1
|
Jankovic J, Tièche E, Dettwiler M, Hahn K, Scheemaeker S, Kessler M, Daminet S, Rottenberg S, Campos M. Canine follicular cell and medullary thyroid carcinomas: Immunohistochemical characterization. Vet Pathol 2024; 61:524-533. [PMID: 38098215 DOI: 10.1177/03009858231217245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Research on modulation of iodine uptake by thyroid cells could help improve radioiodine treatment of dogs with thyroid tumors. The aim of this study was to characterize the immunohistochemical expression of thyroid transcription factor-1 (TTF-1), thyroglobulin, thyrotropin receptor (TSHR), sodium iodide symporter (NIS), pendrin, thyroid peroxidase (TPO), vimentin, and Ki-67 in follicular cell thyroid carcinomas (FTCs) and medullary thyroid carcinomas (MTCs), and to compare protein expression between FTC causing hyperthyroidism and FTC of euthyroid dogs. Immunohistochemistry was performed in 25 FTCs (9 follicular, 8 follicular-compact, and 8 compact) and 8 MTCs. FTCs and MTCs were positive for TTF-1, and expression was higher in FTCs of euthyroid dogs compared with FTCs of hyperthyroid dogs (P= .041). Immunolabeling for thyroglobulin was higher in follicular and follicular-compact FTCs compared with compact FTCs (P = .001), while vimentin expression was higher in follicular-compact FTCs compared with follicular FTCs (P = .011). The expression of TSHR, NIS, pendrin, and TPO was not significantly different among the different subtypes of FTCs or between FTCs causing hyperthyroidism and FTCs in euthyroid dogs. TSHR, NIS, pendrin, and TPO were also expressed in MTCs. Ki-67 labeling index was comparable between FTCs and MTCs, and between FTCs causing hyperthyroidism and FTCs in euthyroid dogs. Proteins of iodine transport were also expressed in canine MTCs, which could have implications for diagnosis and treatment. The different expression of thyroglobulin and vimentin between FTC histological subtypes could reflect variations in tumor differentiation.
Collapse
|
2
|
Nilsson JN, Siikanen J, Condello V, Jatta K, Saini R, Hedman C, Ihre Lundgren C, Juhlin CC. Iodine avidity in papillary and poorly differentiated thyroid cancer is predicted by immunohistochemical and molecular work-up. Eur Thyroid J 2023; 12:e230099. [PMID: 37352166 PMCID: PMC10388652 DOI: 10.1530/etj-23-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 06/25/2023] Open
Abstract
Background Successful radioiodine treatment of differentiated thyroid cancer requires iodine avidity: that is, the concentration and retention of iodine in cancer tissue. Several parameters have previously been linked with lower iodine avidity. However, a comprehensive analysis of which factors best predict iodine avidity status, and the magnitude of their impact, is lacking. Methods Quantitative measurements of iodine avidity in surgical specimens (primary tumour and lymph node metastases) of 28 patients were compared to immunohistochemical expression of the thyroid-stimulating hormone receptor, thyroid peroxidase (TPO), pendrin, sodium-iodide symporter (NIS) and mutational status of BRAF and the TERT promoter. Regression analysis was used to identify independent predictors of poor iodine avidity. Results Mutations in BRAF and the TERT promoter were significantly associated with lower iodine avidity for lymph node metastases (18-fold and 10-fold, respectively). Membranous NIS localisation was found only in two cases but was significantly associated with high iodine avidity. TPO expression was significantly correlated with iodine avidity (r = 0.44). The multivariable modelling showed that tumour tissue localisation (primary tumour or lymph node metastasis), histological subtype, TPO and NIS expression and TERT promoter mutation were each independent predictors of iodine avidity that could explain 68% of the observed variation of iodine avidity. Conclusions A model based on histological subtype, TPO and NIS expression and TERT promoter mutation, all evaluated on initial surgical material, can predict iodine avidity in thyroid cancer tissue ahead of treatment. This could inform early adaptation with respect to expected treatment effect.
Collapse
Affiliation(s)
- Joachim N Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jonathan Siikanen
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Vincenzo Condello
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kenbugul Jatta
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Ravi Saini
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Christel Hedman
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Stockholms Sjukhem Foundation's Research and Development Department, Stockholm, Sweden
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Catharina Ihre Lundgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Breast, Endocrine Tumours and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Arczewska KD, Godlewska M, Krasuska W, Łyczkowska A, Kiedrowski M, Czarnocka B. Expression of pendrin and NIS iodide transporters in human breast tumor and peri-tumoral tissue. Arch Med Sci 2022; 18:1041-1050. [PMID: 35832691 PMCID: PMC9266960 DOI: 10.5114/aoms.2019.89980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/22/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Thyroid iodide transporters, Na+/I- symporter (NIS) and pendrin (PDS), are responsible for supplying this vital micronutrient for thyroid hormone synthesis by thyroid peroxidase (TPO). Both proteins were shown to be expressed, apart from the thyroid, also in other human tissues, including lactating mammary gland. NIS expression in human breast cancers has been widely studied. On the other hand, until now PDS mRNA levels in breast tumor tissue have been estimated only in high throughput analyses. Previously, we have observed that TPO is expressed in normal and cancerous human breast tissues and shows enzymatic activity. However, biochemical activity of TPO in human breast cancer cells requires iodide transport by NIS and PDS. Therefore, to extend our previous study on TPO expression and function in human breast tumors we performed analysis of NIS and PDS levels in the same group of patients. MATERIAL AND METHODS The study involved detection of NIS and PDS protein levels by immunohistochemistry and Western blotting, as well as mRNA levels by real-time quantitative polymerase chain reaction. RESULTS Here we provide direct evidence that NIS and PDS are expressed in human breast cancer tissue, with NIS levels being increased and PDS levels decreased in tumor tissue. Interestingly, PDS mRNA levels in breast cancer tissue seem to be influenced by the estrogen receptor status and age of the patients, while NIS mRNA levels were dependent on histological type of the tumor. CONCLUSIONS This study provides valuable information important for consideration in diagnostic or therapeutic application of radioiodine in breast cancer management.
