1
|
Iglesia MD, Jayasinghe RG, Chen S, Terekhanova NV, Herndon JM, Storrs E, Karpova A, Zhou DC, Naser Al Deen N, Shinkle AT, Lu RJH, Caravan W, Houston A, Zhao Y, Sato K, Lal P, Street C, Martins Rodrigues F, Southard-Smith AN, Targino da Costa ALN, Zhu H, Mo CK, Crowson L, Fulton RS, Wyczalkowski MA, Fronick CC, Fulton LA, Sun H, Davies SR, Appelbaum EL, Chasnoff SE, Carmody M, Brooks C, Liu R, Wendl MC, Oh C, Bender D, Cruchaga C, Harari O, Bredemeyer A, Lavine K, Bose R, Margenthaler J, Held JM, Achilefu S, Ademuyiwa F, Aft R, Ma C, Colditz GA, Ju T, Oh ST, Fitzpatrick J, Hwang ES, Shoghi KI, Chheda MG, Veis DJ, Chen F, Fields RC, Gillanders WE, Ding L. Differential chromatin accessibility and transcriptional dynamics define breast cancer subtypes and their lineages. NATURE CANCER 2024:10.1038/s43018-024-00773-6. [PMID: 39478117 DOI: 10.1038/s43018-024-00773-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/24/2024] [Indexed: 11/06/2024]
Abstract
Breast cancer (BC) is defined by distinct molecular subtypes with different cells of origin. The transcriptional networks that characterize the subtype-specific tumor-normal lineages are not established. In this work, we applied bulk, single-cell and single-nucleus multi-omic techniques as well as spatial transcriptomics and multiplex imaging on 61 samples from 37 patients with BC to show characteristic links in gene expression and chromatin accessibility between BC subtypes and their putative cells of origin. Regulatory network analysis of transcription factors underscored the importance of BHLHE40 in luminal BC and luminal mature cells and KLF5 in basal-like tumors and luminal progenitor cells. Furthermore, we identify key genes defining the basal-like (SOX6 and KCNQ3) and luminal A/B (FAM155A and LRP1B) lineages. Exhausted CTLA4-expressing CD8+ T cells were enriched in basal-like BC, suggesting an altered means of immune dysfunction. These findings demonstrate analysis of paired transcription and chromatin accessibility at the single-cell level is a powerful tool for investigating cancer lineage and highlight transcriptional networks that define basal and luminal BC lineages.
Collapse
Affiliation(s)
- Michael D Iglesia
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Reyka G Jayasinghe
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Nadezhda V Terekhanova
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - John M Herndon
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Erik Storrs
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Alla Karpova
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Daniel Cui Zhou
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Nataly Naser Al Deen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew T Shinkle
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Rita Jui-Hsien Lu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Wagma Caravan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew Houston
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Yanyan Zhao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Kazuhito Sato
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Preet Lal
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Cherease Street
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Fernanda Martins Rodrigues
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Austin N Southard-Smith
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - André Luiz N Targino da Costa
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Houxiang Zhu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Chia-Kuei Mo
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Lisa Crowson
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Robert S Fulton
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Catrina C Fronick
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Lucinda A Fulton
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Hua Sun
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Sherri R Davies
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Sara E Chasnoff
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Madelyn Carmody
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Candace Brooks
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Ruiyang Liu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael C Wendl
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mathematics, Washington University in St. Louis, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Clara Oh
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Diane Bender
- Bursky Center for Human Immunology & Immunotherapy, Washington University in St. Louis, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrea Bredemeyer
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Kory Lavine
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ron Bose
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Julie Margenthaler
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Jason M Held
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Samuel Achilefu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Foluso Ademuyiwa
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Rebecca Aft
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
- John Cochran Veterans Hospital, St. Louis, MO, USA
| | - Cynthia Ma
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Graham A Colditz
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Tao Ju
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Stephen T Oh
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - James Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University in St. Louis, St. Louis, MO, USA
- Departments of Neuroscience and Cell Biology & Physiology, Washington University in St. Louis, St. Louis, MO, USA
| | - E Shelley Hwang
- Department of Surgery, Duke University Medical Center, Durham, NC, England
| | - Kooresh I Shoghi
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Milan G Chheda
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Deborah J Veis
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryan C Fields
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - William E Gillanders
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
2
|
Iglesia MD, Jayasinghe RG, Chen S, Terekhanova NV, Herndon JM, Storrs E, Karpova A, Zhou DC, Al Deen NN, Shinkle AT, Lu RJH, Caravan W, Houston A, Zhao Y, Sato K, Lal P, Street C, Rodrigues FM, Southard-Smith AN, Targino da Costa ALN, Zhu H, Mo CK, Crowson L, Fulton RS, Wyczalkowski MA, Fronick CC, Fulton LA, Sun H, Davies SR, Appelbaum EL, Chasnoff SE, Carmody M, Brooks C, Liu R, Wendl MC, Oh C, Bender D, Cruchaga C, Harari O, Bredemeyer A, Lavine K, Bose R, Margenthaler J, Held JM, Achilefu S, Ademuyiwa F, Aft R, Ma C, Colditz GA, Ju T, Oh ST, Fitzpatrick J, Hwang ES, Shoghi KI, Chheda MG, Veis DJ, Chen F, Fields RC, Gillanders WE, Ding L. Differential chromatin accessibility and transcriptional dynamics define breast cancer subtypes and their lineages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.565031. [PMID: 37961519 PMCID: PMC10634973 DOI: 10.1101/2023.10.31.565031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Breast cancer is a heterogeneous disease, and treatment is guided by biomarker profiles representing distinct molecular subtypes. Breast cancer arises from the breast ductal epithelium, and experimental data suggests breast cancer subtypes have different cells of origin within that lineage. The precise cells of origin for each subtype and the transcriptional networks that characterize these tumor-normal lineages are not established. In this work, we applied bulk, single-cell (sc), and single-nucleus (sn) multi-omic techniques as well as spatial transcriptomics and multiplex imaging on 61 samples from 37 breast cancer patients to show characteristic links in gene expression and chromatin accessibility between breast cancer subtypes and their putative cells of origin. We applied the PAM50 subtyping algorithm in tandem with bulk RNA-seq and snRNA-seq to reliably subtype even low-purity tumor samples and confirm promoter accessibility using snATAC. Trajectory analysis of chromatin accessibility and differentially accessible motifs clearly connected progenitor populations with breast cancer subtypes supporting the cell of origin for basal-like and luminal A and B tumors. Regulatory network analysis of transcription factors underscored the importance of BHLHE40 in luminal breast cancer and luminal mature cells, and KLF5 in basal-like tumors and luminal progenitor cells. Furthermore, we identify key genes defining the basal-like ( PRKCA , SOX6 , RGS6 , KCNQ3 ) and luminal A/B ( FAM155A , LRP1B ) lineages, with expression in both precursor and cancer cells and further upregulation in tumors. Exhausted CTLA4-expressing CD8+ T cells were enriched in basal-like breast cancer, suggesting altered means of immune dysfunction among breast cancer subtypes. We used spatial transcriptomics and multiplex imaging to provide spatial detail for key markers of benign and malignant cell types and immune cell colocation. These findings demonstrate analysis of paired transcription and chromatin accessibility at the single cell level is a powerful tool for investigating breast cancer lineage development and highlight transcriptional networks that define basal and luminal breast cancer lineages.
Collapse
|
3
|
Huang R, Wang H, Hong J, Wang Z, Wu J, Huang O, He J, Chen W, Li Y, Chen X, Shen K. A senescence-associated signature refines the classification of different modification patterns and characterization of tumor immune microenvironment infiltration in triple-negative breast cancer. Front Pharmacol 2023; 14:1191910. [PMID: 37251343 PMCID: PMC10213971 DOI: 10.3389/fphar.2023.1191910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Background: Recent studies have found that senescence-associated genes play a significant role in cancer biological processes. We aimed to analyze the characteristics and role of senescence-associated genes in triple-negative breast cancer (TNBC). Methods: We systematically screened senescence-associated secretory phenotype (SASP) genes based on the gene expression information in the TCGA database. According to the expression levels of senescence-associated genes, TNBC was classified into two subtypes, namely, TNBCSASP1 and TNBCSASP2, using an unsupervised cluster algorithm. We then performed gene expression, enrichment pathway, immune infiltration, mutational profile characterization, drug sensitivity and prognostic value analyses for the two subtypes. The reliability and prognostic predictive utility of this classification model were validated. The most prognostically relevant gene, FAM3B, was comprehensively identified and validated by tissue microarray in TNBC. Results: TNBC was classified into two senescence-associated subtypes, TNBCSASP1 and TNBCSASP2, based on the set of senescence-associated secretory phenotype genes, among which the TNBCSASP1 subtype had a poor prognosis. The TNBCSASP1 subtype was immunosuppressed, with suppressed immune-related signaling pathways and low immune cell infiltration. The effect of the mutation on the TP53 and TGF-β pathways could be related to the poor prognosis of the TNBCSASP1 subtype. Drug sensitivity analysis showed that AMG.706, CCT007093, and CHIR.99021 were potential targeted drugs for the TNBCSASP1 subtype. Finally, FAM3B was a key biomarker affecting the prognosis of patients with triple-negative breast cancer. Compared to normal breast tissue, the expression of FAM3B was reduced in triple-negative breast cancer. Survival analysis showed that overall survival was significantly shorter in triple-negative breast cancer patients with high FAM3B expression. Conclusion: A senescence-associated signature with different modification patterns has critical potential for providing a better understanding of TNBC biological processes, and FAM3B might serve as an applicable target for TNBC therapy.
Collapse
Affiliation(s)
| | | | | | - Zheng Wang
- *Correspondence: Zheng Wang, ; Xiaosong Chen, ; Kunwei Shen,
| | | | | | | | | | | | - Xiaosong Chen
- *Correspondence: Zheng Wang, ; Xiaosong Chen, ; Kunwei Shen,
| | - Kunwei Shen
- *Correspondence: Zheng Wang, ; Xiaosong Chen, ; Kunwei Shen,
| |
Collapse
|
4
|
Yin Y, Xin Y, Zhang F, An D, Fan H, Qin M, Xia J, Xi T, Xiong J. Overcoming ABCB1-mediated multidrug resistance by transcription factor BHLHE40. Neoplasia 2023; 39:100891. [PMID: 36931039 PMCID: PMC10025992 DOI: 10.1016/j.neo.2023.100891] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/17/2023]
Abstract
Multidrug resistance (MDR) hinders treatment efficacy in cancer therapy. One typical mechanism contributing to MDR is the overexpression of permeability-glycoprotein (P-gp) encoded by ATP-binding cassette subfamily B member 1 (ABCB1). Basic helix-loop-helix family member e40 (BHLHE40) is a well-known transcription factor that has pleiotropic effects including the regulation of cancer-related processes. However, whether BHLHE40 regulates MDR is still unknown. Chromatin immunoprecipitation-seq study revealed BHLHE40 occupancy in the promoter of ABCB1 gene. Adriamycin (ADM)-resistant human chronic myeloid leukemia cells (K562/A) and human breast cancer cells (MCF-7/A) were established. BHLHE40 expression was downregulated in the ADM-resistant cell lines. Overexpression of BHLHE40 resensitized resistant cells to ADM, promoted cell apoptosis in vitro and suppressed tumor growth in vivo, whereas BHLHE40 knockdown induced resistance to ADM in parental cells. Moreover, we found that BHLHE40 regulated drug resistance by directly binding to the ABCB1 promoter (-1605 to -1597) and inactivating its transcription. In consistence, the expression of BHLHE40 was negatively correlated with ABCB1 in various cancer cells, while positively with cancer cell chemosensitivity and better prognosis of patients with breast cancer. The study reveals the role of BHLHE40 as a transcriptional suppressor on the expression of ABCB1, major ABC transporter in chemoresistance. The findings extend the function of BHLHE40 in tumor progression and provides a novel mechanism for the reversal of multidrug resistance.
