease. Along with the addition of new treatments, an increasing body of literature explores the potential benefit of using molecular testing to define tumor, circulating, or host biomarkers of benefit to specific treatment strategies. At present, testing for specific mutations in exons 2, 3, and 4 of KRAS and NRAS has become accepted practice to select patients for treatment with epidermal growth factor receptor (EGFR)-targeted agents. Additionally, testing for the BRAF V600E mutation is used to refine decisions based on patient prognosis. The presence of the uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) *28 polymorphism is associated with toxicity from irinotecan, although it has not been universally applied. Nonetheless, molecular markers to predict response and toxicity of cytotoxic therapy are evolving. While the development of selection biomarkers for anti-angiogenic treatments has not proved fruitful to date, improved development strategies and novel targeted agents are anticipated to revolutionize the approach to treatment of advanced CRC in the near future. This review summarizes currently available data to select treatment strategies in patients with advanced CRC.
Collapse
Affiliation(s)
- Thomas J Semrad
- 1 Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, California, USA ; 2 Veterans Administration Northern California Healthcare System, Mather, California, USA
| | - Edward J Kim
- 1 Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, California, USA ; 2 Veterans Administration Northern California Healthcare System, Mather, California, USA
| |
Collapse
|
48
|
Kap EJ, Seibold P, Scherer D, Habermann N, Balavarca Y, Jansen L, Zucknick M, Becker N, Hoffmeister M, Ulrich A, Benner A, Ulrich CM, Burwinkel B, Brenner H, Chang-Claude J. SNPs in transporter and metabolizing genes as predictive markers for oxaliplatin treatment in colorectal cancer patients. Int J Cancer 2016; 138:2993-3001. [PMID: 26835885 DOI: 10.1002/ijc.30026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 01/15/2023]
Abstract
Oxaliplatin is frequently used as part of a chemotherapeutic regimen with 5-fluorouracil in the treatment of colorectal cancer (CRC). The cellular availability of oxaliplatin is dependent on metabolic and transporter enzymes. Variants in genes encoding these enzymes may cause variation in response to oxaliplatin and could be potential predictive markers. Therefore, we used a two-step procedure to comprehensively investigate 1,444 single nucleotide polymorphisms (SNPs) from these pathways for their potential as predictive markers for oxaliplatin treatment, using 623 stage II-IV CRC patients (of whom 201 patients received oxaliplatin) from a German prospective patient cohort treated with adjuvant or palliative chemotherapy. First, all genes were screened using the global test that evaluated SNP*oxaliplatin interaction terms per gene. Second, one model was created by backward elimination on all SNP*oxaliplatin interactions of the selected genes. The statistical procedure was evaluated using bootstrap analyses. Nine genes differentially associated with overall survival according to oxaliplatin treatment (unadjusted p values < 0.05) were selected. Model selection resulted in the inclusion of 14 SNPs from eight genes (six transporter genes, ABCA9, ABCB11, ABCC10, ATP1A1, ATP1B2, ATP8B3, and two metabolism genes GSTM5, GRHPR), which significantly improved model fit. Using bootstrap analysis we show an improvement of the prediction error of 3.7% in patients treated with oxaliplatin. Several variants in genes involved in metabolism and transport could thus be potential predictive markers for oxaliplatin treatment in CRC patients. If confirmed, inclusion of these variants in a predictive test could identify patients who are more likely to benefit from treatment with oxaliplatin.
Collapse
Affiliation(s)
- Elisabeth J Kap
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominique Scherer
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and DKFZ, Heidelberg, Germany
| | - Nina Habermann
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and DKFZ, Heidelberg, Germany
| | - Yesilda Balavarca
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and DKFZ, Heidelberg, Germany
| | - Lina Jansen
- Division of Clinical Epidemiology and Aging Research, DKFZ, Heidelberg, Germany
| | - Manuela Zucknick
- Division of Biostatistics, DKFZ, Heidelberg, Germany.,Oslo Center for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, DKFZ, Heidelberg, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, DKFZ, Heidelberg, Germany
| | - Cornelia M Ulrich
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and DKFZ, Heidelberg, Germany.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Barbara Burwinkel
- Division of Molecular Epidemiology, DKFZ, Heidelberg, Germany.,Division of Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, DKFZ, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
49
|
Zhao T, Gu D, Xu Z, Huo X, Shen L, Wang C, Tang Y, Wu P, He J, Gong W, He ML, Chen J. Polymorphism in one-carbon metabolism pathway affects survival of gastric cancer patients: Large and comprehensive study. Oncotarget 2016; 6:9564-76. [PMID: 25840420 PMCID: PMC4496239 DOI: 10.18632/oncotarget.3259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 01/31/2015] [Indexed: 01/26/2023] Open
Abstract
Although it has been shown that polymorphisms in one-carbon metabolism (OCM) pathway are associated with gastric cancer (GC), their interactions and contributions for patients' survival are elusive. In this study, we investigated the effects of polymorphisms and their interactions on the survival of GC patients, including genes of Methylenetetrahydrofolate reductase (MTHFR 677C > T, 1298A > C), Methionine synthase reductase (MTRR 66A > G), Methionine synthase (MTR 2756A > G), and Thymidylate synthase (TS 3'-UTR ins6 > del6, 5'-UTR 2R > 3R). We recruited 919 GC patients from 1998 to 2006. The Kaplan-Meier plots, Cox regression analyses and the log-rank tests were carried out in this study. MTHFR 1298CC genotype showed protective effect (HR = 0.444, 95% CI = 0.210-0.940). MTRR 66 GA + GG genotypes decreased the risk of death (HR = 0.793, 95% CI = 0.651-0.967) in general, and in subgroups with more pronounced diffuse type, greater depth of invasion (T2/T3/T4), higher level lymph node metastasis (N1/N2/N3), advanced TNM stages (II/III level) and 5-Fu treatment. However, the improved survival disappeared when GC patients simultaneously had MTR 2756 GA + GG genotypes (HR = 1.063, 95% CI = 0.750-1.507). Although MTRR 66GA genotype was not associated with the survival of GC patients, patients with simultaneous MTRR 66GA and MTR 2756AA genotypes exhibited significant risk reduction of death (HR = 0.773, 95% CI = 0.609-0.981). MTHFR 1298 CA + CC combined with TS 5-UTR 2R3R + 3R3R genotypes (HR = 0.536, 95% CI = 0.315-0.913) also increased patient survival rates. Our results suggest that the MTRR 66A > G and MTHFR 1298A > C polymorphisms may be useful prognostic biomarkers for GC patients.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Stanley Ho Center for Emerging Infectious Diseases, and Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhi Xu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xinying Huo
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lili Shen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chun Wang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yongfei Tang
- Department of Surgery, Yixing People's Hospital, Yixing, China
| | - Peng Wu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jason He
- College of Letters and Science, University of California at Berkeley, CA, USA
| | - Weida Gong
- Department of Surgery, Yixing Cancer Hospital, Yixing, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jinfei Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
50
|
Glutathione S-transferase M1 null genotype related to poor prognosis of colorectal cancer. Tumour Biol 2016; 37:10229-34. [DOI: 10.1007/s13277-015-4676-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/16/2015] [Indexed: 12/11/2022] Open
|