Collapse
Affiliation(s)
- Katarzyna D Arczewska
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Marlena Godlewska
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Wanda Krasuska
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Anna Łyczkowska
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Mirosław Kiedrowski
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Barbara Czarnocka
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
4
|
Jankovic J, Dettwiler M, Fernández MG, Tièche E, Hahn K, April-Monn S, Dettmer MS, Kessler M, Rottenberg S, Campos M. Validation of Immunohistochemistry for Canine Proteins Involved in Thyroid Iodine Uptake and Their Expression in Canine Follicular Cell Thyroid Carcinomas (FTCs) and FTC-Derived Organoids. Vet Pathol 2021; 58:1172-1180. [PMID: 34056980 DOI: 10.1177/03009858211018813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Thyrotropin receptor (TSHR), sodium iodide symporter (NIS), pendrin, and thyroid peroxidase (TPO) are essential for the uptake of iodine by follicular thyroid cells. The aim of this study was to establish immunohistochemistry (IHC) protocols for TSHR, NIS, pendrin, and TPO in canine tissues and characterize their expression in organoids derived from canine follicular cell thyroid carcinoma (FTC) and in the respective primary tumors. This constitutes a fundamental step to establish organoids as a model to study the uptake of iodine in canine FTC. Commercially available antibodies directed against human proteins were selected. Antibody specificity was confirmed by western blot using lysates of the HTori-3 human thyroid cell line and healthy canine thyroid gland. IHC was validated using HTori-3 cells and a set of canine normal tissues including healthy thyroid gland. The expression of TSHR, NIS, pendrin, and TPO was evaluated in 3 organoid lines derived from FTC and respective primary tumors. All 4 antibodies produced specific bands by western blot and cytoplasmic labeling in follicular cells by IHC in both human HTori-3 cells and canine thyroid gland. NIS also showed basolateral membrane immunolabeling in follicular cells. All 4 proteins were highly expressed in organoids derived from FTC. The expression was similar or higher compared to the primary tumors. The results of this study characterize organoids derived from canine FTC as a suitable in vitro model to investigate iodine uptake, opening new research possibilities in the field of canine thyroid cancer therapy.
Collapse
|
5
|
De la Vieja A, Riesco-Eizaguirre G. Radio-Iodide Treatment: From Molecular Aspects to the Clinical View. Cancers (Basel) 2021; 13:cancers13050995. [PMID: 33673669 PMCID: PMC7957486 DOI: 10.3390/cancers13050995] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary This year marks the 80th commemoration of the first time that radio-iodide treatment (RAI) was used. RAI is one of the most effective targeted internal radiation anticancer therapies ever devised and it has been used for many decades, however, a thorough understanding of the underlying molecular mechanisms involved could greatly improve the success of this therapy. This is an in-depth innovative review focusing on the molecular mechanisms underlying radio-iodide therapy in thyroid cancer and how the alteration of these mechanisms affects the results in the clinic. Abstract Thyroid radio-iodide therapy (RAI) is one of the oldest known and used targeted therapies. In thyroid cancer, it has been used for more than eight decades and is still being used to improve thyroid tumor treatment to eliminate remnants after thyroid surgery, and tumor metastases. Knowledge at the molecular level of the genes/proteins involved in the process has led to improvements in therapy, both from the point of view of when, how much, and how to use the therapy according to tumor type. The effectiveness of this therapy has spread into other types of targeted therapies, and this has made sodium/iodide symporter (NIS) one of the favorite theragnostic tools. Here we focus on describing the molecular mechanisms involved in radio-iodide therapy and how the alteration of these mechanisms in thyroid tumor progression affects the diagnosis and results of therapy in the clinic. We analyze basic questions when facing treatment, such as: (1) how the incorporation of radioiodine in normal, tumor, and metastatic thyroid cells occurs and how it is regulated; (2) the pros and cons of thyroid hormonal deprivation vs. recombinant human Thyroid Stimulating Hormone (rhTSH) in radioiodine residence time, treatment efficacy, thyroglobulin levels and organification, and its influence on diagnostic imaging tests and metastasis treatment; and (3) the effect of stunning and the possible causes. We discuss the possible incorporation of massive sequencing data into clinical practice, and we conclude with a socioeconomical and clinical vision of the above aspects.
Collapse
Affiliation(s)
- Antonio De la Vieja
- Endocrine Tumors Unit (Unidad Funcional de Investigación en Enfermedades Endocrinas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
- Correspondence: ; Tel.: +34-918223270
| | - Garcilaso Riesco-Eizaguirre
- Departamento de Endocrinología y Nutrición, Hospital Universitario de Móstoles, 28935 Madrid, Spain
- Molecular Endocrinology Group, Faculty of Medicine, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| |
Collapse
|
6
|
Poma AM, Giannini R, Piaggi P, Ugolini C, Materazzi G, Miccoli P, Vitti P, Basolo F. A six-gene panel to label follicular adenoma, low- and high-risk follicular thyroid carcinoma. Endocr Connect 2018; 7:124-132. [PMID: 29298844 PMCID: PMC5754511 DOI: 10.1530/ec-17-0261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/27/2017] [Indexed: 12/19/2022]
Abstract
The distinction between follicular thyroid carcinomas (FTCs) and follicular-patterned benign lesions is almost impossible on fine-needle aspiration cytology. Furthermore, minimally invasive FTCs (MI-FTCs) with less than 4 vascular invasion foci generally have an excellent prognosis, but there are exceptions and, so far, no molecular marker appears able to identify them reliably. We aimed to distinguish benign lesions from low- and high-risk FTCs by a small-scale combination of genes. The expression analysis of 75 selected genes was performed on 18 follicular adenomas (FAs), 14 MI-FTCs and 6 widely invasive FTC (WI-FTCs). The mutational status of the RAS genes, TERT promoter and PAX8-PPARG rearrangements was also investigated. Seven samples were mutated, namely 3 MI-FTCs and 4 WI-FTCs. Twenty-five genes were differentially expressed (FDR <0.05) between FAs and WI-FTCs. Six of these (ECM1, RXRG, SDPR, SLC26A4, TIFF3, TIMP1) were also differently expressed among MI-FTCs and FAs or WI-FTCs and were considered to build a classification model, which was tested to classify samples according to their histological class. Hence, 31 out of 38 were correctly classified, and accuracy remained high after cross-validation (27/38). The 2 MI-FTCs incorrectly classified as WI-FTCs harbored both RAS and TERT promoter mutations. The capability of these six genes to stratify benign, low- and high-risk lesions appears to be promising in supporting the diagnosis of indeterminate thyroid nodules.