Collapse
Affiliation(s)
- Yongmei Yin
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China; Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yu Xin
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Donghao An
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Hui Fan
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Mengyao Qin
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Jinxin Xia
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Tao Xi
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Jing Xiong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
5
|
Wang CY, Qiu ZJ, Zhang P, Tang XQ. Differentiated Embryo-Chondrocyte Expressed Gene1 and Parkinson's Disease: New Insights and Therapeutic Perspectives. Curr Neuropharmacol 2023; 21:2251-2265. [PMID: 37132111 PMCID: PMC10556388 DOI: 10.2174/1570159x21666230502123729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/05/2022] [Accepted: 10/09/2022] [Indexed: 05/04/2023] Open
Abstract
Differentiated embryo-chondrocyte expressed gene1 (DEC1), an important transcription factor with a basic helix-loop-helix domain, is ubiquitously expressed in both human embryonic and adult tissues. DEC1 is involved in neural differentiation and neural maturation in the central nervous system (CNS). Recent studies suggest that DEC1 protects against Parkinson's disease (PD) by regulating apoptosis, oxidative stress, lipid metabolism, immune system, and glucose metabolism disorders. In this review, we summarize the recent progress on the role of DEC1 in the pathogenesis of PD and provide new insights into the prevention and treatment of PD and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chun-Yan Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Zheng-Jie Qiu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Ping Zhang
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Qing Tang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
6
|
Li X, Zhang X, Hou X, Bing X, Zhu F, Wu X, Guo N, Zhao H, Xu F, Xia M. Obstructive sleep apnea-increased DEC1 regulates systemic inflammation and oxidative stress that promotes development of pulmonary arterial hypertension. Apoptosis 2022; 28:432-446. [PMID: 36484960 DOI: 10.1007/s10495-022-01797-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
Obstructive sleep apnea (OSA), characterized by chronic intermittent hypoxia (CIH), is a common risk factor for pulmonary arterial hypertension (PAH). As a hypoxia-induced transcription factor, differentially expressed in chondrocytes (DEC1) negatively regulates the transcription of peroxisome proliferative activated receptor-γ (PPARγ), a recognized protective factor of PAH. However, whether and how DEC1 is associated with PAH pathogenesis remains unclear. In the present study, we found that DEC1 was increased in lungs and pulmonary arterial smooth muscle cells (PASMCs) of rat models of OSA-associated PAH. Oxidative indicators and inflammatory cytokines were also elevated in the blood of the rats. Similarly, hypoxia-treated PASMCs displayed enhanced DEC1 expression and reduced PPARγ expression in vitro. Functionally, DEC1 overexpression exacerbated reactive oxygen species (ROS) production and the expression of pro-inflammatory cytokines (such as TNFα, IL-1β, IL-6, and MCP-1) in PASMCs. Conversely, shRNA knockdown of Dec1 increased PPARγ expression but attenuated hypoxia-induced oxidative stress and inflammatory responses in PASMCs. Additionally, DEC1 overexpression promoted PASMC proliferation, which was drastically attenuated by a PPARγ agonist rosiglitazone. Collectively, these results suggest that hypoxia-induced DEC1 inhibits PPARγ, and that this is a predominant mechanism underpinning oxidative stress and inflammatory responses in PASMCs during PAH. DEC1 could be used as a potential target to treat PAH.
Collapse
Affiliation(s)
- Xiaoming Li
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiang Zhang
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaozhi Hou
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Xin Bing
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Fangyuan Zhu
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Xinhao Wu
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Na Guo
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Hui Zhao
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Fenglei Xu
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China.
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China.
| |
Collapse
|
7
|
Malik S, Stokes Iii J, Manne U, Singh R, Mishra MK. Understanding the significance of biological clock and its impact on cancer incidence. Cancer Lett 2022; 527:80-94. [PMID: 34906624 PMCID: PMC8816870 DOI: 10.1016/j.canlet.2021.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
The circadian clock is an essential timekeeper that controls, for humans, the daily rhythm of biochemical, physiological, and behavioral functions. Irregular performance or disruption in circadian rhythms results in various diseases, including cancer. As a factor in cancer development, perturbations in circadian rhythms can affect circadian homeostasis in energy balance, lead to alterations in the cell cycle, and cause dysregulation of chromatin remodeling. However, knowledge gaps remain in our understanding of the relationship between the circadian clock and cancer. Therefore, a mechanistic understanding by which circadian disruption enhances cancer risk is needed. This review article outlines the importance of the circadian clock in tumorigenesis and summarizes underlying mechanisms in the clock and its carcinogenic mechanisms, highlighting advances in chronotherapy for cancer treatment.
Collapse
Affiliation(s)
- Shalie Malik
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA; Department of Zoology and Dr. Giri Lal Gupta Institute of Public Health and Public Affairs, University of Lucknow, Lucknow, UP, India
| | - James Stokes Iii
- Department of Biological and Environmental Sciences, Auburn University, Montgomery, AL, USA
| | - Upender Manne
- Departments of Pathology, Surgery and Epidemiology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA.
| |
Collapse
|
8
|
Zhao N, Zhang Y, Cheng R, Zhang D, Li F, Guo Y, Qiu Z, Dong X, Ban X, Sun B, Zhao X. Spatial maps of hepatocellular carcinoma transcriptomes highlight an unexplored landscape of heterogeneity and a novel gene signature for survival. Cancer Cell Int 2022; 22:57. [PMID: 35109839 PMCID: PMC8812006 DOI: 10.1186/s12935-021-02430-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/24/2021] [Indexed: 01/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) often presents with satellite nodules, rendering current curative treatments ineffective in many patients. The heterogeneity of HCC is a major challenge in personalized medicine. The emergence of spatial transcriptomics (ST) provides a powerful strategy for delineating the complex molecular landscapes of tumours. Methods In this study, the heterogeneity of tissue-wide gene expression in tumour and adjacent nonneoplastic tissues using ST technology were investigated. The transcriptomes of nearly 10,820 tissue regions and identified the main gene expression clusters and their specific marker genes (differentially expressed genes, DEGs) in patients were analysed. The DEGs were analysed from two perspectives. First, two distinct gene profiles were identified to be associated with satellite nodules and conducted a more comprehensive analysis of both gene profiles. Their clinical relevance in human HCC was validated with Kaplan–Meier (KM) Plotter. Second, DEGs were screened with The Cancer Genome Atlas (TCGA) database to divide the HCC cohort into high- and low-risk groups according to Cox analysis. HCC patients from the International Cancer Genome Consortium (ICGC) cohort were used for validation. KM analysis was used to compare the overall survival (OS) between the high- and low-risk groups. Univariate and multivariate Cox analyses were applied to determine the independent predictors for OS. Results Novel markers for the prediction of satellite nodules were identified and a tumour clusters-specific marker gene signature model (6 genes) for HCC prognosis was constructed. Conclusion The establishment of marker gene profiles may be an important step towards an unbiased view of HCC, and the 6-gene signature can be used for prognostic prediction in HCC. This analysis will help us to clarify one of the possible sources of HCC heterogeneity and uncover pathogenic mechanisms and novel antitumour drug targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02430-9.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Yanhui Zhang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Runfen Cheng
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Fan Li
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Yuhong Guo
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Zhiqiang Qiu
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Xinchao Ban
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China. .,Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China. .,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China.
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China. .,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
9
|
Cui W, Xiao Y, Zhang R, Zhao N, Zhang X, Wang F, Liu Y, Zhang X, Hao J. SOHLH2 Suppresses Angiogenesis by Downregulating HIF1α Expression in Breast Cancer. Mol Cancer Res 2021; 19:1498-1509. [PMID: 34158392 DOI: 10.1158/1541-7786.mcr-20-0771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/21/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022]
Abstract
SOHLH2 has been demonstrated the downregulation in various cancers and the involvement in tumor growth and metastasis. However, the function of SOHLH2 on tumor angiogenesis and the underlying molecular mechanisms have not been interrogated. IHC staining results revealed that SOHLH2 was negatively associated with microvessel density (MVD), tumor size, histology grade, and metastasis. Overexpression of SOHLH2 inhibited the angiogenic behavior of human umbilical vein endothelial cells (HUVEC) by a tumor cell-mediated paracrine signal, while knockdown of SOHLH2 promoted HUVEC angiogenic behavior. Ectopic SOHLH2 expression remarkably suppressed tumor growth and MVD in xenograft tumors, downregulated the expression of hypoxia inducible factor-1 alpha (HIF1α)-mediated proangiogenic genes in vivo and in vitro, while knockdown of SOHLH2 had an opposite result. Furthermore, we found that upregulation of HIF1α reversed SOHLH2-induced suppression of breast cancer angiogenesis, while KC7F2, the inhibitor of HIF1α, could attenuate the promotion of angiogenesis by SOHLH2 silencing. Using Chromatin immunoprecipitation and luciferase reporter assays, we validated that SOHLH2 could directly bind to HIF1α promoter and repress its transcriptional activity. Collectively, SOHLH2 suppresses breast cancer angiogenesis by downregulating HIF1α transcription and may be a potential biomarker for anti-angiogenesis therapy. IMPLICATIONS: SOHLH2 directly represses HIF1α-mediated angiogenesis and serves as an important inhibitor of angiogenesis in breast cancer.
Collapse
Affiliation(s)
- Weiwei Cui
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Yunling Xiao
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Ruihong Zhang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Na Zhao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Xianghong Zhang
- Research platform in School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Fuwu Wang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Yang Liu
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Xiaoli Zhang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China.
| | - Jing Hao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China.
| |
Collapse
|
10
|
Maleki P, Mowla SJ, Taheri M, Ghafouri-Fard S, Raheb J. The role of long intergenic non-coding RNA for kinase activation (LINK-A) as an oncogene in non-small cell lung carcinoma. Sci Rep 2021; 11:4210. [PMID: 33602983 PMCID: PMC7892821 DOI: 10.1038/s41598-021-82892-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 01/20/2021] [Indexed: 12/24/2022] Open
Abstract
The oncogenic role of long intergenic non-coding RNA for kinase activation (LINK-A) has been appraised in triple-negative breast cancer. However, the molecular function of LINK-A is still unclear in most cancers including lung cancer. The present study aimed to evaluate the impact of down-regulation of LINK-A in A549 and Calu-3 cell lines as cellular models of non-small cell lung carcinoma (NSCLC). We used the RNA interference system to knock down LINK-A. LINK-A expression was significantly reduced by siRNA transfection in A549 and Calu-3 cell lines. LINK-A down-regulation significantly reduced cell viability, colony-forming ability and cell migration, as measured by MTT, colony formation and invasion assays. Finally, cell cycle analysis and Annexin-V/7AAD staining indicated that apoptosis was influenced by LINK-A silencing. Taken together, LINK-A can be proposed as an oncogene in NSCLC.