Collapse
Affiliation(s)
- Anello Marcello Poma
- Department of SurgicalMedical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Riccardo Giannini
- Department of SurgicalMedical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Paolo Piaggi
- National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of Health, Phoenix, Arizona, USA
| | - Clara Ugolini
- Department of Laboratory MedicineSection of Pathology, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Gabriele Materazzi
- Department of SurgicalMedical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Paolo Miccoli
- Department of SurgicalMedical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Paolo Vitti
- Department of Clinical and Experimental MedicineUniversity of Pisa, Pisa, Italy
| | - Fulvio Basolo
- Department of SurgicalMedical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Karatas A, Erdem H, Karatas Z, Ozlu T, Cakmak B. The effect of smoking on placental pendrin expression. J OBSTET GYNAECOL 2016; 37:11-14. [PMID: 28013561 DOI: 10.1080/01443615.2016.1174825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Pendrin is important for transport of iodine across the placenta. Thiocyanate coming from cigarette is a competitive inhibitor of iodine transport. We aimed to evaluate the pendrin immunostaining intensity in placentas of smoker and non-smoker women. Placental tissues from 61 women, of which 28 were in smoking, and 33 were in non-smoking group were evaluated by immunohistochemical staining. Positive immunostaining was evaluated using a semiquantitative score: 0, negative; +, mild; ++, moderate; and +++, intense. Birth weight was significantly lower in the smoker group (p = 0.024). There was a negative correlation between birth weight and intensity of placental pendrin immunostaining in the smoker group (r = -0.44, p = 0.02). Placentas of the smoking women showed significantly higher immunostaining with pendrin than the control group (p = 0.006). Thiocyonate coming from cigarettes may competitively inhibit pendrin mediated iodine transport in the placenta and adversely affect foetal development by this mechanism.
Collapse
Affiliation(s)
- Ahmet Karatas
- a Department of Obstetrics and Gynaecology , School of Medicine, Abant Izzet Baysal University, Golkoy Kampusu, Golkoy Yerleskesi , Bolu , Turkey
| | - Havva Erdem
- b Department of Medical Pathology , School of Medicine, Duzce University, Merkez Yerleskesi , Konuralp , Duzce , Turkey
| | - Zehra Karatas
- c Department of Paediatrics , School of Medicine, Abant Izzet Baysal University, Golkoy Kampusu, Golkoy Yerleskesi , Bolu , Turkey
| | - Tulay Ozlu
- a Department of Obstetrics and Gynaecology , School of Medicine, Abant Izzet Baysal University, Golkoy Kampusu, Golkoy Yerleskesi , Bolu , Turkey
| | - Bulent Cakmak
- d Department of Obstetrics and Gynaecology , School of Medicine, Gaziosmanpasa University, Sevki Erek Yerleskesi , Tokat , Turkey
| |
Collapse
|
8
|
Eskalli Z, Achouri Y, Hahn S, Many MC, Craps J, Refetoff S, Liao XH, Dumont JE, Van Sande J, Corvilain B, Miot F, De Deken X. Overexpression of Interleukin-4 in the Thyroid of Transgenic Mice Upregulates the Expression of Duox1 and the Anion Transporter Pendrin. Thyroid 2016; 26:1499-1512. [PMID: 27599561 PMCID: PMC5067804 DOI: 10.1089/thy.2016.0106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The dual oxidases (Duox) are involved in hydrogen peroxide generation, which is essential for thyroid hormone synthesis, and therefore they are markers of thyroid function. During inflammation, cytokines upregulate DUOX gene expression in the airway and the intestine, suggesting a role for these proteins in innate immunity. It was previously demonstrated that interleukin-4 (IL-4) upregulates DUOX gene expression in thyrocytes. Although the role of IL-4 in autoimmune thyroid diseases has been studied extensively, the effects of IL-4 on thyroid physiology remain largely unknown. Therefore, a new animal model was generated to study the impact of IL-4 on thyroid function. METHODS Transgenic (Thyr-IL-4) mice with thyroid-targeted expression of murine IL-4 were generated. Transgene expression was verified at the mRNA and protein level in thyroid tissues and primary cultures. The phenotype of the Thyr-IL-4 animals was characterized by measuring serum thyroxine (T4) and thyrotropin levels and performing thyroid morphometric analysis, immunohistochemistry, whole transcriptome sequencing, quantitative reverse transcription polymerase chain reaction, and ex vivo thyroid function assays. RESULTS Thyrocytes from two Thyr-IL-4 mouse lines (#30 and #52) expressed IL-4, which was secreted into the extracellular space. Although 10-month-old transgenic animals had T4 and thyrotropin serum levels in the normal range, they had altered thyroid follicular structure with enlarged follicles composed of elongated thyrocytes containing numerous endocytic vesicles. These follicles were positive for T4 staining the colloid, indicating their capacity to produce thyroid hormones. RNA profiling of Thyr-IL-4 thyroid samples revealed modulation of multiple genes involved in inflammation, while no major leukocyte infiltration could be detected. Upregulated expression of Duox1, Duoxa1, and the pendrin anion exchanger gene (Slc26a4) was detected. In contrast, the iodide symporter gene Slc5a5 was markedly downregulated resulting in impaired iodide uptake and reduced thyroid hormone levels in transgenic thyroid tissue. Hydrogen peroxide production was increased in Thyr-IL-4 thyroid tissue compared with wild-type animals, but no significant oxidative stress could be detected. CONCLUSIONS This is the first study to show that ectopic expression of IL-4 in thyroid tissue upregulates Duox1/Duoxa1 and Slc26a4 expression in the thyroid. The present data demonstrate that IL-4 could affect thyroid morphology and function, mainly by downregulating Slc5a5 expression, while maintaining a normal euthyroid phenotype.
Collapse
Affiliation(s)
- Zineb Eskalli
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Younes Achouri
- Institut De Duve, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Stephan Hahn
- Laboratory of Image, Signal processing and Acoustics—Brussels School of Engineering, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Marie-Christine Many
- Pôle de Morphologie (MORF), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Julie Craps
- Pôle de Morphologie (MORF), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Samuel Refetoff
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Xiao-Hui Liao
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Jacques E. Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Jacqueline Van Sande
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Françoise Miot
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Xavier De Deken
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
9
|
Increased expression of the epithelial anion transporter pendrin/SLC26A4 in nasal polyps of patients with chronic rhinosinusitis. J Allergy Clin Immunol 2015; 136:1548-1558.e7. [PMID: 26143180 DOI: 10.1016/j.jaci.2015.05.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 04/27/2015] [Accepted: 05/13/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is a multifactorial disease of unknown cause characterized by sinonasal inflammation, increased mucus production, and defective mucociliary clearance. Expression of Pendrin, an epithelial anion transporter, is increased in asthma and chronic obstructive pulmonary disease. Pendrin increases mucus production and regulates mucociliary clearance. OBJECTIVES We sought to investigate the expression of pendrin and the mucus-related protein Muc5AC in sinonasal tissues of control subjects and patients with CRS and to evaluate the regulation of pendrin expression in nasal epithelial cells (NECs) in vitro. METHODS The expression and distribution of pendrin in sinonasal tissues was analyzed by using real-time PCR, immunoblot analysis, and immunohistochemistry. Differentiated NECs were used to study the regulation of pendrin expression. RESULTS Increased pendrin expression was observed in nasal polyp (NP) tissue of patients with CRS. Immunohistochemistry analysis revealed that pendrin was largely restricted to the epithelial layer. Pendrin expression significantly correlated with inflammatory cell markers, suggesting that the factors made by these cells might induce pendrin expression. Furthermore, both pendrin and periostin levels (a biomarker in asthma) correlated with IL-13 levels, suggesting that pendrin can be induced by this cytokine in sinonasal tissues. Expression of the mucus component protein Muc5AC correlated weakly with pendrin expression, indicating that pendrin might modulate mucus production in NPs. In cultured NECs pendrin expression was induced by TH2 cytokines and induced synergistically when TH2 cytokines were combined with IL-17A. Interestingly, human rhinovirus had a potentiating effect on IL-13-induced pendrin expression. Dexamethasone suppressed pendrin expression, suggesting that the therapeutic benefit of dexamethasone in asthmatic patients and those with CRS might involve regulation of pendrin expression. CONCLUSIONS TH2-mediated pendrin expression is increased in NPs of patients with CRS and might lead to increased inflammation, mucus production, and decreased mucociliary clearance.
Collapse
|
10
|
Fröhlich E, Wahl R. The current role of targeted therapies to induce radioiodine uptake in thyroid cancer. Cancer Treat Rev 2014; 40:665-74. [DOI: 10.1016/j.ctrv.2014.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 12/18/2022]
|
11
|
Rudzińska M, Gaweł D, Sikorska J, Karpińska KM, Kiedrowski M, Stępień T, Marchlewska M, Czarnocka B. The role of podoplanin in the biology of differentiated thyroid cancers. PLoS One 2014; 9:e96541. [PMID: 24797369 PMCID: PMC4010536 DOI: 10.1371/journal.pone.0096541] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/09/2014] [Indexed: 01/04/2023] Open
Abstract
Podoplanin (PDPN), a mucin-type transmembrane glycoprotein specific to the lymphatic system is expressed in a variety of human cancers, and is regarded as a factor promoting tumor progression. The purpose of this study was to elucidate the molecular role of PDPN in the biology of thyroid cancer cells. PDPN expression was evaluated in primary thyroid carcinomas and thyroid carcinoma cell lines by RT-qPCR, Western blotting, IF and IHC. To examine the role of podoplanin in determining a cell's malignant potential (cellular migration, invasion, proliferation, adhesion, motility, apoptosis), a thyroid cancer cell line with silenced PDPN expression was used. We observed that PDPN was solely expressed in the cancer cells of 40% of papillary thyroid carcinoma (PTC) tissues. Moreover, PDPN mRNA and protein were highly expressed in PTC-derived TPC1 and BcPAP cell lines but were not detected in follicular thyroid cancer derived cell lines. PDPN knock-down significantly decreased cellular invasion, and modestly reduced cell migration, while proliferation and adhesion were not affected. Our results demonstrate that PDPN mediates the invasive properties of cells derived from papillary thyroid carcinomas, suggesting that podoplanin might promote PTC progression.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Damian Gaweł
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Justyna Sikorska
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Kamila M. Karpińska
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Mirosław Kiedrowski
- Department of Pathology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Tomasz Stępień
- Department of General and Endocrinological Surgery, Copernicus Memorial Hospital, Łódź, Poland
| | - Magdalena Marchlewska
- Department of General and Endocrinological Surgery, Copernicus Memorial Hospital, Łódź, Poland
| | - Barbara Czarnocka
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
- * E-mail:
| |
Collapse
|
12
|