Collapse
Affiliation(s)
- Parichehr Maleki
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamshid Raheb
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
11
|
Cirkovic A, Garovic V, Milin Lazovic J, Milicevic O, Savic M, Rajovic N, Aleksic N, Weissgerber T, Stefanovic A, Stanisavljevic D, Milic N. Systematic review supports the role of DNA methylation in the pathophysiology of preeclampsia: a call for analytical and methodological standardization. Biol Sex Differ 2020; 11:36. [PMID: 32631423 PMCID: PMC7336649 DOI: 10.1186/s13293-020-00313-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Studies have recently examined the role of epigenetic mechanisms in preeclampsia pathophysiology. One commonly examined epigenetic process is DNA methylation. This heritable epigenetic marker is involved in many important cellular functions. The aim of this study was to establish the association between DNA methylation and preeclampsia and to critically appraise the roles of major study characteristics that can significantly impact the association between DNA methylation and preeclampsia. MAIN BODY A systematic review was performed by searching PubMed, Web of Science, and EMBASE for original research articles published over time, until May 31, 2019 in English. Eligible studies compared DNA methylation levels in pregnant women with vs. without preeclampsia. Ninety articles were included. Epigenome-wide studies identified hundreds of differentially methylated places/regions in preeclamptic patients. Hypomethylation was the predominant finding in studies analyzing placental tissue (14/19), while hypermethylation was detected in three studies that analyzed maternal white blood cells (3/3). In candidate gene studies, methylation alterations for a number of genes were found to be associated with preeclampsia. A greater number of differentially methylated genes was found when analyzing more severe preeclampsia (70/82), compared to studies analyzing less severe preeclampsia vs. controls (13/27). A high degree of heterogeneity existed among the studies in terms of methodological study characteristics including design (study design, definition of preeclampsia, control group, sample size, confounders), implementation (biological sample, DNA methylation method, purification of DNA extraction, and validation of methylation), analysis (analytical method, batch effect, genotyping, and gene expression), and data presentation (methylation quantification measure, measure of variability, reporting). Based on the results of this review, we provide recommendations for study design and analytical approach for further studies. CONCLUSIONS The findings from this review support the role of DNA methylation in the pathophysiology of preeclampsia. Establishing field-wide methodological and analytical standards may increase value and reduce waste, allowing researchers to gain additional insights into the role of DNA methylation in the pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- A Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - V Garovic
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - J Milin Lazovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - O Milicevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - M Savic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - N Rajovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - N Aleksic
- Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - T Weissgerber
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Charité - Universitätsmedizin Berlin, Berlin Institute of Health, QUEST Center, Berlin, Germany
| | - A Stefanovic
- Clinic for Gynecology and Obstetrics, Clinical Centre of Serbia, Belgrade, Serbia
| | - D Stanisavljevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - N Milic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia. .,Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
12
|
Saygin D, Tabib T, Bittar HET, Valenzi E, Sembrat J, Chan SY, Rojas M, Lafyatis R. Transcriptional profiling of lung cell populations in idiopathic pulmonary arterial hypertension. Pulm Circ 2020; 10:10.1177_2045894020908782. [PMID: 32166015 PMCID: PMC7052475 DOI: 10.1177/2045894020908782] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Despite recent improvements in management of idiopathic pulmonary arterial
hypertension, mortality remains high. Understanding the alterations in the
transcriptome–phenotype of the key lung cells involved could provide insight
into the drivers of pathogenesis. In this study, we examined differential gene
expression of cell types implicated in idiopathic pulmonary arterial
hypertension from lung explants of patients with idiopathic pulmonary arterial
hypertension compared to control lungs. After tissue digestion, we analyzed all
cells from three idiopathic pulmonary arterial hypertension and six control
lungs using droplet-based single cell RNA-sequencing. After dimensional
reduction by t-stochastic neighbor embedding, we compared the transcriptomes of
endothelial cells, pericyte/smooth muscle cells, fibroblasts, and macrophage
clusters, examining differential gene expression and pathways implicated by
analysis of Gene Ontology Enrichment. We found that endothelial cells and
pericyte/smooth muscle cells had the most differentially expressed gene profile
compared to other cell types. Top differentially upregulated genes in
endothelial cells included novel genes: ROBO4, APCDD1, NDST1, MMRN2,
NOTCH4, and DOCK6, as well as previously reported
genes: ENG, ORAI2, TFDP1, KDR, AMOTL2, PDGFB, FGFR1, EDN1, and
NOTCH1. Several transcription factors were also found to be
upregulated in idiopathic pulmonary arterial hypertension endothelial cells
including SOX18, STRA13, LYL1, and ELK, which
have known roles in regulating endothelial cell phenotype. In particular,
SOX18 was implicated through bioinformatics analyses in
regulating the idiopathic pulmonary arterial hypertension endothelial cell
transcriptome. Furthermore, idiopathic pulmonary arterial hypertension
endothelial cells upregulated expression of FAM60A and
HDAC7, potentially affecting epigenetic changes in
idiopathic pulmonary arterial hypertension endothelial cells. Pericyte/smooth
muscle cells expressed genes implicated in regulation of cellular apoptosis and
extracellular matrix organization, and several ligands for genes showing
increased expression in endothelial cells. In conclusion, our study represents
the first detailed look at the transcriptomic landscape across idiopathic
pulmonary arterial hypertension lung cells and provides robust insight into
alterations that occur in vivo in idiopathic pulmonary arterial hypertension
lungs.
Collapse
Affiliation(s)
- Didem Saygin
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Tracy Tabib
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Humberto E T Bittar
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Eleanor Valenzi
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John Sembrat
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Stephen Y Chan
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Robert Lafyatis
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Li S, Peng D, Yin ZQ, Zhu W, Hu XT, Liu CW. Effect of DEC1 on the proliferation, adhesion, invasion and epithelial-mesenchymal transition of osteosarcoma cells. Exp Ther Med 2020; 19:2360-2366. [PMID: 32104304 DOI: 10.3892/etm.2020.8459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 12/19/2019] [Indexed: 12/28/2022] Open
Abstract
Differentiated embryonic chondrocyte-expressed gene 1 (DEC1) is associated with various types of human cancer; however, there is limited data regarding the functions of DEC1 in osteosarcoma. The present study aimed to examine the expression of DEC1 in human osteosarcoma tissues and cell lines. Furthermore, the effects of DEC1 on the proliferation, adhesion, invasion and epithelial-mesenchymal transition (EMT) of osteosarcoma cells were investigated. Using reverse transcription-quantitative PCR and western blot analysis, it was found that the expression levels of DEC1 were higher in human osteosarcoma tissues and osteosarcoma cell lines than in the controls. Both gain- and loss-of-function experiments suggested that DEC1 promotes the proliferation, adhesion and invasion of osteosarcoma cells in vitro, as determined by MTT, cell adhesion and cell invasion assays, respectively. Additionally, DEC1 was found to upregulate the mesenchymal markers N-cadherin and vimentin, whilst downregulating the epithelial marker E-cadherin. In conclusion, this present study showed increased expression levels of DEC1 in human osteosarcoma tissues and cell lines, and identified that DEC1 may exert its effect on osteosarcoma progression by promoting cell proliferation, adhesion and invasion. Furthermore, DEC1 was shown to have an inducible effect on EMT in osteosarcoma cell lines, thus contributing to the aggressiveness of osteosarcoma cells. This initial study indicated that DEC1 may serve as a novel molecular target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Shuai Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Dan Peng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zi-Qing Yin
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Wei Zhu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xuan-Tao Hu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Cong-Wei Liu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
14
|
Kiss Z, Mudryj M, Ghosh PM. Non-circadian aspects of BHLHE40 cellular function in cancer. Genes Cancer 2020; 11:1-19. [PMID: 32577154 PMCID: PMC7289903 DOI: 10.18632/genesandcancer.201] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
While many genes specifically act as oncogenes or tumor suppressors, others are tumor promoters or suppressors in a context-dependent manner. Here we will review the basic-helix-loop-helix (BHLH) protein BHLHE40, (also known as BHLHB2, STRA13, DEC1, or SHARP2) which is overexpressed in gastric, breast, and brain tumors; and downregulated in colorectal, esophageal, pancreatic and lung cancer. As a transcription factor, BHLHE40 is expressed in the nucleus, where it binds to target gene promoters containing the E-box hexanucleotide sequence, but can also be expressed in the cytoplasm, where it stabilizes cyclin E, preventing cyclin E-mediated DNA replication and cell cycle progression. In different organs BHLHE40 regulates different targets; hence may have different impacts on tumorigenesis. BHLHE40 promotes PI3K/Akt/mTOR activation in breast cancer, activating tumor progression, but suppresses STAT1 expression in clear cell carcinoma, triggering tumor suppression. Target specificity likely depends on cooperation with other transcription factors. BHLHE40 is activated in lung and esophageal carcinoma by the tumor suppressor p53 inducing senescence and suppressing tumor growth, but is also activated under hypoxic conditions by HIF-1α in gastric cancer and hepatocellular carcinomas, stimulating tumor progression. Thus, BHLHE40 is a multi-functional protein that mediates the promotion or suppression of cancer in a context dependent manner.
Collapse
Affiliation(s)
- Zsofia Kiss
- VA Northern California Health Care System, Sacramento, CA, USA
- Department of Urology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Maria Mudryj
- VA Northern California Health Care System, Sacramento, CA, USA
- Department of Microbiology and Immunology, University of California, Davis, CA, USA
| | - Paramita M. Ghosh
- VA Northern California Health Care System, Sacramento, CA, USA
- Department of Urology, University of California Davis School of Medicine, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
15
|
Pare R, Soon PS, Shah A, Lee CS. Differential expression of senescence tumour markers and its implications on survival outcomes of breast cancer patients. PLoS One 2019; 14:e0214604. [PMID: 30998679 PMCID: PMC6472879 DOI: 10.1371/journal.pone.0214604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/17/2019] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is a heterogeneous disease displaying different histopathological characteristics, molecular profiling and clinical behavior. This study describes the expression patterns of senescence markers P53, DEC1 and DCR2 and assesses their significance on patient survival as a single or combined marker with P16 or P14 using breast cancer progression series. One thousand and eighty (1080) patients with primary invasive ductal carcinoma, no special type, were recruited through an 11-year retrospective study period. We constructed tissue microarrays of normal, benign hyperplasia, ductal carcinoma in situ and invasive ductal carcinoma from each patient and performed immunohistochemical staining to study the protein expression. Statistical analysis includes Pearson chi-square, Kaplan-Meier log ran test and Cox proportional hazard regression were undertaken to determine the associations and predict the survival outcomes. P53, DEC1 and DCR2 expression correlated significantly with normal, benign, premalignant and malignant tissues with (p<0.05). The expression profile of these genes increases from normal to benign to premalignant and plateaued from premalignant to malignant phenotype. There is a significant association between P53 protein expression and age, grade, staging, lymphovascular invasion, estrogen receptor, progesterone receptor and HER2 whereas DCR2 protein expression significantly correlated with tumour grade, hormone receptors status and HER2 (p<0.05 respectively). P53 overexpression correlated with increased risk of relapse (p = 0.002) specifically in patients who did not receive hormone therapy (p = 0.005) or chemotherapy (p<0.0001). The combination of P53+/P16+ is significantly correlated with poor overall and disease-free survival, whereas a combination of P53+/P14+ is associated with worse outcome in disease-free survival (p<0.05 respectively). P53 overexpression appears to be a univariate predictor of poor disease-free survival. The expression profiles of DEC1 and DCR2 do not appear to correlate with patient survival outcomes. The combination of P53 with P16, rather P53 expression alone, appears to provide more useful clinical information on patient survival outcomes in breast cancer.
Collapse
Affiliation(s)
- Rahmawati Pare
- Department of Biomedical Science and Therapeutic, Faculty of Medicine & Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah Malaysia
- Ingham Institute for Applied Medical Research, Liverpool, NSW Australia
- Discipline of Pathology, School of Medicine, Western Sydney University, Liverpool, NSW Australia
- * E-mail: (RP); (CSL)
| | - Patsy S. Soon
- Ingham Institute for Applied Medical Research, Liverpool, NSW Australia
- Breast Surgery Unit, Bankstown Hospital, Bankstown, NSW Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW Australia
| | - Aashit Shah
- Breast Surgery Unit, Liverpool Hospital, Liverpool, NSW Australia
| | - Cheok Soon Lee
- Ingham Institute for Applied Medical Research, Liverpool, NSW Australia
- Discipline of Pathology, School of Medicine, Western Sydney University, Liverpool, NSW Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW Australia
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW Australia
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW Australia
- * E-mail: (RP); (CSL)
| |
Collapse
|
16
|
DeltaNp63-dependent super enhancers define molecular identity in pancreatic cancer by an interconnected transcription factor network. Proc Natl Acad Sci U S A 2018; 115:E12343-E12352. [PMID: 30541891 DOI: 10.1073/pnas.1812915116] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Molecular subtyping of cancer offers tremendous promise for the optimization of a precision oncology approach to anticancer therapy. Recent advances in pancreatic cancer research uncovered various molecular subtypes with tumors expressing a squamous/basal-like gene expression signature displaying a worse prognosis. Through unbiased epigenome mapping, we identified deltaNp63 as a major driver of a gene signature in pancreatic cancer cell lines, which we report to faithfully represent the highly aggressive pancreatic squamous subtype observed in vivo, and display the specific epigenetic marking of genes associated with decreased survival. Importantly, depletion of deltaNp63 in these systems significantly decreased cell proliferation and gene expression patterns associated with a squamous subtype and transcriptionally mimicked a subtype switch. Using genomic localization data of deltaNp63 in pancreatic cancer cell lines coupled with epigenome mapping data from patient-derived xenografts, we uncovered that deltaNp63 mainly exerts its effects by activating subtype-specific super enhancers. Furthermore, we identified a group of 45 subtype-specific super enhancers that are associated with poorer prognosis and are highly dependent on deltaNp63. Genes associated with these enhancers included a network of transcription factors, including HIF1A, BHLHE40, and RXRA, which form a highly intertwined transcriptional regulatory network with deltaNp63 to further activate downstream genes associated with poor survival.