Karatas A, Erdem H, Albayrak M, Oktay M, Ozlu T, Cakmak B, Keskin F, Donmez ME. Alterations in placental pendrin expression in pre-eclampsia. J Matern Fetal Neonatal Med 2013; 27:687-90. [PMID: 23941406 DOI: 10.3109/14767058.2013.833600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Pendrin is an integral membrane protein and plays a key role in extracellular fluid volume and blood pressure control. We aimed to investigate the relationship between pendrin immunostaining intensity in normal and pre-eclamptic placental tissue. METHODS Fifty-six placental tissues, of which 26 were in pre-eclamptic, and 30 were in control group were evaluated by immunohistochemical staining. Positive immunostaining was evaluated using a semiquantitative score: 0, negative; +, mild; ++, moderate; and +++, intense. RESULTS There was more positive immunstaining in the pre-eclamptic placenta compared to the controls (p<0.001). A significant positive correlation was observed between immunostaining level and diastolic blood pressure (r=0.533, p=0.005) in the pre-eclamptic group. However, no significant correlation was observed between any condition and immunostaining level in the control group. CONCLUSIONS Placentas in the pre-eclamptic group were significantly more immunostained with pendrin than were those in the control group. In addition, a positive correlation between immunostaining intensity with pendrin and both systolic and diastolic blood pressure were observed. Pendrin may play a role in the mechanism of severe hypertension in women with pre-eclampsia.
Collapse
Affiliation(s)
- Ahmet Karatas
- Department of Obstetrics and Gynecology, School of Medicine, Abant Izzet Baysal University , Bolu , Turkey
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kallel R, Niasme-Grare M, Belguith-Maalej S, Mnif M, Abid M, Ayadi H, Masmoudi S, Jonard L, Hadj Kacem H. Screening of SLC26A4 gene in autoimmune thyroid diseases. Int J Immunogenet 2013; 40:284-91. [PMID: 23280318 DOI: 10.1111/iji.12035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 10/31/2012] [Accepted: 11/19/2012] [Indexed: 12/30/2022]
Abstract
The Pendred syndrome (PS) gene, SLC26A4, was involved in the genetic susceptibility of autoimmune thyroid disease (AITD) in Tunisian population. Recently, functional assays have shown a differential expression of SLC26A4 gene between Graves' disease (GD) and Hashimoto's thyroiditis (HT). Here, by the mean of DHPLC and HRM, we explored the 21 exons and their flanking intronic sequences of 128 patients affected with GD (n = 64) or HT (n = 64). The pathogenic effect of identified variations on splice was investigated using the web server HSF. Eighteen allelic variations were identified and ranged on missense, sens and splice variations. Nine identified variations (c.-66C>G, c.898A>C, c.1002-9A>C, c.1061T>C, c.1544 + 9G>T, c.1545-5T>G, c.1790T>C, c.1826T>G, c.2139T>G) were previously reported in hearing impairment studies. Forty-seven per cent (30/64) of GD patients and 37,5% (24/64) of HT patients present at least one variant in the explored sequences. Moreover, the analysis of the variant distribution between HT (9 (5'UTR), 12 exonic and 13 intronic) and GD (18 (5'UTR), 13 exonic and 5 intronic) patients showed a significant difference (χ² = 6.54, 2df, P = 0.03). Interestingly, missense changes (I300L, p.M283I, F354S and p.L597S) affected conserved residues of pendrin. On the other hand, the HSF analyses ascertain that some variants identified in HT disease are predicted to have a pathogenic effect on splice. In conclusion, our analysis of SLC26A4 sequence variations suggested a distinct genetics basis between HT and GD patients, which should be confirmed on a large cohort.
Collapse
Affiliation(s)
- R Kallel
- Laboratoire de Microorganismes et Biomolécules, équipe des Procédés de Criblage Moléculaires et Cellulaires, Center de Biotechnologie de Sfax, Sfax, Tunisie
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
SLC26A4 expression among autoimmune thyroid tissues. Immunobiology 2011; 216:571-8. [DOI: 10.1016/j.imbio.2010.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 09/28/2010] [Accepted: 09/28/2010] [Indexed: 11/18/2022]
|
15
|
Liu XH, Chen GG, Vlantis AC, van Hasselt CA. Iodine mediated mechanisms and thyroid carcinoma. Crit Rev Clin Lab Sci 2009; 46:302-18. [DOI: 10.3109/10408360903306384] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Fröhlich E, Czarnocka B, Brossart P, Wahl R. Antitumor effects of arsenic trioxide in transformed human thyroid cells. Thyroid 2008; 18:1183-93. [PMID: 19014326 DOI: 10.1089/thy.2008.0114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND To improve radioiodine treatment of metastasized differentiated thyroid carcinomas, substances that increase iodide uptake are needed. Many tumors are not responsive to retinoic acid as a differentiating agent. Therefore, identification of other differentiating substances is needed. Arsenic trioxide (ATO) was investigated for its potential to increase iodide uptake. METHODS The action of ATO on proliferation, differentiation, and apoptosis was evaluated in follicular and papillary thyroid carcinoma cell lines. To get insight into the mode of action of ATO, coincubations with inhibitors of the phosphoinositide 3 (PI3) kinase pathway (V-Akt Murine Thymoma Viral Oncogene Homolog 1, Akt inhibitors) were performed; glutathione (GSH) levels were determined, as well as synergistic effects of ATO with inhibitors of GSH metabolism, inductors of oxidative stress. As a potential additional target of the pleiotropic action of ATO, its effect on glucose uptake was investigated. The expression of sodium iodide symporter, pendrin, phospho-Akt, and glucose transporter 1 was studied to reveal a potential effect of ATO on the transcription of specific genes. RESULTS ATO reduced proliferation, increased iodide uptake and apoptosis, and, as an additional new mechanism, decreased glucose uptake in transformed thyrocytes. The pharmacological reduction of the amount of reduced GSH was effective in enhancing the differentiating action of ATO, whereas the combination of ATO with Akt-1 inhibitors reduced cell number but did not increase differentiation. CONCLUSIONS Our study suggests a new therapeutic option for postoperative treatment of radioiodine nonresponsive differentiated thyroid carcinomas.