Collapse
|
17
|
Sethuraman A, Brown M, Krutilina R, Wu ZH, Seagroves TN, Pfeffer LM, Fan M. BHLHE40 confers a pro-survival and pro-metastatic phenotype to breast cancer cells by modulating HBEGF secretion. Breast Cancer Res 2018; 20:117. [PMID: 30285805 PMCID: PMC6167787 DOI: 10.1186/s13058-018-1046-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 08/28/2018] [Indexed: 12/15/2022] Open
Abstract
Background Metastasis is responsible for a significant number of breast cancer-related deaths. Hypoxia, a primary driving force of cancer metastasis, induces the expression of BHLHE40, a transcription regulator. This study aimed to elucidate the function of BHLHE40 in the metastatic process of breast cancer cells. Methods To define the role of BHLHE40 in breast cancer, BHLHE40 expression was knocked down by a lentiviral construct expressing a short hairpin RNA against BHLHE40 or knocked out by the CRISPR/Cas9 editing system. Orthotopic xenograft and experimental metastasis (tail vein injection) mouse models were used to analyze the role of BHLHE40 in lung metastasis of breast cancer. Global gene expression analysis and public database mining were performed to identify signaling pathways regulated by BHLHE40 in breast cancer. The action mechanism of BHLHE40 was examined by chromatin immunoprecipitation (ChIP), co-immunoprecipitation (CoIP), exosome analysis, and cell-based assays for metastatic potential. Results BHLHE40 knockdown significantly reduced primary tumor growth and lung metastasis in orthotopic xenograft and experimental metastasis models of breast cancer. Gene expression analysis implicated a role of BHLHE40 in transcriptional activation of heparin-binding epidermal growth factor (HBEGF). ChIP and CoIP assays revealed that BHLHE40 induces HBEGF transcription by blocking DNA binding of histone deacetylases (HDAC)1 and HDAC2. Cell-based assays showed that HBEGF is secreted through exosomes and acts to promote cell survival and migration. Public databases provided evidence linking high expression of BHLHE40 and HBEGF to poor prognosis of triple-negative breast cancer. Conclusion This study reveals a novel role of BHLHE40 in promoting tumor cell survival and migration by regulating HBEGF secretion.
Collapse
Affiliation(s)
- Aarti Sethuraman
- Department of Pathology and Laboratory Medicine, and the Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas Street, Memphis, TN, 38163, USA
| | - Martin Brown
- Department of Pathology and Laboratory Medicine, and the Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas Street, Memphis, TN, 38163, USA
| | - Raya Krutilina
- Department of Pathology and Laboratory Medicine, and the Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas Street, Memphis, TN, 38163, USA
| | - Zhao-Hui Wu
- Department of Pathology and Laboratory Medicine, and the Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas Street, Memphis, TN, 38163, USA
| | - Tiffany N Seagroves
- Department of Pathology and Laboratory Medicine, and the Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas Street, Memphis, TN, 38163, USA
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, and the Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas Street, Memphis, TN, 38163, USA
| | - Meiyun Fan
- Department of Pathology and Laboratory Medicine, and the Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas Street, Memphis, TN, 38163, USA.
| |
Collapse
|
18
|
Gallo C, Fragliasso V, Donati B, Torricelli F, Tameni A, Piana S, Ciarrocchi A. The bHLH transcription factor DEC1 promotes thyroid cancer aggressiveness by the interplay with NOTCH1. Cell Death Dis 2018; 9:871. [PMID: 30158530 PMCID: PMC6115386 DOI: 10.1038/s41419-018-0933-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023]
Abstract
Aberrant re-activation of transcription factors occurs frequently in cancer. Recently, we found the basic helix-loop-helix transcription factors DEC1 and DEC2 significantly up-regulated in a model of highly aggressive thyroid cancer, raising the hypothesis that these factors might be part of the program driving progression of these tumors. Here, we investigated for the first time the function of DEC1 and DEC2 in thyroid cancer. Using both gain- and loss-of-function approaches, we showed that DEC1 more than DEC2 sustains progression of thyroid cancer by promoting cell growth and invasiveness. We demonstrated that DEC1 controls NOTCH1 expression and that the interplay with the NOTCH pathway is relevant for DEC1 function in thyroid cancer. We confirmed this observation in vivo showing that DEC1 expression is a specific feature of tumor cells, that this transcription factor is significantly over-expressed in all major thyroid cancer histotypes and that its expression correlated with NOTCH1 in these tumors. Finally, we performed RNA-sequencing to define the DEC1-associated gene expression profile in thyroid cancer cells and we discovered that DEC1 drives the expression of many cell cycle-related genes, uncovering a potential new function for this transcription factor in cancer.
Collapse
Affiliation(s)
- Cristina Gallo
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Valentina Fragliasso
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Benedetta Donati
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Annalisa Tameni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Simonetta Piana
- Pathology Unit, Department of Oncology, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy.
| |
Collapse
|
19
|
Liu Q, Wu Y, Seino H, Haga T, Yoshizawa T, Morohashi S, Kijima H. Correlation between DEC1/DEC2 and epithelial‑mesenchymal transition in human prostate cancer PC‑3 cells. Mol Med Rep 2018; 18:3859-3865. [PMID: 30106153 PMCID: PMC6131663 DOI: 10.3892/mmr.2018.9367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 07/04/2018] [Indexed: 11/22/2022] Open
Abstract
Differentiated embryonic chondrocyte (DEC) genes have been reported to be involved in the regulation of mammalian circadian rhythms, differentiation, apoptosis, the response to hypoxia and epithelial-mesenchymal transition (EMT). Activation of transforming growth factor (TGF)-β signaling is known to promote EMT for the development of metastatic castration-resistant prostate cancer (PCa). However, the role of DEC genes in the TGF-β-induced EMT of PCa remains unclear. In the present study it was demonstrated that TGF-β increased the transcriptional/translational levels of DEC1 but decreased those of DEC2 in PC-3 cells. Moreover, TGF-β evoked the phosphorylation of Smad2, followed by the activation of mesenchymal markers, such as N-cadherin and vimentin, in addition to the suppression of epithelial markers, such as E-cadherin. The knockdown of DEC1 restrained TGF-β-induced cell morphology changes as well as cell motility, which was compatible with the upregulation of E-cadherin and downregulation of pSmad2, N-cadherin, and vimentin. However, DEC2 knockdown endorsed PC-3 cells with a more metastatic phenotype. EMT-related markers in DEC2 siRNA-transfected cells exhibited a reverse expression pattern when compared with that in DEC1 siRNA-transfected cells. Taken together, these results provide evidence that DEC1 and DEC2 have opposite effects on TGF-β-induced EMT in human prostate cancer PC-3 cells.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Yunyan Wu
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Hiroko Seino
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Toshihiro Haga
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Tadashi Yoshizawa
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Satoko Morohashi
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Hiroshi Kijima
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| |
Collapse
|
20
|
Ming X, Bao C, Hong T, Yang Y, Chen X, Jung YS, Qian Y. Clusterin, a Novel DEC1 Target, Modulates DNA Damage-Mediated Cell Death. Mol Cancer Res 2018; 16:1641-1651. [PMID: 30002194 DOI: 10.1158/1541-7786.mcr-18-0070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/28/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022]
Abstract
Differentiated embryonic chondrocyte expressed gene 1 (DEC1, also known as Sharp2/Stra13/BHLHE40) is a basic helix-loop-helix transcription factor that plays an important role in circadian rhythms, cell proliferation, apoptosis, cellular senescence, hypoxia response, and epithelial-to-mesenchymal transition of tumor cells. Secretory clusterin (sCLU) is a cytoprotective protein that guards against genotoxic stresses. Here, clusterin (CLU) was identified as a novel target gene of DEC1 and suppresses DNA damage-induced cell death in tumor cells. Mechanistically, based on chromatin immunoprecipitation and luciferase assays, DEC1 binds to and activates the promoter of the CLU gene. DEC1 and DNA-damaging agents induce sCLU expression, whereas DEC1 knockdown decreases the expression of sCLU upon DNA damage. Moreover, the data demonstrate that DEC1 inhibits, whereas sCLU knockdown enhances, DNA damage-induced cell death in MCF7 breast cancer cells. Given that DEC1 and sCLU are frequently overexpressed in breast cancers, these data provide mechanistic insight into DEC1 as a prosurvival factor by upregulating sCLU to reduce the DNA damage-induced apoptotic response. Together, this study reveals sCLU as a novel target of DEC1 which modulates the sensitivity of the DNA damage response.Implications: DEC1 and sCLU are frequently overexpressed in breast cancer, and targeting the sCLU-mediated cytoprotective signaling pathway may be a novel therapeutic approach. Mol Cancer Res; 16(11); 1641-51. ©2018 AACR.
Collapse
Affiliation(s)
- Xin Ming
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Chenyi Bao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Tao Hong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Ying Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xinbin Chen
- The Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California
| | - Yong-Sam Jung
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yingjuan Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
21
|
Jia Y, Hu R, Li P, Zheng Y, Wang Y, Ma X. DEC1 is required for anti-apoptotic activity of gastric cancer cells under hypoxia by promoting Survivin expression. Gastric Cancer 2018; 21:632-642. [PMID: 29204860 DOI: 10.1007/s10120-017-0780-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Human differentiated embryonic chondrocyte-expressed gene 1 (DEC1), which has been reported to be overexpressed in several types of cancer, is associated with tumorigenesis through participation in several biological processes. However, the complex mechanisms underlying DEC1 during carcinogenesis are controversial, and its roles in the development and malignancy of gastric cancer (GC) remain unclear. METHODS We measured DEC1 expression in human GC cell lines. DEC1 levels in GC cells were downregulated by shRNA lentivirus infection. We also evaluated the effect of DEC1 downregulation on xenograft growth in vivo. The viability and apoptosis of the cells were assayed using the CCK8 assay and flow cytometry. The levels of DEC1, Survivin, and Bcl-2 were evaluated by Western blotting. Luciferase reporter was used to verify the downstream target of DEC1. The association of DEC1 and Survivin expression with prognosis was investigated by immunohistochemistry. RESULTS Downregulation of DEC1 inhibits GC cell proliferation in vitro and tumorigenicity in vivo. We observed that hypoxia-induced expression of DEC1 protects GC cells from apoptosis via transcriptional upregulation of Survivin. Furthermore, positive correlations between DEC1 with Survivin expression were observed in tissue sections from GC patients. Notably, GC patients with high expression levels of DEC1 and Survivin showed poor prognosis. CONCLUSIONS DEC1 acts as an anti-apoptotic regulator in GC cells under hypoxia by promoting Survivin expression. Our study demonstrates the critical role of the DEC1 in oncogenesis and highlights a novel role for DEC1 in the regulation of cell apoptosis in GC.
Collapse
Affiliation(s)
- Yanfei Jia
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, People's Republic of China
| | - Rui Hu
- Department of Reproduction, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, People's Republic of China
| | - Ping Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Yan Zheng
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, People's Republic of China
| | - Yunshan Wang
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, People's Republic of China. .,Shandong Province Key Lab of Tumor Target Molecule, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, People's Republic of China.
| | - Xiaoli Ma
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, People's Republic of China.
| |
Collapse
|
22
|
Wang XP, Wang QX, Lin HP, Chang N. Anti-tumor bioactivities of curcumin on mice loaded with gastric carcinoma. Food Funct 2018; 8:3319-3326. [PMID: 28848967 DOI: 10.1039/c7fo00555e] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Curcumin, a derivative from the dried rhizome of curcuma longa, has been proven to possess anti-tumor effects. However, the detailed molecular mechanisms have not been fully elucidated. In this study, we aimed to explore the anti-tumor mechanisms of curcumin in treating gastric cancer. BALB/C mice grafted with a mouse gastric adenocarcinoma cell line (MFC) were used as the experimental model. Mice received different doses of curcumin after grafting. Tumor size was measured and tumor weight was determined after tumor inoculation. TUNEL assay and flow cytometric analysis were applied to evaluate the apoptosis of the cancer cells. Serum cytokines IFN-γ, TNF-α, granzyme B and perforin were detected by ELISA assay. The anti-tumor effect was determined using cytotoxic T-lymphocyte (CTL) assays and in vivo tumor prevention tests. The expression of DEC1, HIF-1α, STAT3 and VEGF in tumor tissues was examined by immunostaining and analyzed using an Image J analysis system. Compared with controls, tumor growth (size and weight) was significantly inhibited by curcumin treatment (P < 0.05). The apoptotic index in gastric cancer cells was significantly increased in the curcumin treatment group. Splenocyte cells from mice treated with curcumin exhibited higher cytolytic effects on MFC cancer cells than those from mice treated with saline (P < 0.01). The expression of DEC1, HIF-1α, STAT3 and VEGF in tumor tissues was down-regulated after curcumin treatment. Our results indicate that curcumin inhibits the proliferation of gastric carcinoma by inducing the apoptosis of tumor cells, activating immune cells to secrete a large amount of cytokines, and down-regulating the DEC1, HIF-1α, VEGF and STAT3 signal transduction pathways.
Collapse
Affiliation(s)
- Xiao-Ping Wang
- Laboratory of Molecular Biology & Pathology, Shaanxi University of Chinese Medicine, Xianyang, PR China.
| | | | | | | |
Collapse
|
23
|
Li Q, Ma R, Zhang M. CoCl 2 increases the expression of hypoxic markers HIF-1α, VEGF and CXCR4 in breast cancer MCF-7 cells. Oncol Lett 2017; 15:1119-1124. [PMID: 29391899 DOI: 10.3892/ol.2017.7369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/13/2017] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to investigate the effect of a hypoxic environment on the biological behavior of breast cancer MCF-7 cells, using CoCl2 to mimic the hypoxia model in breast cancer cells. Using 50, 100, 150 and 200 µM CoCl2 as a hypoxic inducer, a hypoxic model was established in MCF-7 cells in vitro. MTT, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) and western blotting assays were performed to detect MCF-7 cell proliferation under hypoxic conditions and the expression of the hypoxic markers hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and C-X-C motif chemokine receptor 4 (CXCR4) mRNA and that of the associated proteins. The RT-qPCR results revealed that there were no obvious changes in the expression of HIF-1α mRNA; however, the expression of CXCR4 and VEGF mRNA increased significantly following treatment with different CoCl2 concentrations (P<0.05). The results of western blotting identified that CoCl2 significantly induced the expression of HIF-1α, CXCR4 and VEGF proteins (P<0.05). The MTT assay revealed that different concentrations of CoCl2 inhibited the proliferation of MCF-7 cells. The TUNEL assay demonstrated that CoCl2 was able to trigger apoptosis of MCF-7 cells. Therefore, the results of the present study identified that CoCl2 is able to control MCF-7 cell proliferation and apoptosis, also increasing the expression of HIF-1α, CXCR4 and VEGF. The present study may aid the discovery of a novel method to prevent cell damage and decrease cell proliferation in order to prevent the occurrence and development of breast cancer.
Collapse
Affiliation(s)
- Qing Li
- Department of Breast and Thyroid Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250000, P.R. China
| | - Rong Ma
- Department of Breast and Thyroid Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250000, P.R. China
| | - Mei Zhang
- Department of Breast and Thyroid Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
24
|
G9a drives hypoxia-mediated gene repression for breast cancer cell survival and tumorigenesis. Proc Natl Acad Sci U S A 2017. [PMID: 28630300 DOI: 10.1073/pnas.1618706114] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
G9a is an epigenetic regulator that methylates H3K9, generally causing repression of gene expression, and participates in diverse cellular functions. G9a is genetically deregulated in a variety of tumor types and can silence tumor suppressor genes and, therefore, is important for carcinogenesis. Although hypoxia is recognized to be an adverse factor in tumor growth and metastasis, the role of G9a in regulating gene expression in hypoxia has not been described extensively. Here, we show that G9a protein stability is increased in hypoxia via reduced proline hydroxylation and, hence, inefficient degradation by the proteasome. This inefficiency leads to an increase in H3K9me2 at its target promoters. Blocking the methyltransferase activity of G9a inhibited cellular proliferation and migration in vitro and tumor growth in vivo. Furthermore, an increased level of G9a is a crucial factor in mediating the hypoxic response by down-regulating the expression of specific genes, including ARNTL, CEACAM7, GATA2, HHEX, KLRG1, and OGN This down-regulation can be rescued by a small molecule inhibitor of G9a. Based on the hypothesis that the changes in gene expression would influence patient outcomes, we have developed a prognostic G9a-suppressed gene signature that can stratify breast cancer patients. Together, our findings provide an insight into the role G9a plays as an epigenetic mediator of hypoxic response, which can be used as a diagnostic marker, and proposes G9a as a therapeutic target for solid cancers.
Collapse
|
25
|
Sultan A, Parganiha A, Sultan T, Choudhary V, Pati AK. Circadian clock, cell cycle, and breast cancer: an updated review. BIOL RHYTHM RES 2016. [DOI: 10.1080/09291016.2016.1263011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Armiya Sultan
- Chronobiology and Animal Behaviour Laboratory, School of Life Sciences, Pt. Ravishankar Shukla University, Raipur, India
| | - Arti Parganiha
- Chronobiology and Animal Behaviour Laboratory, School of Life Sciences, Pt. Ravishankar Shukla University, Raipur, India
- Center for Translational Chronobiology, Pt. Ravishankar Shukla University, Raipur, India
| | - Tahira Sultan
- Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Vivek Choudhary
- Regional Cancer Centre, Pt. J.N.M. Medical College, Dr. B.R. Ambedkar Memorial Hospital, Raipur, India
| | - Atanu Kumar Pati
- Chronobiology and Animal Behaviour Laboratory, School of Life Sciences, Pt. Ravishankar Shukla University, Raipur, India
- Center for Translational Chronobiology, Pt. Ravishankar Shukla University, Raipur, India
| |
Collapse
|
26
|
Liu Q, Wu Y, Yoshizawa T, Yan X, Morohashi S, Seino H, Kato Y, Kijima H. Basic helix-loop-helix transcription factor DEC2 functions as an anti-apoptotic factor during paclitaxel-induced apoptosis in human prostate cancer cells. Int J Mol Med 2016; 38:1727-1733. [PMID: 27840924 PMCID: PMC5117753 DOI: 10.3892/ijmm.2016.2798] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/24/2016] [Indexed: 01/31/2023] Open
Abstract
The functions of basic helix-loop-helix (bHLH) transcription factor-differentiated embryonic chondrocyte (DEC)1 (BHLHE40) and 2 (BHLHE41) are involved in various fields such as circadian rhythms, immune responses, cell proliferation, hypoxia reaction as well as malignant tumors. Previous findings showed that DEC served as apoptosis regulators of various cancer cell lines. However, little is known regarding the expression of DEC1 and DEC2 in prostate cancer cells. The present study aimed to examine the roles of DEC1 and DEC2 in human prostate cancer DU145 and PC-3 cells that were treated with paclitaxel. The expression of DEC1 and DEC2 was decreased in DU145 cells but was increased in PC-3 cells when treated with paclitaxel. DU145 cells were more sensitive to paclitaxel than PC-3 cells since the amount of cleaved poly(ADP-ribose) polymerase (PARP) reached its peak at 50 µM of paclitaxel in DU145 cells but at 100 µM in PC-3 cells. In addition, the amount of cleaved PARP was decreased by DEC1 siRNA, while it was increased by DEC2 siRNA in the presence of paclitaxel. Although DEC2 overexpression slightly inhibited cleaved PARP in the two cell lines, the effects of DEC1 overexpression on apoptosis remain to be determined. In conclusion, DEC1, at least partly, exerted a pro-apoptotic effect, whereas DEC2 exerted an anti-apoptotic effect in paclitaxel-induced apoptosis of human prostate cancer cells.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Yunyan Wu
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Tadashi Yoshizawa
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Xu Yan
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Satoko Morohashi
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Hiroko Seino
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Yukio Kato
- Department of Dental and Medical Biochemistry, Hiroshima University Graduate School of Biomedical Science, Hiroshima 734-8553, Japan
| | - Hiroshi Kijima
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
27
|
Li XM, Lin W, Wang J, Zhang W, Yin AA, Huang Y, Zhang J, Yao L, Bian H, Zhang J, Zhang X. Dec1 expression predicts prognosis and the response to temozolomide chemotherapy in patients with glioma. Mol Med Rep 2016; 14:5626-5636. [PMID: 27840944 DOI: 10.3892/mmr.2016.5921] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/06/2016] [Indexed: 11/06/2022] Open
Abstract
Differentiated embryo chondrocyte expressed gene 1 (Dec1), a crucial cell differentiation mediator and apoptosis inhibitor, is abundantly expressed in various types of human cancer and is associated with malignant tumor progression. As poor differentiation and low apoptosis are closely associated with poor survival rates and a poor response to radio/chemotherapy in patients with cancer, the prognostic value of Dec1 expression was examined in the present study and its correlation with response to temozolomide (TMZ) chemotherapy was analyzed in patients with glioma. Dec1 expression was analyzed by immunohistochemistry in 157 samples of newly diagnosed glioma and 63 recurrent glioblastoma cases that relapsed during TMZ chemotherapy. Correlations with clinical variables, prognosis and the response to TMZ chemotherapy were analyzed in the newly diagnosed gliomas. Dec1 expression was also compared with the apoptosis index determined by TdT‑mediated dUTP nick ending‑labeling assay in recurrent glioblastomas. The antiglioma effect of TMZ in nude mice xenografts with Dec1 expression was examined in vivo. High expression of Dec1, which was significantly associated with high pathological tumor grade and poor response to TMZ chemotherapy, was demonstrated to be an unfavorable independent prognostic factor and predicted poor survival in patients with newly diagnosed glioma. In patients with recurrent glioblastoma, there was a negative correlation between Dec1 expression and the apoptotic index. In nude mice treated with TMZ, Dec1 overexpression potentiated proliferation, but attenuated TMZ‑induced apoptosis. In conclusion, Dec1 is a prognostic factor for the clinical outcome and a predictive factor for the response to TMZ chemotherapy in patients with glioma.
Collapse
Affiliation(s)
- Xiao-Ming Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Lin
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jiang Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - An-An Yin
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yi Huang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Center of Teaching Experiment, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Libo Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Center of Teaching Experiment, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Huan Bian
- Cadet Brigade Team Three, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Center of Teaching Experiment, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiang Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
28
|
Kong Y, Wang Z, Jia Y, Li P, Hao S, Wang Y. Effects of mutants in bHLH region on structure stability and protein-DNA binding energy in DECs. J Biomol Struct Dyn 2016; 35:1849-1862. [PMID: 27499354 DOI: 10.1080/07391102.2016.1196463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yi Kong
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan 250013, Shandong Province, P.R. China
| | - Zhen Wang
- Department of Oncology, Zhang Qiu People Hospital, No. 1920 Huiquan Road, Zhangqiu 250200, Shandong Province, P.R. China
| | - Yanfei Jia
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan 250013, Shandong Province, P.R. China
| | - Ping Li
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan 250013, Shandong Province, P.R. China
| | - Shuhua Hao
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan 250013, Shandong Province, P.R. China
| | - Yunshan Wang
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan 250013, Shandong Province, P.R. China
| |
Collapse
|
29
|
Xiong J, Yang H, Luo W, Shan E, Liu J, Zhang F, Xi T, Yang J. The anti-metastatic effect of 8-MOP on hepatocellular carcinoma is potentiated by the down-regulation of bHLH transcription factor DEC1. Pharmacol Res 2016; 105:121-33. [PMID: 26808085 DOI: 10.1016/j.phrs.2016.01.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/08/2016] [Accepted: 01/19/2016] [Indexed: 01/22/2023]
Abstract
Despite progress in diagnostics and treatment of hepatocellular carcinoma (HCC), its prognosis remains poor. 8-Methoxypsoralen (8-MOP), a formerly considered photosensitizing agent, has been reported to induce cell apoptosis in HepG2 cells in a modest way when used alone. In this study, it was demonstrated that 8-MOP inhibited HCC HepG2 cells and SMMC-7721 cells migratory and invasive potentiality, as well as modulated the expression of various EMT-associated genes such as enhancing E-cadherin and reducing N-cadherin, vimentin, α-SMA and MMP9 in a concentration-dependent way. Differentiated embryonic chondrocyte-expressed gene 1, DEC1 (BHLHE40/Stra13/Sharp2), is a basic helix-loop-helix (bHLH) transcription factor that regulates cell growth, differentiation, apoptosis and tumorigenesis. 8-MOP suppressed the expression of DEC1 in a concentration- and time-dependent manner. Overexpression of DEC1 endorsed the HepG2 cells a higher metastatic phenotype, while totally abolished 8-MOP-repressed metastatic capability. In the meanwhile, overexpression of DEC1 promoted EMT process by suppressing expression of epithelial protein and enhancing expression of mesenchymal proteins, while potently antagonized the regulation of EMT-associated genes by 8-MOP. In vivo experiments revealed that the treatment of 8-MOP (5 or 20mg/kg) resulted in a dose-dependent decreases in the lung metastasis of hepatoma H22-transplanted mice without any obvious toxicity to the organs, as well as increased expression of E-cadherin in lung tissues. Consistently, 8-MOP down-regulated the expression of DEC1 in the lungs of tumor-bearing mice, which further confirms that DEC1 was correlated with 8-MOP-induced anti-metastatic effect. The present findings establish a function for DEC1 in HCC metastatic progression and suggest its candidacy as a novel target for the anti-metastasis effect of 8-MOP.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Huan Yang
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Wenjing Luo
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Enfang Shan
- Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Jie Liu
- Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Feng Zhang
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Tao Xi
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China.
| | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
30
|
Seino H, Wu Y, Morohashi S, Kawamoto T, Fujimoto K, Kato Y, Takai Y, Kijima H. Basic helix-loop-helix transcription factor DEC1 regulates the cisplatin-induced apoptotic pathway of human esophageal cancer cells. Biomed Res 2016; 36:89-96. [PMID: 25876658 DOI: 10.2220/biomedres.36.89] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
DEC1 [basic helix-loop-helix (BHLH) E40/Stra13/Sharp2] and DEC2 (BHLHE41/Sharp1) are BHLH transcription factors that are associated with the regulation of apoptosis, cell proliferation, and circadian rhythms, as well as malignancy in various cancers. However, the roles of DEC1 and DEC2 expression in esophageal cancer are poorly understood. In this study, we examined the roles of DEC1 and DEC2 in human esophageal cancer TE 5 and TE 10 cells that had been treated with cis-diamminedichloroplatinum (II) (cisplatin: CDDP). Expression of DEC1 and DEC2 was decreased with CDDP treatment in TE 5 cells; however, knockdown or overexpression of DEC1/DEC2 had little effects on CDDP-induced apoptosis in TE 5 cells. DEC1 expression was up-regulated in CDDP-treated TE 10 cells, whereas DEC2 expression was unchanged. DEC1 knockdown by siRNA in TE 10 decreased the amount of cleaved poly (ADP-ribose) polymerase (PARP) after treatment with CDDP, whereas DEC2 knockdown had no effects on the amount of cleaved PARP in both the presence and absence of CDDP. We also demonstrated that DEC1 overexpression promoted cleaved PARP expression, whereas DEC2 overexpression had no effects on the amount of cleaved PARP in TE 10 cells. These results suggested that DEC1 has pro-apoptotic effects on human esophageal cancer TE 10 cells of well-differentiated type.