Collapse
MESH Headings
- Adenocarcinoma, Follicular/drug therapy
- Adenocarcinoma, Follicular/metabolism
- Adenocarcinoma, Follicular/pathology
- Adenocarcinoma, Follicular/radiotherapy
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Arsenic Trioxide
- Arsenicals/pharmacology
- Biological Transport, Active/drug effects
- Carcinoma, Papillary/drug therapy
- Carcinoma, Papillary/metabolism
- Carcinoma, Papillary/pathology
- Carcinoma, Papillary/radiotherapy
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/metabolism
- Glucose/metabolism
- Glutathione/metabolism
- Humans
- Iodides/metabolism
- Iodine Radioisotopes/therapeutic use
- Oncogene Protein v-akt/antagonists & inhibitors
- Oxides/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Radiation Tolerance
- Reactive Oxygen Species/metabolism
- Thyroid Neoplasms/drug therapy
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Thyroid Neoplasms/radiotherapy
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Department of Endocrinology, Metabolism, Nephrology, and Clinical Chemistry, University of Tuebingen, Tuebingen, Germany
| | | | | | | |
Collapse
|
17
|
Adler L, Efrati E, Zelikovic I. Molecular mechanisms of epithelial cell-specific expression and regulation of the human anion exchanger (pendrin) gene. Am J Physiol Cell Physiol 2008; 294:C1261-76. [PMID: 18322141 DOI: 10.1152/ajpcell.00486.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pendrin, a Cl(-)/anion exchanger encoded by the gene PDS, is highly expressed in the kidney, thyroid, and inner ear epithelia and is essential for bicarbonate secretion, iodide accumulation, and endolymph ion balance, respectively. This study aimed to define promoter regulatory elements essential for renal, thyroid, and inner ear epithelial cell-specific expression of human PDS (hPDS) and to explore the effect of ambient pH and aldosterone on hPDS promoter activity. Endogenous pendrin mRNA and protein were detected in renal HEK293, thyroid LA2, and inner ear VOT36 epithelial cell lines, but not in the fibroblast cell line, NIH3T3. A 4.2-kb hPDS 5'-flanking DNA sequence and consecutive 5'-deletion products were cloned into luciferase reporter vectors and transiently transfected into the above cell lines. Distinct differences in expression/activity of deduced positive/negative regulatory elements within the hPDS promoter between HEK293, LA2, and VOT36 cells were demonstrated, with only basal activity in NIH3T3 cells. Acidic pH (7.0-7.1) decreased and alkaline pH (7.6-7.7) increased hPDS promoter activity in transfected HEK293 and VOT36, but not in LA2 cells. Aldosterone (10(-8) M) reduced hPDS promoter activity in HEK293 but had no effect in LA2 and VOT36 cells. These pH and aldosterone-induced effects on the hPDS promoter occurred within 96-bp and 89-bp regions, respectively, which likely contain distinct response elements to these modulators. Acidic pH and aldosterone decreased, and alkaline pH increased, endogenous pendrin mRNA level in HEK293 cells. In conclusion, pendrin-mediated HCO3(-) secretion in the renal tubule and anion transport in the endolymph may be regulated transcriptionally by systemic pH and aldosterone.
Collapse
Affiliation(s)
- Lior Adler
- Department of Physiology and Biophysics, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
18
|
Palos F, García-Rendueles MER, Araujo-Vilar D, Obregon MJ, Calvo RM, Cameselle-Teijeiro J, Bravo SB, Perez-Guerra O, Loidi L, Czarnocka B, Alvarez P, Refetoff S, Dominguez-Gerpe L, Alvarez CV, Lado-Abeal J. Pendred syndrome in two Galician families: insights into clinical phenotypes through cellular, genetic, and molecular studies. J Clin Endocrinol Metab 2008; 93:267-77. [PMID: 17940114 PMCID: PMC2190748 DOI: 10.1210/jc.2007-0539] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 10/09/2007] [Indexed: 11/19/2022]
Abstract
CONTEXT We studied two families from Galicia (northwest Spain) with Pendred syndrome (PS) and unusual thyroid phenotypes. In family A, the proposita had a large goiter and hypothyroxinemia but normal TSH and free T3 (FT3). In family B, some affected members showed deafness but not goiter. OBJECTIVE Our objective was to identify the mutations causing PS and molecular mechanisms underlying the thyroid phenotypes. INTERVENTIONS Interventions included extraction of DNA and of thyroid tissue. PATIENTS Propositi and 10 members of the two families participated in the study. MAIN OUTCOME MEASURES Main outcome measures included SLC26A4 gene analysis, deiodinase activities in thyroid tissue, and c.416-1G-->A effects on SLC26A4 splicing. In addition, a primary PS thyrocyte culture, T-PS2, was obtained from propositus B and compared with another culture of normal human thyrocytes, NT, by Western blotting, confocal microscopy, and iodine uptake kinetics. RESULTS Proposita A was heterozygous for c.578C-->T and c.279delT, presented with goiter, and had normal TSH and FT3 but low FT4 attributable to high type 1 and type 2 iodothyronine deiodinase activities in the goiter. Propositus B bore c.279delT and a novel mutation c.416-1G-->A; some deaf relatives were homozygous for c.416-1G-->A but did not present goiter. The c.279delT mutation was associated with identical haplotype in the two families. T-PS2 showed truncated pendrin retained intracellularly and high iodine uptake with low efflux leading to iodine retention. CONCLUSIONS c.279delT is a founder mutation in Galicia. Proposita A adapted to poor organification by increasing deiodinase activities in the goiter, avoiding hypothyroidism. Lack of goiter in subjects homozygous for c.416-1G-->A was due to incomplete penetrance allowing synthesis of some wild-type pendrin. Intracellular iodine retention, as seen in T-PS2, could play a role in thyroid alterations in PS.