Collapse
Affiliation(s)
- Hiroko Seino
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Sato F, Bhawal UK, Yoshimura T, Muragaki Y. DEC1 and DEC2 Crosstalk between Circadian Rhythm and Tumor Progression. J Cancer 2016; 7:153-9. [PMID: 26819638 PMCID: PMC4716847 DOI: 10.7150/jca.13748] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/18/2015] [Indexed: 02/06/2023] Open
Abstract
Clock genes, major regulators of circadian rhythm, are involved in tumor progression. We have shown that clock genes basic helix-loop-helix (BHLH) transcription factors, differentiated embryonic chondrocyte gene 1 (DEC1/BHLHE40/Sharp2/Stra13) and DEC2 (BHLHE41/Sharp1) play important roles in circadian rhythm, cell proliferation, apoptosis, hypoxia response, various stresses, and epithelial-to-mesenchymal transition (EMT) of tumor cells. Various stresses, such as exposure to transforming growth factor-beta (TGF-β), hypoxia, cytokines, serum-free, and anti-tumor drugs affect DEC1 and DEC2 expression. An increased or decreased expression of DEC1 and DEC2 regulated tumor progression. However, DEC1 and DEC2 have opposite effects in tumor progression, where the reason behind remains unclear. We found that DEC2 has circadian expression in implanted mouse sarcoma cells, suggesting that DEC2 regulates tumor progression under circadian rhythm. In addition to that, we showed that DEC1 and DEC2 regulate target genes via positive or negative feedback system in tumor progression. We propose that DEC1 and DEC2 act as an accelerator or a brake in tumor progression. In this review, we summarize current progress of knowledge in the function of DEC1 and DEC2 genes in tumor progression.
Collapse
Affiliation(s)
- Fuyuki Sato
- 1. Department of Pathology, Wakayama Medical University School of Medicine, Wakayama 641-8509, Japan
| | - Ujjal K. Bhawal
- 2. Department of Biochemistry, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
| | - Tomohiro Yoshimura
- 1. Department of Pathology, Wakayama Medical University School of Medicine, Wakayama 641-8509, Japan
| | - Yasuteru Muragaki
- 1. Department of Pathology, Wakayama Medical University School of Medicine, Wakayama 641-8509, Japan
| |
Collapse
|
32
|
Asanoma K, Liu G, Yamane T, Miyanari Y, Takao T, Yagi H, Ohgami T, Ichinoe A, Sonoda K, Wake N, Kato K. Regulation of the Mechanism of TWIST1 Transcription by BHLHE40 and BHLHE41 in Cancer Cells. Mol Cell Biol 2015; 35:4096-109. [PMID: 26391953 PMCID: PMC4648814 DOI: 10.1128/mcb.00678-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/04/2015] [Accepted: 09/17/2015] [Indexed: 11/20/2022] Open
Abstract
BHLHE40 and BHLHE41 (BHLHE40/41) are basic helix-loop-helix type transcription factors that play key roles in multiple cell behaviors. BHLHE40/41 were recently shown to be involved in an epithelial-to-mesenchymal transition (EMT). However, the precise mechanism of EMT control by BHLHE40/41 remains unclear. In the present study, we demonstrated that BHLHE40/41 expression was controlled in a pathological stage-dependent manner in human endometrial cancer (HEC). Our in vitro assays showed that BHLHE40/41 suppressed tumor cell invasion. BHLHE40/41 also suppressed the transcription of the EMT effectors SNAI1, SNAI2, and TWIST1. We identified the critical promoter regions of TWIST1 for its basal transcriptional activity. We elucidated that the transcription factor SP1 was involved in the basal transcriptional activity of TWIST1 and that BHLHE40/41 competed with SP1 for DNA binding to regulate gene transcription. This study is the first to report the detailed functions of BHLHE40 and BHLHE41 in the suppression of EMT effectors in vitro. Our results suggest that BHLHE40/41 suppress tumor cell invasion by inhibiting EMT in tumor cells. We propose that BHLHE40/41 are promising markers to predict the aggressiveness of each HEC case and that molecular targeting strategies involving BHLHE40/41 and SP1 may effectively regulate HEC progression.
Collapse
Affiliation(s)
- Kazuo Asanoma
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ge Liu
- Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takako Yamane
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoko Miyanari
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoka Takao
- Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University, Kyoto, Japan
| | - Hiroshi Yagi
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuhiro Ohgami
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akimasa Ichinoe
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenzo Sonoda
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norio Wake
- Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
33
|
Wang C, Liu W, Liu Z, Chen L, Liu X, Kuang S. Hypoxia Inhibits Myogenic Differentiation through p53 Protein-dependent Induction of Bhlhe40 Protein. J Biol Chem 2015; 290:29707-16. [PMID: 26468276 DOI: 10.1074/jbc.m115.688671] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Indexed: 11/06/2022] Open
Abstract
Satellite cells are muscle-resident stem cells capable of self-renewal and differentiation to repair injured muscles. However, muscle injury often leads to an ischemic hypoxia environment that impedes satellite cell differentiation and reduces the efficiency of muscle regeneration. Here we performed microarray analyses and identified the basic helix-loop-helix family transcription factor Bhlhe40 as a candidate mediator of the myogenic inhibitory effect of hypoxia. Bhlhe40 is strongly induced by hypoxia in satellite cell-derived primary myoblasts. Overexpression of Bhlhe40 inhibits Myog expression and mimics the effect of hypoxia on myogenesis. Inhibition of Bhlhe40, conversely, up-regulates Myog expression and promotes myogenic differentiation. Importantly, Bhlhe40 knockdown rescues myogenic differentiation under hypoxia. Mechanistically, Bhlhe40 binds to the proximal E-boxes of the Myog promoter and reduces the binding affinity and transcriptional activity of MyoD on Myog. Interestingly, hypoxia induces Bhlhe40 expression independent of HIF1α but through a novel p53-dependent signaling pathway. Our study establishes a crucial role of Bhlhe40 in mediating the repressive effect of hypoxia on myogenic differentiation and suggests that inhibition of Bhlhe40 or p53 may facilitate muscle regeneration after ischemic injuries.
Collapse
Affiliation(s)
- Chao Wang
- From the Departments of Animal Science and
| | - Weiyi Liu
- From the Departments of Animal Science and
| | - Zuojun Liu
- From the Departments of Animal Science and
| | | | - Xiaoqi Liu
- Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47906
| | - Shihuan Kuang
- From the Departments of Animal Science and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47906
| |
Collapse
|
34
|
Increased expression of interferon signaling genes in the bone marrow microenvironment of myelodysplastic syndromes. PLoS One 2015; 10:e0120602. [PMID: 25803272 PMCID: PMC4372597 DOI: 10.1371/journal.pone.0120602] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 01/24/2015] [Indexed: 11/19/2022] Open
Abstract
Introduction The bone marrow (BM) microenvironment plays an important role in the pathogenesis of myelodysplastic syndromes (MDS) through a reciprocal interaction with resident BM hematopoietic cells. We investigated the differences between BM mesenchymal stromal cells (MSCs) in MDS and normal individuals and identified genes involved in such differences. Materials and Methods BM-derived MSCs from 7 MDS patients (3 RCMD, 3 RAEB-1, and 1 RAEB-2) and 7 controls were cultured. Global gene expression was analyzed using a microarray. Result We found 314 differentially expressed genes (DEGs) in RCMD vs. control, 68 in RAEB vs. control, and 51 in RAEB vs. RCMD. All comparisons were clearly separated from one another by hierarchical clustering. The overall similarity between differential expression signatures from the RCMD vs. control comparison and the RAEB vs. control comparison was highly significant (p = 0), which indicates a common transcriptomic response in these two MDS subtypes. RCMD and RAEB simultaneously showed an up-regulation of interferon alpha/beta signaling and the ISG15 antiviral mechanism, and a significant fraction of the RAEB vs. control DEGs were also putative targets of transcription factors IRF and ICSBP. Pathways that involved RNA polymerases I and III and mitochondrial transcription were down-regulated in RAEB compared to RCMD. Conclusion Gene expression in the MDS BM microenvironment was different from that in normal BM and exhibited altered expression according to disease progression. The present study provides genetic evidence that inflammation and immune dysregulation responses that involve the interferon signaling pathway in the BM microenvironment are associated with MDS pathogenesis, which suggests BM MSCs as a possible therapeutic target in MDS.
Collapse
|
35
|
O'Reilly EA, Gubbins L, Sharma S, Tully R, Guang MHZ, Weiner-Gorzel K, McCaffrey J, Harrison M, Furlong F, Kell M, McCann A. The fate of chemoresistance in triple negative breast cancer (TNBC). BBA CLINICAL 2015; 3:257-75. [PMID: 26676166 PMCID: PMC4661576 DOI: 10.1016/j.bbacli.2015.03.003] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Treatment options for women presenting with triple negative breast cancer (TNBC) are limited due to the lack of a therapeutic target and as a result, are managed with standard chemotherapy such as paclitaxel (Taxol®). Following chemotherapy, the ideal tumour response is apoptotic cell death. Post-chemotherapy, cells can maintain viability by undergoing viable cellular responses such as cellular senescence, generating secretomes which can directly enhance the malignant phenotype. SCOPE OF REVIEW How tumour cells retain viability in response to chemotherapeutic engagement is discussed. In addition we discuss the implications of this retained tumour cell viability in the context of the development of recurrent and metastatic TNBC disease. Current adjuvant and neo-adjuvant treatments available and the novel potential therapies that are being researched are also reviewed. MAJOR CONCLUSIONS Cellular senescence and cytoprotective autophagy are potential mechanisms of chemoresistance in TNBC. These two non-apoptotic outcomes in response to chemotherapy are inextricably linked and are neglected outcomes of investigation in the chemotherapeutic arena. Cellular fate assessments may therefore have the potential to predict TNBC patient outcome. GENERAL SIGNIFICANCE Focusing on the fact that cancer cells can bypass the desired cellular apoptotic response to chemotherapy through cellular senescence and cytoprotective autophagy will highlight the importance of targeting non-apoptotic survival pathways to enhance chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Elma A O'Reilly
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland ; Department of Surgery, Mater Misericordiae Hospital, Dublin 7, Ireland
| | - Luke Gubbins
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland
| | - Shiva Sharma
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland ; Department of Surgery, Mater Misericordiae Hospital, Dublin 7, Ireland
| | - Riona Tully
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland
| | - Matthew Ho Zhing Guang
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland
| | - Karolina Weiner-Gorzel
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland
| | - John McCaffrey
- Department of Oncology, Mater Misericordiae Hospital, Dublin 7, Ireland
| | - Michele Harrison
- Department of Pathology, Mater Misericordiae Hospital, Dublin 7, Ireland
| | - Fiona Furlong
- School of Pharmacy, Queens University Belfast, Belfast BT7 1NN, UK
| | - Malcolm Kell
- Department of Surgery, Mater Misericordiae Hospital, Dublin 7, Ireland
| | - Amanda McCann
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland
| |
Collapse
|
36
|
DEC1 coordinates with HDAC8 to differentially regulate TAp73 and ΔNp73 expression. PLoS One 2014; 9:e84015. [PMID: 24404147 PMCID: PMC3880278 DOI: 10.1371/journal.pone.0084015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/11/2013] [Indexed: 01/21/2023] Open
Abstract
P73, a member of the p53 family, plays a critical role in neural development and tumorigenesis. Due to the usage of two different promoters, p73 is expressed as two major isoforms, TAp73 and ΔNp73, often with opposing functions. Here, we reported that transcriptional factor DEC1, a target of the p53 family, exerts a distinct control of TAp73 and ΔNp73 expression. In particular, we showed that DEC1 was able to increase TAp73 expression via transcriptional activation of the TAp73 promoter. By contrast, Np73 transcription was inhibited by DEC1 via transcriptional repression of the ΔNp73 promoter. To further explore the underlying mechanism, we showed that DEC1 was unable to increase TAp73 expression in the absence of HDAC8, suggesting that HDAC8 is required for DEC1 to enhance TAp73 expression. Furthermore, we found that DEC1 was able to interact with HDAC8 and recruit HDAC8 to the TAp73, but not the ΔNp73, promoter. Together, our data provide evidence that DEC1 and HDAC8 in differentially regulate TAp73 and ΔNp73 expression, suggesting that this regulation may lay a foundation for a therapeutic strategy to enhance the chemosensitivity of tumor cells.