Collapse
Affiliation(s)
- Fernando Palos
- Unidade de Enfermedades Tiroideas e Metabólicas, Department of Medicine, University of Santiago de Compostela, C/ San Francisco sn, Santiago de Compostela 15705, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Anguiano B, García-Solís P, Delgado G, Aceves Velasco C. Uptake and gene expression with antitumoral doses of iodine in thyroid and mammary gland: evidence that chronic administration has no harmful effects. Thyroid 2007; 17:851-9. [PMID: 17956159 DOI: 10.1089/thy.2007.0122] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Several studies have demonstrated that moderately high concentrations of molecular iodine (I(2)) diminish the symptoms of mammary fibrosis in women, reduce the occurrence of mammary cancer induced chemically in rats (50-70%), and have a clear antiproliferative and apoptotic effect in the human tumoral mammary cell line MCF-7. Nevertheless, the importance of these effects has been underestimated, in part because of the notion that exposure to excess iodine represents a potential risk to thyroid physiology. In the present work we demonstrate that uptake and metabolism of iodine differ in an organ-specific manner and also depend on the chemical form of the iodine ingested (potassium iodide vs. I(2)). Further, we show that a moderately high I(2) supplement (0.05%) causes some of the characteristics of the "acute Wolff-Chaikoff effect"; namely, it lowers expression of the sodium/iodide symporter, pendrin, thyroperoxidase (TPO), and deiodinase type 1 in thyroid gland without diminishing circulating levels of thyroid hormone. Finally, we confirm that I(2) metabolism is independent of TPO, and we demonstrate that, at the doses used here, which are potentially useful to treat mammary tumors, chronic I(2) supplement is not accompanied by any harmful secondary effects on the thyroid or general physiology. Thus, we suggest that I(2) could be considered for use in clinical trials of breast cancer therapies.
Collapse
Affiliation(s)
- Brenda Anguiano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, México
| | | | | | | |
Collapse
|
20
|
Górka B, Skubis-Zegadło J, Mikula M, Bardadin K, Paliczka E, Czarnocka B. NrCAM, a neuronal system cell-adhesion molecule, is induced in papillary thyroid carcinomas. Br J Cancer 2007; 97:531-8. [PMID: 17667921 PMCID: PMC2360353 DOI: 10.1038/sj.bjc.6603915] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
NrCAM (neuron-glia-related cell-adhesion molecule) is primarily, although not solely, expressed in the nervous system. In the present study, NrCAM expression was analysed in a series (46) of papillary thyroid carcinomas (PTCs) and paired normal tissues (NT). Quantitative reverse transcriptase (QRT)-PCR revealed that NrCAM expression was upregulated in all PTCs compared to normal thyroid, whatever the stage or size of the primary tumour. NrCAM transcript levels were 1.3- to 30.7-fold higher in PTCs than in NT. Immunohistochemistry (IHC) confirmed that the expression of NrCAM was considerably higher in tumours (score 2+/3+) than in adjacent normal paratumoural thyroid tissue. The NrCAM protein was detected in all but three (93.3%) PTC samples, and it was mainly cytoplasmic; in some cases there was additional membranous localisation – basolateral and partly apical. In the normal thyroid and tissues surrounding tumours, focal NrCAM immunolabelling was seen only in follicles containing tall cells, where staining was restricted to the apical pole of thyrocytes. Western blot analysis corroborated the QRT–PCR and IHC results, showing higher NrCAM protein levels in PTCs than in paired NT. The level of overexpression of the NrCAM mRNA in tumourous tissue appeared to be independent of the primary tumour stage (pT) or the size of the PTC. These data provide the first evidence that NrCAM is overexpressed in human PTCs at the mRNA and protein levels, whatever the tumour stage. Thus, the induction and upregulation of NrCAM expression could be implicated in the pathogenesis and behaviour of papillary thyroid cancers.