Collapse
|
37
|
Ow JR, Tan YH, Jin Y, Bahirvani AG, Taneja R. Stra13 and Sharp-1, the Non-Grouchy Regulators of Development and Disease. Curr Top Dev Biol 2014; 110:317-38. [DOI: 10.1016/b978-0-12-405943-6.00009-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Blair JD, Yuen RK, Lim BK, McFadden DE, von Dadelszen P, Robinson WP. Widespread DNA hypomethylation at gene enhancer regions in placentas associated with early-onset pre-eclampsia. Mol Hum Reprod 2013; 19:697-708. [PMID: 23770704 PMCID: PMC3779005 DOI: 10.1093/molehr/gat044] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/24/2013] [Accepted: 06/07/2013] [Indexed: 12/17/2022] Open
Abstract
Pre-eclampsia is a serious complication of pregnancy that can affect both maternal and fetal outcomes. Early-onset pre-eclampsia (EOPET) is a severe form of pre-eclampsia that is associated with altered physiological characteristics and gene expression in the placenta. DNA methylation is a relatively stable epigenetic modification to DNA that can reflect gene expression, and can provide insight into the mechanisms underlying such expression changes. This case-control study focused on DNA methylation and gene expression of whole chorionic villi samples from 20 EOPET placentas and 20 gestational age-matched controls from pre-term births. DNA methylation was also assessed in placentas affected by late-onset pre-eclampsia (LOPET) and normotensive intrauterine growth restriction (nIUGR). The Illumina HumanMethylation450 BeadChip was used to assess DNA methylation at >480 000 cytosine-guanine dinucleotide (CpG) sites. The Illumina HT-12v4 Expression BeadChip was used to assess gene expression of >45 000 transcripts in a subset of cases and controls. DNA methylation analysis by pyrosequencing was used to follow-up the initial findings in four genes with a larger cohort of cases and controls, including nIUGR and LOPET placentas. Bioinformatic analysis was used to identify overrepresentation of gene ontology categories and transcription factor binding motifs. We identified 38 840 CpG sites with significant (false discovery rate <0.01) DNA methylation alterations in EOPET, of which 282 had >12.5% methylation difference compared with the controls. Significant sites were enriched at the enhancers and low CpG density regions of the associated genes and the majority (74.5%) of these sites were hypomethylated in EOPET. EOPET, but not associated clinical features, such as intrauterine growth restriction (IUGR), presented a distinct DNA methylation profile. CpG sites from four genes relevant to pre-eclampsia (INHBA, BHLHE40, SLC2A1 and ADAM12) showed different extent of changes in LOPET and nIUGR. Genome-wide expression in a subset of samples showed that some of the gene expression changes were negatively correlated with DNA methylation changes, particularly for genes that are responsible for angiogenesis (such as EPAS1 and FLT1). Results could be confounded by altered cell populations in abnormal placentas. Larger sample sizes are needed to fully address the possibility of sub-profiles of methylation within the EOPET cohort. Based on DNA methylation profiling, we conclude that there are widespread DNA methylation alterations in EOPET that may be associated with changes in placental function. This property may provide a useful tool for early screening of such placentas. This study identifies DNA methylation changes at many loci previously reported to have altered gene expression in EOPET placentas, as well as in novel biologically relevant genes we confirmed to be differentially expressed. These results may be useful for DNA- methylation-based non-invasive prenatal diagnosis of at-risk pregnancies.
Collapse
Affiliation(s)
- John D. Blair
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, CanadaV5Z 4H4
- Child & Family Research Institute, Vancouver, BC, CanadaV5Z 4H4
| | - Ryan K.C. Yuen
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, CanadaV5Z 4H4
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, CanadaM5G 1X8
| | - Brendan K. Lim
- Child & Family Research Institute, Vancouver, BC, CanadaV5Z 4H4
| | - Deborah E. McFadden
- Department of Pathology, University of British Columbia, Vancouver, BC, CanadaV5Z 4H4
| | - Peter von Dadelszen
- Child & Family Research Institute, Vancouver, BC, CanadaV5Z 4H4
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, CanadaV5Z 4H4
| | - Wendy P. Robinson
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, CanadaV5Z 4H4
- Child & Family Research Institute, Vancouver, BC, CanadaV5Z 4H4
| |
Collapse
|
39
|
Ma W, Shi X, Lu S, Wu L, Wang Y. Hypoxia-induced overexpression of DEC1 is regulated by HIF-1α in hepatocellular carcinoma. Oncol Rep 2013; 30:2957-62. [PMID: 24100543 DOI: 10.3892/or.2013.2774] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/16/2013] [Indexed: 11/06/2022] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) and differentiated embryo-chondrocyte expressed gene 1 (DEC1) are two key factors that protect hepatocellular carcinoma (HCC) cells from a hypoxic microenvironment. However, little is known concerning the effects of hypoxia on the expression of HIF-1α and DEC1 in HCC. In the present study, RT-PCR and western blotting were conducted to assay the mRNA and protein levels of HIF-1α and DEC1 under normoxia and hypoxia induced by exposure to CoCl2 for different time periods (0, 2, 4, 6, 24 and 48 h). In addition, the HIF-1α protein inhibitor, YC-1, was used to analyze the interaction between DEC1 and HIF-1α expression and the related mechanism. Results showed that expression of DEC1 in HCC was significantly upregulated at both the mRNA and protein levels, when compared with that in normal liver cells (P<0.05). Hypoxia induced the upregulation of HIF-1α in a time-dependent manner, which was also observed at the DEC1 mRNA and protein levels (P<0.05). However, hypoxia did not affect the transcription of HIF-1α (P>0.05). A positive correlation was found between HIF-1α and DEC1 expression in both BEL-7402 (r=0.885, P<0.05) and SMMC-7721 cells (r=0.826, P<0.05). Furthermore, inhibition of HIF-1α by YC-1 led to a significant decrease in DEC1 induced by hypoxia (P<0.05). We suggest that hypoxia induced the overexpression of DEC1, the mechanism of which may be related to the upregulation of HIF-1α in HCC. The efficacy of inhibiting HIF-1α and DEC1 expression as a possible treatment for HCC should be assessed in clinical trials.
Collapse
Affiliation(s)
- Wanshan Ma
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | | | | | | | | |
Collapse
|
40
|
Li S, Ao X, Wu H. The role of circadian rhythm in breast cancer. Chin J Cancer Res 2013; 25:442-50. [PMID: 23997531 DOI: 10.3978/j.issn.1000-9604.2013.08.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/14/2013] [Indexed: 11/14/2022] Open
Abstract
The circadian rhythm is an endogenous time keeping system shared by most organisms. The circadian clock is comprised of both peripheral oscillators in most organ tissues of the body and a central pacemaker located in the suprachiasmatic nucleus (SCN) of the central nervous system. The circadian rhythm is crucial in maintaining the normal physiology of the organism including, but not limited to, cell proliferation, cell cycle progression, and cellular metabolism; whereas disruption of the circadian rhythm is closely related to multi-tumorigenesis. In the past several years, studies from different fields have revealed that the genetic or functional disruption of the molecular circadian rhythm has been found in various cancers, such as breast, prostate, and ovarian. In this review, we will investigate and present an overview of the current research on the influence of circadian rhythm regulating proteins on breast cancer.
Collapse
Affiliation(s)
- Shujing Li
- The School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | | | | |
Collapse
|
41
|
Martínez-Llordella M, Esensten JH, Bailey-Bucktrout SL, Lipsky RH, Marini A, Chen J, Mughal M, Mattson MP, Taub DD, Bluestone JA. CD28-inducible transcription factor DEC1 is required for efficient autoreactive CD4+ T cell response. ACTA ACUST UNITED AC 2013; 210:1603-19. [PMID: 23878307 PMCID: PMC3727315 DOI: 10.1084/jem.20122387] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The transcription factor DEC1 is induced by CD28 ligation and is required for optimal CD4+ T cell responses and the development of EAE. During the initial hours after activation, CD4+ T cells experience profound changes in gene expression. Co-stimulation via the CD28 receptor is required for efficient activation of naive T cells. However, the transcriptional consequences of CD28 co-stimulation are not completely understood. We performed expression microarray analysis to elucidate the effects of CD28 signals on the transcriptome of activated T cells. We show that the transcription factor DEC1 is highly induced in a CD28-dependent manner upon T cell activation, is involved in essential CD4+ effector T cell functions, and participates in the transcriptional regulation of several T cell activation pathways, including a large group of CD28-regulated genes. Antigen-specific, DEC1-deficient CD4+ T cells have cell-intrinsic defects in survival and proliferation. Furthermore, we found that DEC1 is required for the development of experimental autoimmune encephalomyelitis because of its critical role in the production of the proinflammatory cytokines GM-CSF, IFN-γ, and IL-2. Thus, we identify DEC1 as a critical transcriptional mediator in the activation of naive CD4+ T cells that is required for the development of a T cell–mediated autoimmune disease.
Collapse
|
42
|
Structural and Affinity Insight into the Sequence-Specific Interaction of Transcription Factors DEC1 and DEC2 with E-box DNA: A Novel Model Peptide Approach. Int J Pept Res Ther 2013. [DOI: 10.1007/s10989-013-9354-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
43
|
Pare R, Yang T, Shin JS, Lee CS. The significance of the senescence pathway in breast cancer progression. J Clin Pathol 2013; 66:491-5. [PMID: 23539738 DOI: 10.1136/jclinpath-2012-201081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Invasive breast cancer develops through prolonged accumulation of multiple genetic changes. The progression to a malignant phenotype requires overriding of growth inhibition. It is evident that some breast cancers have an inherited basis, and both hereditary and sporadic cancers appear to involve molecular mechanisms that are linked to the cell cycle. Frequently, changes in the molecular pathways with gene deletions, point mutations and/or overexpression of growth factors can be seen in these cancers. Recent evidence also implicates the senescence pathway in breast carcinogenesis. It has a barrier effect towards excessive cellular growth, acting as the regulator of tumour initiation and progression. Later in carcinogenesis, acquisition of the senescence associated secretory phenotype may instead promote tumour progression by stimulating growth and transformation in adjacent cells. This two-edge role of senescence in cancer directs more investigations into the effects of the senescence pathway in the development of malignancy. This review presents the current evidence on the roles of senescence molecular pathways in breast cancer and its progression.
Collapse
Affiliation(s)
- Rahmawati Pare
- Discipline of Pathology, School of Medicine, University of Western Sydney, Liverpool, New South Wales, Australia
| | | | | | | |
Collapse
|
44
|
Jia YF, Xiao DJ, Ma XL, Song YY, Hu R, Kong Y, Zheng Y, Han SY, Hong RL, Wang YS. Differentiated embryonic chondrocyte-expressed gene 1 is associated with hypoxia-inducible factor 1α and Ki67 in human gastric cancer. Diagn Pathol 2013; 8:37. [PMID: 23445622 PMCID: PMC3606391 DOI: 10.1186/1746-1596-8-37] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/16/2013] [Indexed: 11/16/2022] Open
Abstract
Background Gastric cancer is a leading causes of cancer-related deaths ,but the underlying molecular mechanisms of its progression are largely unknown. Differentiated embryonic chondrocyte-expressed gene 1 (DEC1), is an important transcription factor involved in the progression of tumors and has recently been identified to be strongly inducible by hypoxia. Little is known about the contribution of DEC1 to the intracellular hypoxia and proliferation signaling events in gastric cancer. Methods Immunohistochemistry was used to detect the expression of DEC1, hypoxia-inducible factor 1(HIF-1α) and Ki67 in 173 human gastric cancer samples and adjacent non-tumor tissues samples. The relationship between DEC1, HIF-1α and Ki67 was evaluated. Results DEC1 protein was persistently expressed in the nucleus and cytoplasm of gastric cancer tissue. The protein expression of DEC1 and HIF-1α in tumour tissues was 83.8% and 54.3%, respectively, and was significantly higher than that in adjacent normal tissues (83.8% vs 23.7%, P <0.001; 54.3% vs 12.7%, P< 0.001). The expression of DEC1 and HIF-1α was associated with poor histological differentiation. (P < 0. 01). Furthermore, DEC1 level was positively correlated with HIF-1α (P < 0. 01, r=0.290) and Ki67 expression (P < 0. 01, r=0.249). Conclusion The upregulation of DEC1 may play an important role in hypoxia regulation and cell proliferation in gastric cancer. The relevant molecular mechanism requires further investigation. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1794565980889391med.motic.com/MoticGallery/Slide?id=08d180cd-5fdb-4cee-830a-0b1fef3311f2&user=2C69F0D6-A478-4A2B-ABF0-BB36763E8025med.motic.com/MoticGallery/Slide?id=4762991d-3f2f-43aa-b4bf-ecdd2c2ae3ec&user=2C69F0D6-A478-4A2B-ABF0-BB36763E8025med.motic.com/MoticGallery/Slide?id=2717f209-b3fd-4e71-b621-0d60ea507a82&user=2C69F0D6-A478-4A2B-ABF0-BB36763E8025
Collapse
Affiliation(s)
- Yan-Fei Jia
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, Shandong Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
The transcription factor DEC1 (BHLHE40/STRA13/SHARP-2) is negatively associated with TNM stage in non-small-cell lung cancer and inhibits the proliferation through cyclin D1 in A549 and BE1 cells. Tumour Biol 2013; 34:1641-50. [PMID: 23423709 DOI: 10.1007/s13277-013-0697-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/04/2013] [Indexed: 01/15/2023] Open
Abstract
The objective of the current study was to investigate the expression pattern and clinicopathological significance of differentiated embryo-chondrocyte-expressed gene 1 (DEC1) in patients with non-small-cell lung cancer (NSCLC). In 118 archived NSCLC tissues, the positive rate of DEC1 was reduced in human lung cancer samples (36/118, 30.5 %) compared with adjacent normal lung tissues (106/118, 89.8 %), as measured by immunohistochemical staining. Loss of DEC1 was correlated with poor differentiation (p=0.005) and high p-TNM stage (p=0.002). Consistently, downregulation of DEC1 by siRNA knockdown promoted the growth and colony formation in the A549 lung cancer cell line, and overexpression of DEC1 inhibited the growth and colony formation in the BE1 lung cancer cell line. In addition, a significant negative correlation was found between DEC1 and cyclin D1 (p=0.014) in 118 cases of NSCLC. Knockdown of DEC1 resulted in the upregulation of cyclin D1, and overexpression of DEC1 led to the downregulation of cyclin D1. Together with the observation that DEC1 bound directly to the promoter region of cyclin D1 in A549 cells, these results indicate that loss of DEC1 may promote tumor progression in NSCLC through upregulation of cyclin D1, and DEC1 might serve as a novel therapeutic target of NSCLC.
Collapse
|
46
|
Ramani P, Headford A, Sowa-Avugrah E, Hunt LP. Angiogenin expression in human kidneys and Wilms' tumours: relationship with hypoxia and angiogenic factors. Int J Exp Pathol 2013; 94:115-25. [PMID: 23419171 DOI: 10.1111/iep.12012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 11/28/2012] [Indexed: 12/21/2022] Open
Abstract
Angiogenin (ANG) is a potent angiogenic factor that is up-regulated by hypoxia. ANG expression is well documented in normal tissues and in common tumours, but its expression has not been reported in the normal human kidney or in Wilms' tumours (WT). We examined ANG expression in WTs, human fetal kidney (FK) and childhood kidney (NK) samples and studied its relationship with microvascular density (MVD) and with three other hypoxia-induced angiogenic factors: lactate dehydrogenase A (LDHA), vascular endothelial growth factor (VEGFA) and BHLHE40 (basic helix-loop-helix transcription factor E40). Total ANG protein levels were significantly lower in WTs when compared with those in 15 matched-paired NKs. ANG immunoreactivity was observed in the glomeruli, proximal tubules and vessels in the FKs and NKs, indicating that ANG plays a physiological role in the human kidney. ANG cellular localization and distribution in 27 WTs reflected the pattern observed in the FKs. ANG colocalized with LDHA in the perinecrotic areas of untreated WTs suggesting up-regulation by hypoxia. There was a significant correlation between CD31-MVD and ANG-MVD. ANG, CD31, VEGFA and BHLHE40 mRNA levels were significantly lower in 15 WTs compared with matched-paired NKs. Univariable and multivariable statistical analyses showed significant correlations between ANG and CD31, ANG and BHLHE40 mRNAs and a weaker relationship between ANG and VEGFA mRNAs. ANG expression in WTs recapitulates that seen during nephrogenesis, and correlation with CD31-MVDs and mRNAs is consistent with a contribution to angiogenesis in WTs. Our study contributes to the understanding of angiogenesis during development and in WTs.
Collapse
Affiliation(s)
- Pramila Ramani
- Department of Histopathology, Bristol Royal Infirmary, University Hospitals Bristol NHS Foundation Trust, Bristol, UK; Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, University Walk, Bristol, UK
| | | | | | | |
Collapse
|
47
|
Liu Y, Miao Y, Wang J, Lin X, Wang L, Xu HT, Wang EH. DEC1 is positively associated with the malignant phenotype of invasive breast cancers and negatively correlated with the expression of claudin-1. Int J Mol Med 2013; 31:855-60. [PMID: 23426649 DOI: 10.3892/ijmm.2013.1279] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/04/2013] [Indexed: 11/06/2022] Open
Abstract
Differentiated embryo-chondrocyte expressed gene 1 (DEC1) is a basic helix-loop-helix transcriptional regulator, reportedly involved in cell growth, differentiation, apoptosis and tumorigenesis. In breast cancer, DEC1 expression correlates with increased malignant potential and invasiveness. Nevertheless, the detailed mechanisms by which DEC1 modulates breast cancer progression are still unclear. Claudin-1, an important tight junction protein, functions as a tumor invasion suppressor. In the present study, the relationship between DEC1 and claudin-1 in 147 cases of invasive breast ductal carcinomas was examined by immunohistochemistry. Based on the data, DEC1 expression was elevated in invasive breast ductal carcinomas and DEC1 levels were positively correlated with tumor grade (P=0.023). Moreover, DEC1 expression was negatively correlated with the claudin-1 level (correlation coefficient =-0.245, P=0.003). We further identified that, in MCF-7 and MDA-MB-231 breast cancer cell lines, DEC1 knockdown led to the enhanced expression of claudin-1 at both the mRNA and protein levels, and reduced cell invasive capacity. Collectively, our data suggest that overexpression of DEC1 may promote the invasiveness of breast cancer through downregulation of claudin-1.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, PR China
| | | | | | | | | | | | | |
Collapse
|
48
|
Bozóky B, Savchenko A, Csermely P, Korcsmáros T, Dúl Z, Pontén F, Székely L, Klein G. Novel signatures of cancer-associated fibroblasts. Int J Cancer 2013; 133:286-93. [DOI: 10.1002/ijc.28035] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/08/2012] [Accepted: 01/02/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Benedek Bozóky
- Department of Microbiology; Tumor and Cell Biology (MTC), Karolinska Institutet; Stockholm; Sweden
| | - Andrii Savchenko
- Department of Microbiology; Tumor and Cell Biology (MTC), Karolinska Institutet; Stockholm; Sweden
| | - Péter Csermely
- Department of Medical Chemistry, Faculty of Medicine; Semmelweis University; Budapest; Hungary
| | | | | | - Fredrik Pontén
- Department of Immunology; Genetics and Pathology, Rudbecklaboratoriet; Uppsala; Sweden
| | - László Székely
- Department of Microbiology; Tumor and Cell Biology (MTC), Karolinska Institutet; Stockholm; Sweden
| | - George Klein
- Department of Microbiology; Tumor and Cell Biology (MTC), Karolinska Institutet; Stockholm; Sweden
| |
Collapse
|
49
|
Down regulation of differentiated embryonic chondrocytes 1 (DEC1) is involved in 8-methoxypsoralen-induced apoptosis in HepG2 cells. Toxicology 2012; 301:58-65. [DOI: 10.1016/j.tox.2012.06.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 11/23/2022]
|
50
|
Vaapil M, Helczynska K, Villadsen R, Petersen OW, Johansson E, Beckman S, Larsson C, Påhlman S, Jögi A. Hypoxic conditions induce a cancer-like phenotype in human breast epithelial cells. PLoS One 2012; 7:e46543. [PMID: 23029547 PMCID: PMC3460905 DOI: 10.1371/journal.pone.0046543] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/31/2012] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Solid tumors are less oxygenated than their tissue of origin. Low intra-tumor oxygen levels are associated with worse outcome, increased metastatic potential and immature phenotype in breast cancer. We have reported that tumor hypoxia correlates to low differentiation status in breast cancer. Less is known about effects of hypoxia on non-malignant cells. Here we address whether hypoxia influences the differentiation stage of non-malignant breast epithelial cells and potentially have bearing on early stages of tumorigenesis. METHODS Normal human primary breast epithelial cells and immortalized non-malignant mammary epithelial MCF-10A cells were grown in a three-dimensional overlay culture on laminin-rich extracellular matrix for up to 21 days at normoxic or hypoxic conditions. Acinar morphogenesis and expression of markers of epithelial differentiation and cell polarization were analyzed by immunofluorescence, immunohistochemistry, qPCR and immunoblot. RESULTS In large ductal carcinoma in situ patient-specimens, we find that epithelial cells with high HIF-1α levels and multiple cell layers away from the vasculature are immature compared to well-oxygenated cells. We show that hypoxic conditions impaired acinar morphogenesis of primary and immortalized breast epithelial cells grown ex vivo on laminin-rich matrix. Normoxic cultures formed polarized acini-like spheres with the anticipated distribution of marker proteins associated with mammary epithelial polarization e.g. α6-integrin, laminin 5 and Human Milk Fat Globule/MUC1. At hypoxia, cells were not polarized and the sub-cellular distribution pattern of the marker proteins rather resembled that reported in vivo in breast cancer. The hypoxic cells remained in a mitotic state, whereas proliferation ceased with acinar morphogenesis at normoxia. We found induced expression of the differentiation repressor ID1 in the undifferentiated hypoxic MCF-10A cell structures. Acinar morphogenesis was associated with global histone deacetylation whereas the hypoxic breast epithelial cells showed sustained global histone acetylation, which is generally associated with active transcription and an undifferentiated proliferative state.
Collapse
Affiliation(s)
- Marica Vaapil
- Department of Laboratory Medicine, Center for Molecular Pathology, Skåne University Hospital Malmö, Malmö, Sweden
- CREATE Health, Lund University, Lund, Sweden
| | - Karolina Helczynska
- Department of Laboratory Medicine, Center for Molecular Pathology, Skåne University Hospital Malmö, Malmö, Sweden
- CREATE Health, Lund University, Lund, Sweden
- Department of Surgery, Skåne University Hospital, Malmö, Sweden
| | - René Villadsen
- Department of Cellular and Molecular Medicine, Centre for Biological Disease Analysis, and The Danish Stem Cell Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole W. Petersen
- Department of Cellular and Molecular Medicine, Centre for Biological Disease Analysis, and The Danish Stem Cell Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elisabet Johansson
- Department of Laboratory Medicine, Center for Molecular Pathology, Skåne University Hospital Malmö, Malmö, Sweden
- CREATE Health, Lund University, Lund, Sweden
| | - Siv Beckman
- Department of Laboratory Medicine, Center for Molecular Pathology, Skåne University Hospital Malmö, Malmö, Sweden
- CREATE Health, Lund University, Lund, Sweden
| | - Christer Larsson
- Department of Laboratory Medicine, Center for Molecular Pathology, Skåne University Hospital Malmö, Malmö, Sweden
| | - Sven Påhlman
- Department of Laboratory Medicine, Center for Molecular Pathology, Skåne University Hospital Malmö, Malmö, Sweden
- CREATE Health, Lund University, Lund, Sweden
| | - Annika Jögi
- Department of Laboratory Medicine, Center for Molecular Pathology, Skåne University Hospital Malmö, Malmö, Sweden
- CREATE Health, Lund University, Lund, Sweden
| |
Collapse
|