Collapse
Affiliation(s)
- B Górka
- Department of Clinical Biochemistry and Molecular Biology, Medical Centre for Postgraduate Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - J Skubis-Zegadło
- Department of Clinical Biochemistry and Molecular Biology, Medical Centre for Postgraduate Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - M Mikula
- Department of Gastroenterology and Hepatology, Medical Centre for Postgraduate Education and Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland
| | - K Bardadin
- Department of Pathology, Medical Centre for Postgraduate Education, Ceglowska 80, 01-809 Warsaw, Poland
| | - E Paliczka
- Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland
| | - B Czarnocka
- Department of Clinical Biochemistry and Molecular Biology, Medical Centre for Postgraduate Education, Marymoncka 99/103, 01-813 Warsaw, Poland
- E-mail:
| |
Collapse
|
21
|
Pedemonte N, Caci E, Sondo E, Caputo A, Rhoden K, Pfeffer U, Di Candia M, Bandettini R, Ravazzolo R, Zegarra-Moran O, Galietta LJV. Thiocyanate transport in resting and IL-4-stimulated human bronchial epithelial cells: role of pendrin and anion channels. THE JOURNAL OF IMMUNOLOGY 2007; 178:5144-53. [PMID: 17404297 DOI: 10.4049/jimmunol.178.8.5144] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
SCN(-) (thiocyanate) is an important physiological anion involved in innate defense of mucosal surfaces. SCN(-) is oxidized by H(2)O(2), a reaction catalyzed by lactoperoxidase, to produce OSCN(-) (hypothiocyanite), a molecule with antimicrobial activity. Given the importance of the availability of SCN(-) in the airway surface fluid, we studied transepithelial SCN(-) transport in the human bronchial epithelium. We found evidence for at least three mechanisms for basolateral to apical SCN(-) flux. cAMP and Ca(2+) regulatory pathways controlled SCN(-) transport through cystic fibrosis transmembrane conductance regulator and Ca(2+)-activated Cl(-) channels, respectively, the latter mechanism being significantly increased by treatment with IL-4. Stimulation with IL-4 also induced the strong up-regulation of an electroneutral SCN(-)/Cl(-) exchange. Global gene expression analysis with microarrays and functional studies indicated pendrin (SLC26A4) as the protein responsible for this SCN(-) transport. Measurements of H(2)O(2) production at the apical surface of bronchial cells indicated that the extent of SCN(-) transport is important to modulate the conversion of this oxidant molecule by the lactoperoxidase system. Our studies indicate that the human bronchial epithelium expresses various SCN(-) transport mechanisms under resting and stimulated conditions. Defects in SCN(-) transport in the airways may be responsible for susceptibility to infections and/or decreased ability to scavenge oxidants.
Collapse
|
22
|
Faggiano A, Caillou B, Lacroix L, Talbot M, Filetti S, Bidart JM, Schlumberger M. Functional characterization of human thyroid tissue with immunohistochemistry. Thyroid 2007; 17:203-11. [PMID: 17381352 DOI: 10.1089/thy.2006.0174] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Immunohistochemistry provides insights in the expression of functional proteins and of their localization in normal thyroid tissue and in thyroid diseases. In hyperfunctional thyroid tissues, staining for sodium/iodide symporter (NIS), pendrin, thyroid peroxidase (TPO), and thyroglobulin (Tg) is increased. In hypofunctioning thyroid tissues, NIS staining is markedly decreased; in benign hypofunctioning adenomas, the expression of the other functional proteins is unmodified or slightly decreased, whereas their expression is profoundly decreased or absent in differentiated thyroid carcinoma.
Collapse
Affiliation(s)
- Antongiulio Faggiano
- Department of Pathology, Commissariat à l'Energie Atomique LRC29V, Institut Gustave Roussy, University Paris Sud, Villejuif Cedex, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Geter DR, Ward WO, Knapp GW, DeAngelo AB, Rubis JA, Owen RD, Allen JW, Delker DA. Kidney toxicogenomics of chronic potassium bromate exposure in f344 male rats. TRANSLATIONAL ONCOGENOMICS 2006; 1:33-52. [PMID: 23662038 PMCID: PMC3642132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Potassium bromate (KBrO3), used in both the food and cosmetics industry, and a drinking water disinfection by-product, is a nephrotoxic compound and rodent carcinogen. To gain insight into the carcinogenic mechanism of action and provide possible biomarkers of KBrO3 exposure, the gene expression in kidneys from chronically exposed male F344 rats was investigated. METHODS Male F344 rats were exposed to KBrO3 in drinking water for 52 and 100 wk. Kidneys were removed, frozen, and stored at -80°C, then used for Affymetrix microarray analysis. Gene expression patterns were examined using a non-carcinogenic (20 ppm) and carcinogenic dose (400 ppm) at 52 wk, and compared to 100 wk high dose (400 ppm) and adenoma gene expression. RESULTS Statistical analysis revealed 144, 224, 43, and 994 genes out of 15866 from the 52 wk low, 52 wk high, 100 wk high, and adenomas respectively, were differentially expressed when compared to control kidneys. Gene ontology classification of the 52 wk high dose showed alterations of gene transcripts involved in oxidative stress, lipid metabolism, kidney function/ion transport, and cellular function. In a comparison of kidney development gene expression, alterations were seen in the adenomas but not in the 52 wk bromate-treated kidneys. However, the normal kidney from the high dose group resembled the adenoma expression pattern with early kidney development genes being up-regulated and adult phase genes being down-regulated. Moreover, eight genes were identified which could serve as biomarkers of carcinogenic exposure to bromate. The most promising of these was Pendrin, or Slc26a4, a solute carrier of chloride and iodide active in the kidney, thyroid, and inner ear. All these tissues are targets of KBrO3 toxicity. Expression array results were verified with quantitative real-time rtPCR. CONCLUSIONS These data demonstrate that the 400 ppm carcinogenic dose of KBrO3 showed marked gene expression differences from the 20 ppm non-carcinogenic dose. Comparison of kidney development gene expression showed that the adenoma patterns were more characteristic of embryonic than adult kidneys, and that the normal kidney from the high dose group resembled the adenoma-like gene expression pattern. Taken together, the analysis from this study identifies potential biomarkers of exposure and illuminates a possible carcinogenic mode of action for KBrO3.
Collapse
Affiliation(s)
- David R. Geter
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711.,National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
| | - William O. Ward
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
| | - Geremy W. Knapp
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
| | - Anthony B. DeAngelo
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
| | - Jessica A. Rubis
- CIIT Centers for Health Research, Research Triangle Park, NC 27711
| | - Russell D. Owen
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
| | - James W. Allen
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
| | - Don A. Delker
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711.,Correspondence: Dr. Don Delker, U.S. Environmental Protection Agency, Environmental Carcinogenesis Division, 109 TW Alexander Drive (B143-06), Research Triangle Park, NC 27711. Tel: (919) 541-7639; Fax: (919) 541-0694;
| |
Collapse
|